MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS

MIKE TODD

ABSTRACT. Given a multimodal interval map f : I — I and a Holder potential ¢ : I —
R, we study the dimension spectrum for equilibrium states of . The main tool here is
inducing schemes, used to overcome the presence of critical points. The key issue is to
show that enough points are ‘seen’ by a class of inducing schemes. We also compute the
Lyapunov spectrum. We obtain the strongest results when f is a Collet-Eckmann map,
but our analysis also holds for maps satisfying much weaker growth conditions.

1. INTRODUCTION

Let X be a metric space. Given a probability measure p on X, the pointwise dimension
of u at x € X is defined as
r—0 logr

if the limit exists, where B, (z) is a ball of radius r around . This tells us how concentrated
a measure is around a point z; the more concentrated, the lower the value of d,(x). We
will study f-invariant measures p for an endomorphism f : X — X. In particular we will
be interested in equilibrium states p, for ¢ : X — R in a certain class of potentials (see
below for definitions).

For any A C X, we let HD(A) denote the Hausdorff dimension of A. We let

. log i, (B, (z))
Ky(a) := {:1: : }’1—1%127 =ay, DS,(a):=HDK,(a)),
and
K' =<z :lim M does not exist p .
v r—0 log r

Then we can make a multifractal decomposition:
X =K, U (UaerKy(a)) .
The function DS, is known as the dimension spectrum.

These ideas are well understood in the case of uniformly expanding systems, see [P]. The
dimension spectrum can be obtained in terms of the Legendre transform of the pressure
function. A common way to show this in these cases is to code the system using a finite
Markov shift, and then exploit the well developed theory for those systems, see for example
[PW]. For non-uniformly expanding dynamical systems this approach is more complicated
since we generally need to code by countable Markov shifts. As has been shown by Sarig
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[S1, S3], Tommi [I1, I12] and Pesin and Zhang [PZ] among others, in going from finite to
countable Markov shifts, more exotic behaviour, including ‘phase transitions’, appears.

The coding used in non-uniformly expanding cases usually arises from an ‘inducing scheme’:
that is, for some part of the phase space, iterates of the original map are taken, and the
resulting ‘induced map’ is considered. The induced maps are Markov, and so the theory
of countable Markov shifts as in [HMU, I1] can be used. In some cases the induced map
can be a first return map, but this is not always so.

Until now, the principal example of success with this approach is in the case of Manneville-
Pomeau maps. These are interval maps which are expanding everywhere, except at a
parabolic fixed point. The presence of the parabolic point leads to phase transitions as
mentioned above. Multifractal analysis, of the dimension spectrum and the Lyapunov
spectrum (see below), of these examples has been carried out by Pollicott and Weiss
[PoWe], Nakaishi [Na] and Gelfert and Rams [GR]. In the first two of these papers,
inducing schemes were used (in the third one, the fact that the original system is Markov
is used extensively). The inducing schemes used are first return maps to a certain natural
domain. The points of the original phase space which the inducing schemes do not ‘see’
is negligible, consisting only of the (countable) set preimages of the parabolic point. We
also mention a closely related theory for certain Kleinian groups by Kessebohmer and
Stratmann [KeS].

In the case of multimodal maps with critical points, if the critical points are dense then
there is no way that useful inducing schemes can be first return maps. Moreover, the set
of points which the inducing schemes do not ‘see’ can, in principle, be rather large. (As
explained in Section 5.2, this set will at least include the (countable) set of points which
eventually map to a critical point.) In these cases the thermodynamic formalism has a
lot of exotic behaviour: phase transitions brought about due to some polynomial growth
condition were discussed by Bruin and Keller in [BK] and shown in more detail by Bruin
and Todd [BT4]. Multiple phase transitions, which are due to renormalisations rather
than any growth behaviour, were proved by Dobbs [D2].

In this paper, we develop a theory to cope with the case of maps with critical points, by
defining inducing schemes which provide us with sufficient information on the dimension
spectrum. The main idea is that points with large enough pointwise Lyapunov exponent
must be ‘seen’ by certain inducing schemes constructed in [BT4|. These inducing schemes
are produced via the Markov extension known as the Hofbauer tower. This structure
was developed, principally for interval maps by Hofbauer and Keller, see for example
[H1, H2, K2|, and in higher dimensions by Buzzi [Bu]. Once we have produced these
inducing schemes, we can use the theory of multifractal analysis developed by Iommi
in [I1] for the countable Markov shift case. Note that points with pointwise Lyapunov
exponent zero cannot be ‘seen’ by measures which are compatible to an inducing scheme,
so if we are to use measures and inducing schemes to study these questions, the inducing
methods we use may well be optimal.

There is a further property which useful inducing schemes must have: not only must they
see sufficiently many points, but also they must be well understood from the perspective
of the thermodynamic formalism. Specifically, given a potential 1), we need its induced
version on the inducing scheme to fit into the framework of Sarig [S2]. In [PSe, BT2, BT4]
this was essentially the same as having ‘good tail behaviour’ of the equilibrium states for
the induced potentials.
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Our main theorem states that, as in the expanding case, for a large class of multimodal
maps, the multifractal spectrum can be expressed in terms of the Legendre transform of
the pressure function for important sets of parameters a. The Collet-Eckmann case is
closest to the expanding case, and here we get exactly the same kind of graph for DS, as
in the expanding case for the values of a we consider. In the non-Collet Eckmann case,
we expect the graph of DS, to be qualitatively different to the expanding case, as shown
for the related Lyapunov spectrum in [Na] and [GR]. We note that singular behaviour of
the Lyapunov spectrum was also observed by Bohr and Rand [BoR] for the special case
of the quadratic Chebyshev polynomial.

The results presented here can be seen as an extension of some of the ideas in [H3], in which
the full analysis of the dimension spectrum was only done for uniformly expanding interval
maps. See also [Y] for maps with weaker expansion properties. Moreover, Hofbauer, Raith
and Steinberger [HRS] proved the equality of various thermodynamic quantities for non-
uniformly expanding interval maps, using ‘essential multifractal dimensions’. However,
the full analysis in the uniformly expanding case, including the expression of the dimension
spectrum in terms of some Legendre transform, was left open.

For ease of exposition, in most of this paper the potential ¢ is assumed to be Holder. In
this case existence of an equilibrium state p, was proved by Keller [K1]. However, as we
show in the appendix, all the results here hold for a class of potentials (SV'I) considered
in [BT2]. Therefore, as an auxiliary result, we prove the existence of conformal measures
m,, for potentials ¢ € SVI. Moreover, for the corresponding equilibrium states pi,, the
density ;51_2 is uniformly bounded away from 0 and co. This is used here in order to
compare d,, () and d, (z) where ug is the equilibrium state for an inducing scheme
(X, F), with induced potential ® : X — R (see below for more details). The equality of
due(x) and d,(x) is not immediate for € X since the measure for the inducing scheme
1o is not, as would be the case if the inducing schemes were simply first return maps,
simply a rescaling of the original measure p,. On the other hand, we show that this
rescaling property is true of the conformal measures, which then allows us to compare
due(z) and d, (7). It is interesting to note that the proof of existence of a conformal
measure also goes through for potentials of the form = — —tlog |Df(z)].

1.1. Key definitions and main results. We let
M = M(f) := {f-invariant probability measures}
and
Merg = Merg(f) :={p € M : pis ergodic}.
For a potential ¢ : X — R, the pressure is defined as

P(p) = sufa{hu—l—/cpdu:—/godu<oo}
ne

where h,, denotes the metric entropy with respect to p. Note that by the ergodic decom-
position, we can just take the above supremum over M,,,. We let hy,(f) denote the
topological entropy of f, which is equal to P(0), see [K4]. A measure p which ‘achieves
the pressure’, u.e., h, + f o du = P(p), is called an equilibrium state.

We will be interested in C? multimodal interval maps f : I — I. Let Crit = Crit(f)
denote the set of critical points of f. We say that ¢ € Crit is a non-flat critical point of f
if there exists a diffeomorphism g. : R — R with ¢.(0) = 0 and 1 < ¢, < oo such that for
x close to ¢, f(x) = f(c) & |ge(x — ¢)|%. The value of £. is known as the critical order of
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c. We define 4. (f) := max{l. : ¢ € Crit(f)}. Our class of maps F will have all critical
points non-flat, as well as some other properties we describe in more detail below.

We define the lower/upper pointwise Lyapunov exponent as

n—oo

n—1 n—1
Ay () = limint 3 log | DF(f7(x))], and y(x) := limsup > log | DF(f(x)]
j=0 Jj=0

respectively. If A;(z) = Ag(z), then we write this as Ag(z). For a measure p € M.y,
we let Af(p) := [log|Df| du denote the Lyapunov exponent of the measure. Since our

definition of F will exclude the presence of attracting cycles, [Pr] implies that As(u) > 0
for all f € F and p € M.

For A > 0, we denote the ‘good Lyapunov exponent’ sets by
LG, :={z: Ap(x) > A} and LG, := {x : Af(z) > A}.

We define 3 o - )
Ky(a) := Ky(a) N LGy and DS, () := HD(Ky(a)).

As well as assuming that our maps f are in F, we will also sometimes impose certain
growth conditions on f:

An exponential growth condition (Collet-Eckmann): there exist Cep, G > 0,
|IDf"(f(c))| = Cipe®™ for all ¢ € Crit and n € N. (1)

A polynomial growth condition: There exist Cp > 0 > 0 and » > 20,,4.(f) so that
|IDf"(f(c))| = Con™ for all ¢ € Crit and n € N. (2)

A simple growth condition:
|IDf"(f(c))| — oo for all ¢ € Crit. (3)

We will consider potentials —tlog |D f| and also e-Holder potentials ¢ : I — R satisfying

sup ¢ — inf ¢ < hyop(f). (4)

Without loss of generality, we will usually also assume that P(p) = 0. Note that our
results do not depend crucially on e € (0, 1], so we will ignore the precise value of € from
here on.

We would like to emphasise that (4) may not be easy to remove as an assumption on our
class of Holder potentials if the results we present here are to go through. In the setting
of Manneville-Pomeau maps, in [BT2, Section 6] it was shown that for any € > 0, there
exists a Holder potential ¢ with sup ¢ —inf ¢ = hy,,(f) 4+ and for which the equilibrium
state is a Dirac measure on the fixed point (which is not seen by any inducing scheme).

We briefly sketch some properties of these maps and potentials. For details, see Proposi-
tions 2 and 3. By [BT4] there exist t; < t5 such that for t € (¢, ) there is an equilibrium
state fi_s10g|Dy| fOr t € (t1,12). If f satisfies (1) then we can choose t; < 1 < t,. If f only
satisfies (2) then we take to = 1. Combining [BT4] and [BT2], for Holder potentials ¢ we
have equilibrium states ji_¢iog ||+~ for —tlog | D f|+ vy if ¢ is close to 1 and 7 is close to
0. Keller shows that for a piecewise continuous map f : I — [ and ¢ : I — R satisfying
(4), there is an equilibrium state p,. Note that by [BT2], strengthening the conditions on
f allows us to get equilibrium states for more exotic potentials, see appendix. Also, by
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[BT2], if (3) holds and ¢ is a Hélder potential satisfying (4), then there are equilibrium
states fi_¢iog|Df|4re fOr —tlog|D f| 4 ¢ if ¢ is close to 0 and v is close to 1. These equi-
librium states are unique. As explained in the appendix, (3) is assumed in [BT2] in order
to ensure that the induced versions of ¢ are sufficiently regular, so if this regularity can
be shown another way, for example in the simple case that ¢ is a constant everywhere,
this condition can be omitted.

If possible, we define T},(¢q) to be so that

P(¢y) =0, where ¢, := —T,(q)log |Df| + q.

Note that setting P(y) = 0, T}, is convex, T,,(1) = 0, and by Ledrappier [L], T,,(0) = 1.
It may be the case that for some values of ¢, there is no such number. For example, let
f € F be a unimodal map not satisfying (1). Then as in [NS], P(—tlog|Df|) = 0 for all
t > 0. So if ¢ is the constant potential ¢ = —hy,,(f), and ¢ < 0, then T,,(¢) must be
undefined.

For h a convex function, we say that (h,g) form a Fenchel pair if
9(p) = sup{pz — h(z)}.

If h is a convex C? function then the function g is called the Legendre transform of h. In
this case

g(a) = h(q) + ga were q is such that o = —Dh(q).

Suppose that f € F has a unique absolutely continuous invariant probability mea-
sure (acip). Since [L] implies that this measure is an equilibrium state for the po-
tential © — —log|Df(z)|, we denote the measure by fi_iogps- In this case, we let

Pac 1= %‘ﬁff‘. Note that if f € F satisfies (3) then [BRSS] implies that there is a
T oe

unique acip.

Theorem A. Suppose that f € F is a map satisfying (3) and ¢ : [ — I is a Holder
potential satisfying (4), and with P(p) = 0. If u, # pi_10g|ny| then there exists an open

set U C R so that for o € U, the dimension spectrum DS, () is the Legendre transform
of T,. Moreover,

(a) U contains a neighbourhood of HD(p.,), and DNSQP(HD(/LW)) = HD(uy,);
(b) if f satisfies (2), then U contains both a neighbourhood of HD(j,), and a one-

sided neighbourhood of va., where @\gw(goac) =1;
(c) if f satisfies (1), then U contains both a neighbourhood of HD(p.,) and of @ae.

It can be seen from the proof that for all « € U there is a unique equilibrium state ,,, for

the family of potentials 1, so that i (Ks) = 1, where a = —DT,,(¢). This measure has

full dimension on Ky, i.e., HD(uy,) = HD(K,). Note that by Hofbauer and Raith [HR],
Mo D

h :
HD(p,) = %, and as shown by Ledrappier L], HD(pi—1og|py|) = Py ey Bl

In Section 6 we consider the situation where ¢ is the constant potential. In that setting,
as noted above T, is not defined for ¢ < 0 when f is unimodal and satisfies (2), but not

(1). Therefore, under these conditions, we would expect 53<p to behave differently to the
expanding case for o < @,.. This is why we only deal with a one-sided neighbourhood of
©ac in (b). See also Remark 5 for more information on this.
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We remark that if p, # pi_10g|py is not satisfied then DS, () is zero for every a € R,
except at « = HD(p,,), where it takes the value 1. As in Remark 3 below, for multimodal
maps f and ¢ a constant potential, this only occurs when f has preperiodic critical points.
In view of Livsic theory for non-uniformly hyperbolic dynamical systems, in particular
the results in [BHN, Section 5], we expect this to continue to hold for more general Hélder
potentials.

According to [BS] if (1) holds then there exists A > 0 so that for the nonwandering set
(2, defined in Section 2, we have Q@ C LGy U (U,>of "(Crit)). Therefore we have the
following corollary. Note that here the neighbourhood U is as in case (c¢) of Theorem A.

Corollary B. Suppose that f € F satisfies the Collet-Eckmann condition (1) and ¢ :
I — I is a Holder potential satisfying (4) and with P(¢) = 0. If p, # pi—10g|ny| then there
exists an open set U C R containing HD(u,) and 1, so that for oo € U the dimension
spectrum DS, () is the Legendre transform of T,,.

In fact, to ensure that DS, (o) = DS,(«a) it is enough to show that ‘enough points
iterate into a compact part of the Hofbauer tower infinitely often’. As in [K2], one way of
guaranteeing this is to show that a large proportion of the sets we are interested in ‘go to
large scale’ infinitely often. Graczyk and Smirnov [GS] showed that for rational maps of
the complex plane satisfying a summability condition, this is true. Restricting their result
to real polynomials, we have the following Corollary, which we explain in more detail in
Section 5.1.

Corollary C. Suppose that f € F extends to a polynomial on C with no parabolic points,
all critical points in I, and satisfying (2). Moreover, suppose that ¢ : I — I is a Holder
potential satisfying (4) and P(p) = 0. If uy, # fi_10g|ps| then there exists a set U C R
containing a one-sided neighbourhood of p.., so that for a € U, the dimension spectrum
DS, () is the Legendre transform of T,,. Moreover, if HD(ju,) > bnas(D) then the same

Bp—1
is true for any « in a neighbourhood of HD(fi,).

Barreira and Schmeling [BaS] showed that in many situations the set K, has full Hausdorff
dimension. As the following proposition states, this is also the case in our setting. The
proof follows almost immediately from [BaS], but we give some details in Section 5.

Proposition 1. Suppose that f € F satisfies (3) and ¢ : [ — I is a Hélder potential
satisfying (4) and with P(p) = 0. Then HD(K[,) = 1.

Theorem A also allows us to compute the Lyapunov spectrum. The results in this case
are in Section 6.

We would like to point out that throughout this paper we can replace the assumption
that the potentials ¢ : I — R are Holder with another condition (SVI) which is more
dynamically defined, see the appendix for details.

Acknowledgements: 1 would like to thank G. lommi, H. Bruin, T. Jordan and N. Dobbs
for useful comments on earlier versions of this paper. I would also like to thank them and
D. Rand for fruitful conversations.
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2. THE MAPS, THE MEASURES AND THE INDUCING SCHEMES

Let f: I — I be a C? multimodal map of the unit interval I. Throughout F will be the
collection of C? interval maps which have negative Schwarzian (that is, 1/4/]D f| is convex
away from critical points) and all critical points non-flat, and not points of inflection. We
will assume for ease of exposition that for all n # m, f™(Crit) N f™(Crit) = (). Note that
the situation is simpler if critical points have finite orbits, and that if one critical orbit
maps to another, it is possible to consider these critical points together as a ‘block’, but
to simplify the exposition we will not do that here. We will also assume for simplicity
that maps f € F are non-renormalisable, see [MS], and do not have any attracting
periodic points. This implies that the non-wandering set 2: the set of points x € I such
that for arbitrarily small neighbourhoods U of = there exists n = n(U) > 1 such that
fMU)NU # 0, is a finite union U, such that each €, is a finite union of intervals such
that f : Qp — € is topologically transitive. For ease of exposition, we will assume that
Q) has only one component for all maps in F.

Let (X, f) be a dynamical system and ¢ : X — [—00, 00| be a potential. For use later,
we let

Snp(x) = p(x) + -+ o frH(z).
We say that a measure m, is conformal for (X, f, ) if m(X) = 1, and for any Borel set
A sothat f: A— f(A) is a bijection,

m(f() = [ % dm

A
(or equivalently, dm(f(z)) = e ¥@dm(x)).

2.1. Hofbauer towers. We next define the Hofbauer tower. The setup we present here
can be applied to general dynamical systems, since it only uses the structure of dynami-
cally defined cylinders. An alternative way of thinking of the Hofbauer tower specifically
for the case of multimodal interval maps, which explicitly makes use of the critical set, is
presented in [BB].

We first consider the dynamically defined cylinders. We let Py := [ and P,, denote the
collection of maximal intervals C,, so that f": C,, — f"(C,) is a homeomorphism. We
let C,[z] denote the member of P, containing x. If x € U,>¢f "(Crit) there may be more
than one such interval, but this ambiguity will not cause us any problems here.

The Hofbauer tower is defined as

P=1] L] Ao~

k>0 CrLePy

where f¥(Cy) ~ f¥(Cp) if f¥(Ci) = f¥(Cr). Let D be the collection of domains of
and 7 : I — I be the natural inclusion map. A point Z € I can be represented by (z, D)
where & € D for D € D and & = 7(2). Given & € I, we can denote the domain D € D it
belongs to by D;.

The map f : I — I is defined by

f(@) = f(x,D) = (f(x), D)
if there are cylinder sets Cp D Cpyy such that x € f*(Cypy1) C f¥(Cy) = D and D' =
fE 1 (Cry1). In this case, we write D — D', giving (D, —) the structure of a directed
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graph. Therefore, the map 7 acts as a semiconjugacy between f and f:

Tof=for.
We denote the ‘base’ of I, the copy of I in I by Dy. For D € D, we define lev(D) to be

the Alength of the shortest path Dy — --- — D starting at the base Dy. For each R € N,
let Ir be the compact part of the Hofbauer tower defined by

Ip :=1{D e D:lev(D) < R}.

For maps in F, we can say more about the graph structure of (D, —) since Lemma 1 of
[BT4] implies that if f € F then there is a closed primitive subgraph Dz of D. That is,
for any D, D’ € Dt there is a path D — --- — D’; and for any D € D7, if there is a
path D — D' then D' € Dy too. We can denote the disjoint union of these domains by
I7. The same lemma says that if f € F then W(]T) Q and f is transitive on /7.

Given pu € M., 4, we say that p lifts to I if there exists an ergodic f—invariant probability
measure /i on [ such that jon~t = p. For f € F,if p € M., and A\(u) > 0 then p lifts
to I, see [K2, BK].

For convenience later, we let ¢ := 7r|15(1). Note that there is a natural distance function d;
within domains D (but not between them) induced from the Euclidean metric on I.

2.2. Inducing schemes. We say that (X, F) 1) is an inducing scheme for (I, f) if

e X is an interval containing a finite or countable collection of disjoint intervals X; such
that F' maps each X; diffeomorphically onto X, with bounded distortion (i.e., there
exists K > 0 so that for all i and z,y € X;, 1/K < DF(x)/DF(y) < K);

e 7|x, = 7; for some 7; € N and F|x, = 7.

The function 7 : U; X; — N is called the inducing time. It may happen that 7(x) is the

first return time of x to X, but that is certainly not the general case. For ease of notation,
we will often write (X, F') = (X, F, 7).

Given an inducing scheme (X, F,7T), we say that a measure pup is a [lift of p if for all
p-measurable subsets A C 1,

A = e S Y el 1)) 6)

Conversely, given a measure pup for (X, F), we say that up projects to p if (5) holds. We
denote

(X, F)* = {z € X : 7(F"(z)) is defined for all k >0} .

We call a measure p compatzble to the inducing scheme (X, F, 1) if

e 1(X)>0and pu(X \ (X, F)>®)=0; and
e there exists a measure pr which projects to u by (5), and in particular fX T dup < 0.

For a potential ¢ : I — R, we define the induced potential ® : X — R for an inducing
scheme (X, F,7) as ®(z) := Symp(z) = ¢() + ...+ po fT@®~1(z) whenever 7(z) < co.
We denote ®; := sup,cy, ®(z). Note that sometimes we will abuse notation and write
(X, F,®) when we are particularly interested in the induced potential for the inducing
scheme. The following is known as Abramov’s formula. See for example [PSe].
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Lemma 1. Let up be an ergodic invariant measure on (X, F,7) such that [ 7 dup < 0o
and with projected measure . Then hy,, (F) = ([ 7 dur) hu(f). Moreover, if ¢ : I — R is
a potential, and ® the corresponding induced potential, then [ ® dup = ([ 7 dur) [ ¢ dp.

Fixing f, we let
My i={p € Mgt Ap(p) > 0}, and for e > 0, M. :={p € Mgy : h, > <}

For a proof of the following result, see [BT4, Theorem 3].

Theorem 1. If f € F and p € M., then there is an inducing scheme (X, F,T) and a
measure (i on X such that fXT dup < oo. Here pp is the lifted measure of u (i.e., p

and pg are related by (5)). Moreover, (X, F)>® = X NQ.

Conversely, if (X, F,T) is an inducing scheme and pp an ergodic F-invariant measure
such that fX Tdup < oo, then pup projects to a measure p € M.

The proof of the above theorem uses the theory of [B, Section 3]. The main idea is that
the Hofbauer tower can be used to produce inducing schemes. We pick X C I7 and use a
first return map to X to give the inducing scheme on X := 7(X). We will always choose
X to be a cylinder in P, for various values of n € N. Sets X , and thus the inducing
schemes they give rise to, will be of two types.

Type (a): X is an interval in a single domain D € Dy. Then for z € X there exists
a unique Z € X so that m(#) = 2. Then 7(z) is defined as the first return time of Z to
X. We choose X so that X € P, for some n, and X is compactly contained in D. These
properties mean that (X, F, 7) is an inducing scheme which is extendible. That is to say,
letting X’ = w(D), for any domain X; of (X, F') there is an extension of f™ to X/ D X; so
that f7 : X! — X' is a homeomorphism. Since f has negative Schwarzian derivative, this
fact coupled with the Koebe lemma, see [MS], means that (X, F') has uniformly bounded
distortion, with distortion constant depending on & := d;(X, D).

Type (b): We fix § > 0 and some interval X € P, for some n. We say that the
interval X’ is a d-scaled neighbourhood of X if, denoting the left and right components
of X’\ X by L and R respectively, we have |L|,|R| = §|X|. We fix such an X’ and let
X =U{Dna YX):D e Dr,n(D) > X'}. Let rg denote the first return time to X.
Given z € X, for any # € X with 7(%) = z, we set 7(z) = r¢(&). In [B] it is shown that
by the setup, this time is independent of the choice of & in 7r|;(1(x) Also for each X; there
exists X! D X, so that f7 : X! — X' is a homeomorphism, and so, again by the Koebe
Lemma, F' has uniformly bounded distortion, with distortion constant depending on 4.

We will need to deal with both kinds of inducing scheme since we want information on the
tail behaviour, i.e., the measure of {7 > n} for different measures. As in Propositions 2
and 3 below, for measures close to i, we have good tail behaviour for schemes of type (a);
and for measures close to the acip pi—10g|pf| We have good tail behaviour for schemes of
type (b). We would like to point out that any type (a) inducing time 7y can be expressed
as a power of a type (b) inducing time 75, i.e., 71 = 75 where p : X — N. Moreover,
[ p diy < oo for the induced measure py for the type (a) inducing scheme. This type of
relation is considered by Zweimiiller [Z].
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2.3. Method of proof. The main difficulty in the proof of Theorem A is to get an upper
bound on the dimension spectrum in terms of 7T,. To do this, we show that there are
inducing schemes which have sufficient multifractal information to give an upper bound
on R. Then we can use lommi’s main theorem in [I1], which gives upper bounds in terms
of the T for the inducing scheme. It is the use of these inducing schemes which is the key
to this paper.

We first show in Section 3 that for a given range of « there are inducing schemes which are
compatible to any measure p which has h, + [ ¢, du sufficiently large, where ¢ depends
on «. In doing this we will give most of the theory of thermodynamic formalism needed
in this paper. For example, we show the existence of equilibrium states on IC,, which will
turn out to have full dimension (these also give the lower bound for R).

In Section 4 we prove that for a set A, there is an inducing scheme that ‘sees’ all points
x € A with A\¢(z) bounded below, up to set of small Hausdorff dimension. This means that
we can fix inducing schemes which contain all the relevant measures, as above, and also
contain the multifractal data. Then in Section 5 we prove Theorem A and Proposition 1.
In Section 6 we show how our results immediately give us information on the Lyapunov
spectrum. In the appendix we show that pointwise dimensions for induced measures and
the original ones are the same, also extending our results to potentials in the class SVI.

3. THE RANGE OF PARAMETERS

In this section we determine what U is in Theorem A. In order to do so, we must introduce
most of the theory of the thermodynamical properties for inducing schemes required in
this paper. Firstly we show that if a(q) € U, then the equilibrium states for ¢, are forced
to have positive entropy. By Theorem 1, this ensures that the equilibrium states must be
compatible to some inducing scheme, and thus we will be able to use Iommi’s theory.

We let
Ge(p) = {q:5|5<OsuChthat /wqd,u>5:>hu>5}.

The next lemma shows that most of the relevant parameters ¢ which we are interested in
must lie in G.(¢).

Lemma 2. Let ¢ : I — I be a potential satisfying (4) and with P(p) = 0. Suppose
that (3) holds for f. There exist € > 0, 1 < 1 < qq so that (q1,q2) C G.. If we take
e > 0 arbitrarily close to 0 then we can take q, arbitrarily close to 0. If (1) holds then

[0,1] C (a1, ¢2)-
Proof. First note that (4) and P(y) = 0 implies that ¢ < 0:

0=P(p) 2 hiop(f) + /90 A hyop(f) = hiop(f) +infp > sup ¢

where p1_p,,,(s) denotes the measure of maximal entropy (for more details of this measure,
see Section 6). For ¢ € (0, 1], suppose that for some § < 0, a measure p € M,,, has
h,+ | =T,(q)log|Df| + qp du > 4. Recall that by [Pr], A() > 0 since we excluded the
possibility of attracting cycles for maps f € F. Then

hy, > 5+/T¢(q)log|Df| —qp dp >0+ g sup o).

So if 9 is close enough to 0 we must have positive entropy.
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Suppose now that (1) holds. Then by [BS], there exists n > 0 so that any invariant
measure p € M., must have Af(p) > n. Soif h, + [ —=T,(¢q)log|Df| + qp dp > 4, then

hy >0 + /Tv(Q) log [Df| = qp dp = 0+ T,(q)n + q sup .

For ¢ close to 0, T,,(¢) must be close to 1, so we can choose ¢ and ¢; < 0 so that the
lemma holds. O

The sets Cover(c) and SCover(¢): Let € > 0. By [BT4, Lemma 3] there exists n > 0
and a compact set E C I so that 1 € M. implies that /l(E) > 1. Moreover E can be
taken inside I \ Bs(9I) for some R € N and § > 0. (Here By(81) is a 6-neighbourhood of
oI with respect to the distance function d;). As in the discussion above Proposition 2 in
[BT4], E can be covered with sets Xl, e ,Xn so that each X}, acts as the set which gives
the inducing schemes (Xj, Fy) (where X), = 7(X})) as in Theorem 1. We will suppose
that these sets are either all of type (a), or all of type (b). This means that any u € M.
must be compatible to at least one of (X}, F},). We denote Cover®(e) = {X1,..., X, } and
the corresponding set of schemes by SCover®(e) if we are dealing with type (a) inducing
schemes. Similarly we use Cover®(g) and SCover®(e) for type (b) inducing schemes. If a
result applies to both schemes of types then we omit the superscript.

We let {Xj;}; denote the domains of the inducing scheme (Xj, Fi) and we denote the
value of 75, on Xy ; by 7;. Given (Xy, Fy, 71,), we let U, denote the induced potential for

Vg

From this setup, given ¢ € G.(p) there must exist a sequence of measures {y,}, C M.
and a scheme (Xj, Fy,) so that h,, + [, du, — P(¢,) = 0 and p,, are all compatible to
(X, F). Later this fact will allow us to use [BT4, Proposition 1] to study equilibrium
states for 1),.

If v: I — R is some potential and (X, F') is an inducing scheme with induced potential
T: X — R, welet T; := sup,cx, T(z). We define the kth variation as Vi(T) :=
supg,ep, 1Y (2) — Y(y)| : 2,y € Cr}. We say that T is locally Hélder continuous if there
exists a > 0 so that V(1) = O(e*"). We let

Zo(Y) = ZeTi, and Z;(7T) := Znen.

As in [S2], if T is locally Hélder continuous, then Zy(Y) < oo implies P(T) < oo.

We say that a measure p satisfies the Gibbs property with constant P € R for (X, F,Y) if
there exists K¢, P € R so that

1 1(Cn)
Ka S - S fe

for every n-cylinder C,, and all z € C,,.

The following is the main result of [BT2] (in fact it is proved for a larger class of potentials
there).

Proposition 2. Given f € F satisfying (3) and ¢ : I — R a Hélder potential satisfying
(4) and with P(p) = 0, then for any € > 0 and any (X, F') € SCover®(e):

(a) There exists Bp > 0 such that 3 __ e = O(e "Pe);
(b) ® is locally Hélder continuous and P(®) = 0;
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(c) There exists a unique ®-conformal measure mg, and a unique equilibrium state g
for (X, F,®).

(d) There exists Cy so that C%p < gﬂ% < Co;

(e) There exists an equilibrium state p, for (I, f,¢);

(f) The map t — P(ty) is analytic fort € ( ~heop(f) _heop(f) )

sup p—inf ¢’ sup p—inf ¢

The existence of the equilibrium state under even weaker conditions than these was proved
by Keller [K1]. However, we need all of the properties above for this paper, which are not
all proved in [K1].

The following is proved in [BT4]. For the same result for unimodal maps satisfying (1)
see [BK], which used tools from [KN].

Proposition 3. Suppose that f € F satisfies (2) and let (x) = Yy (z) := —tlog |Df(z)|—
P(—tlog|Df(x)|). Then there exists ty < 1 such that for anyt € (ty,1) there ise = e(t) >
0 so that for any (X, F) € SCover®(e):

(a) There exists Bpp > 0 such that Y __ e¥i = O(e~"Por);

(b) W is locally Holder continuous and P(¥) = 0;

(c) There exists a unique V-conformal measure my, and a unique equilibrium state fiy
for (X, F,¥);

(d) There exists Cy so that CL\I/ < jﬁl‘f’p < Cy;

(e) There exists an equilibrium state pu, for (I, f, 1) and thus for (I, f, —log|Df]);

(f) The map t — P(—tlog|Df]) is analytic in (ty,1).

If f € F satisfies (1), then this proposition can be extended so that ¢ can be taken in a
neighbourhood of 1.

In Proposition 2 both mg and ue satisfy the Gibbs property, and in Proposition 3 both
my and pyg satisfy the Gibbs property; in all these cases, the Gibbs constant P is 0.
By the Gibbs property, part (a) of Proposition 2 and 3 imply that ue({7 = n}) and
o ({7 = n}) respectively decay exponentially. These systems are referred to as having
exponential tails.

One consequence of the first item in both of these propositions, as noted in [BT2, Theorem
10] and [BT4, Theorem 5], is that we can consider combinations of the potentials above:
x — —tlog|Df(z)| + sp(x) — P(—tlog|Df| + sp). We can derive the same results for
this potential for ¢ close to 1 and s sufficiently close to 0, or alternatively for s close to 1
and ¢ sufficiently close to 0. Note that by [KN, BK] this can also be shown in the setting
of unimodal maps satisfying (1) with potentials ¢ of bounded variation.

If (X, F') is an inducing scheme with induced potential ® : X — R, we define
PB.(®) :={q € G(¢) : 30 > 0s.t. Z5(V,+ 76) < o0} .
Lemma 3. For (Xy, Fy,) € SCover(e), if ¢ € PB.(®y) then P(V, 1) = 0. Moreover, there

is an equilibrium state juy_, for (X, Fi, Uy k) and the corresponding projected equilibrium
state puy, is compatible to any (X;, F;) € SCover(e).

In this lemma, SCover(e) can be SCover®(g) or SCover®(e). Note that by [BT4, Propo-
sition 1], if for any (X, F') € SCover(e) and ¢ € PB.(®), then there exists an equilibrium
state py, for (X, F,¥,), as well as an equilibrium state i, for (1, f,1,).
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Proof. Firstly we have P(VU, ) = 0 for the inducing scheme (Xj, F)) by Case 3 of [BT4,
Proposition 1]. Secondly we can replace (X, Fi) with any inducing scheme (X, Fj) €
SCover(e) by [BT4, Lemma 9. O

This lemma means that if ¢ € PB.(®y) for (X, Fi) € SCover®(e), then g € PB.(®;) for
any (X, F;) € SCover®(e). Therefore, we can denote this set of ¢ by PB2(¢). Since the
same argument holds for inducing schemes of type (b), we can analogously define the set
PBY(¢). Note that &’ < e implies PB.(p) D PB.(¢). We define PB(p) := U.~oPB.(p).

Remark 1. The structure of inducing schemes here means that we could just fix a sin-
gle inducing scheme which has all the required thermodynamic properties in this section.
However, in Section J we need to consider all the inducing schemes here in order to
1nvestigate the dimension spectrum.

In [I1], the following conditions are given.

¢" := inf{q : there exists t € R such that P(—tlog |DF|+ q®) < 0}.

Ta(g) = inf{t € R: P(—tlog|DF|+ q®) <0} ifq> ¢,
o= 00 if g <q*.

The following is the main result of [I1, Theorem 4.1]. We can apply it to our schemes
(X, F) since they can be seen as the full shift on countably many symbols (¥,0). In
applying this theorem, we choose the metric ds, on ¥ to be compatible with the Euclidean
metric on X.

Theorem 2. Suppose that (X,0) is the full shift on countably many symbols and @ :
Y — R s locally Hélder continuous. The dimension spectrum DSg¢(«) is the Legendre
transform of Tg.

If we know that an inducing scheme has sufficiently high, but not infinite, pressure for the
potential ¥, then the measures we are interested in are all compatible to this inducing
scheme. This leads to Ty being equal to T, as in the following proposition.

Proposition 4. Suppose that f € F is a map satisfying (3) and ¢ : I — I is a Holder
potential satisfying (4). Let € > 0. For all ¢ € PB%(p), if (X,F) € SCover®(e) with
induced potential ®, then To(q) = T,(q). Similarly for type (b) inducing schemes.

Moreover,

(a) there ezists € > 0 and qo < 1 < q1 so that (qo,q1) C PB%(p);

(b) if f satisfies (2), then for alle > 0 there exist 0 < gy < q3 so that (g2, q3) C PBb(yp)
(taking € small, q3 can be taken arbitrarily close to 0);

(c) if f satisfies (1), for all € > 0 there exist ¢ < 0 < q3 so that (g2, q3) C PB(y).
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Proof. By Lemma 3, for ¢ € PB.(p), and any (X, F') € SCover(c), P(V,) = 0. The
Abramov formula in Lemma 1 implies that

0= hy, (f)+ / —T,(q)log [Df[ + qp dpy,

and hence Ty(q) < T,(q) on PB.(p). Since we also know that t — P(—tlog|DF|+ q®)
is strictly convex for ¢ near T,(q), we have T(q) = T,,(q) on PB.(yp).

By Lemma 3, for € > 0, in order to check if ¢ € PB.(¢) and thus prove (a), (b) and (c),
we only need to check if ¢ € PB.(®) for one scheme (X, F) € SCover(e). We will show
that the estimate for Zj(¥,) is a sum of exponentially decaying terms, which is enough
to show that there exists § > 0 so that Zj (¥, + 07) < oco.

As in the proof of Lemma 2, (4) and P(y) = 0 imply that ¢ < 0. Recall that P(—=7,,(q) log | D f|+
qp) = 0. Given (X, F') € SCover(e), by the local Holder continuity of every ¥, there
exists C' > 0 such that

T,) = ZTie_T*”(q) log |DFi|+4®; Czn Z | X, |Te@)ga®s.

We will first assume only that f satisfies (3) and that ¢ is close to 1. In this case we
work with inducing schemes of type (a). By Proposition 2, there exists o > 0 so that
S et = O ).

Case 1: ¢ near 1 and ¢ > 1. In this case T,,(¢) < 0. Since |X;| > (sup |Df|)™ ™,
CZn sup | D f|)~"Tela |Zeqq’ < C”Zn sup | D f|)~"Te(@lg—nade

T;=nNn

Since for ¢ near to 1, T,,(q) is close to 0, the terms on the right decay exponentially,
proving the existence of ¢g; > 1 in part (a).

Case 2: ¢ near 1 and ¢ < 1. In this case T},(¢) > 0. By the Holder inequality there exists
C" > 0 such that

q 1—q -

Case 2(a): T“"(q >1

In this case obviously Z§(¥,) can be estimated by exponentially decaying terms. (In fact,
it is not too hard to show that this case is empty, but there is no need to give the details
here.)

Case 2(b): T“” ) < 1. Here the term we need to control i is, by the Holder inequality

Tg;(q) l—q

(ZIXATf(Z)) < (Z|Xi|> {7 = n~(E7)

Ti=n

We have -
(#{Ti = n}l_(fp—(g)>) = #{r, = n}l-r T
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As explained in [BT4], for any n > 0 there exists C;,, > 0 such that #{r, = n} <
C’ne”(hfop(fH”). Since we also know that for ¢ close to 1, 1 — ¢ — T,(q) is close to 0, the
terms e "% dominate the estimate for Z;(¥,), which completes the proof of (a).

Next we assume that f satisfies (2) and ¢ > 0 is close to 0. In this case we work with
inducing schemes of type (b).

Case 3: g near 0 and ¢ > 0. In this case T,,(¢) < 1. By [BT4, Proposition 3], if ¢ is close
to 1 then ) __ |X;[" is uniformly bounded. Thus, as in Case 2,

werms () () ofz)

Ti=n Ti=n Ti=n

As in Case 2, there exists 83 > 0 so that us{T = n} = O(e ), which implies Z;(¥,)
can be estimated by exponentially decaying terms.

Case 4: ¢ near 0 and ¢ < 0. This can only be considered when f satisfies (1). In this
case T,,(q) > 1. Note that by Proposition 3 there exists Bpp > 0 so that pi_iogpp{T =
n} = O(e "rF), Thus,

To(q)
¥,) < CZneq”inf@ (Z |X7,|> =0 (Z nemtanfe=T )BDF))

For ¢ close to 0 we have ¢info — T,,(¢)Bpr < 0 and so Zj(¥,) can be estimated by
exponentially decaying terms, proving (c). O

4. INDUCING SCHEMES SEE MOST POINTS WITH POSITIVE LYAPUNOV EXPONENT

The purpose of this section is to show that if we are only interested in those sets for
which the Lyapunov exponent is bounded away from 0, then there are inducing schemes
which contain all the multifractal data for these sets. This is the content of the following
proposition.

Proposition 5. For all A\,;s > 0 there exist ¢ = €(\,s) > 0, a set ml)\ C LGy, and
an inducing scheme (X,F) € SCover®(¢) so that HD(LGy \ LGy) < s and for all

x € ml/\ there exists k > 0 so that f*(x) € (X, F)*®°. There is also an inducing scheme
in SCover®(e) with the same property.

By the structure of the inducing schemes outlined above, we can replace ¢ with any
"€ (0,¢).

This means that if there is a set A C I and A > 0 so that HD(AN LG,) > 0 then there
is an inducing scheme (X, F') so that HD(A N LGy N (X, F)>®) = HD(AN LG)). Hence
the multifractal information for AN LG can be found using (X, F). We remark that by
Lemma 3, for A > 0 and ¢ € PB(y), if HD(K, N LG)) > 0 then we can fix an inducing
scheme (X, F') such that

D(K,NLGy\N(X,F)>®) = HD(K, N LG,).

For the proof of Proposition 5 we will need two lemmas.
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Partly for completeness and partly in order to fix notation, we recall the definition of
Hausdorff measure and dimension. For £ C I and s,6 > 0, we let

H(E) = inf {Z diam(Ai)S}

where the infimum is taken over collections {A;}; which cover E and with diam(A4;) <
0. Then the s-Hausdorff measure of E is defined as H*(E) := limsups_, Hi(F). The
Hausdorff dimension is then HD(FE) := sup{s: H*(E) = co}.

Lemma 4. For all \,s > 0 there ezistsn > 0, R € N and E; C LG so that HD(LG) \
LG,) < s, and x € LG, implies

1 A .
lim sup E#{l <k<n: ffuz) € Iz} > .
k

Note on the proof: It is important that here that we can prove this lemma for LG\
rather than LG,. Otherwise Proposition 5 and, for example, our main corollaries would
not hold. We would like to briefly discuss why we can prove this result for LG rather
than LG,. The argument we use in the proof is similar to arguments which show that
under some condition on pointwise Lyapunov exponents for m-almost every point, then
there is an invariant measure absolutely continuous with respect to m. Here m is usually a
conformal measure. For example in [BT1] we showed that if m(LG,) > 0 for a conformal
measure m then ‘most points’ spend a positive frequency of their orbit in a compact part
of the Hofbauer tower, and hence there is an absolutely continuous invariant measure
p < m. In that case it was convenient to use LG, rather than LG,. In [K3], and in a
similar proof in [MS], m is Lebesgue measure and the ergodicity of m is used to allow
them to weaken assumptions and to consider LG, instead. In our case here, we cannot
use such an ergodic property, but on the other hand we do not need points to enter a
compact part of the tower with positive frequency (which is essentially what is required
in all the above cases), but simply infinitely often. Hence we can use LG instead.

For the proof of the lemma we will need the following result from [BRSS, Theorem 4].
Here m denotes Lebesgue measure.

Proposition 6. If [ satisfies (3) then there exists C > 0 so that for any Borel set A,
m(f~"(4)) < Cm(A)m.

Proof of Lemma 4. For this proof we use ideas of [K2], see also [BT1]. We suppose that
HD(LG,) > 0, otherwise there is nothing to prove. Then let s > 0 be so that s <
HD(LG,). Throughout this proof, we write ¢4 = liaz(f)-

For v > 0 and n € N, let LGY := {z : |[Df"(x)| > e™"}.
For x € I, we define
1 A .
eaRonn) = {14 {0 k< 0l € B} <

and

N

freq(R,n) := {y : lim sup 1# {1 <k<n: ffuy) e fR} 77} :
ok
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For \g € (0,A), R,n > 1 and n > 0 we consider the set
Exo.rn(n) = LGY, Nfreq(R,n,n).

If x € LGy N freq(R,n) then there exists arbitrarily large n € N so that |Df™(x)| > e*™,
and z € freq(R,n,n). Hence

freq(R7 77) N m)\ C ﬂ U EAo,R,n(n)'

k n>k

This means we can estimate the Hausdorff dimension of freq( R, n)N LG through estimates
on HD(E), rn(n))-

We let Pg,, denote the collection of cylinder sets of P, which intersect Ey, g n(n). We will
compute H(Ey, rn(n)) using the natural structure of the dynamical cylinders P,,. First
note that by [H2, Corollary 1] (see also, for example, the proof of [BT1, Theorem 4]), for
all ¥ > 0 there exists R > 1 and n > 0 so that #Pg,, < e’ for all large n. In [BT1] this
type of estimate was sufficient to show that conformal measure ‘lifted’ to the Hofbauer
tower. The Hausdorff measure is more difficult to handle, since in this case we have an
issue with distortion. Here we use an argument of [BT3] to deal with the distortion. We
will make some conditions on v, depending on s and A below.

Let n(d) € N be so that n > n(d) implies |C,,| < § for all C,, € P,.

Given v > 0, let@::%””) For x € I, let
Valz] == {y € Cylz] : |/ (y) = 0f*(Cula])| < e[ f"(Cula])]} -

For a point © € E), gy, we say that x is in Case 1 if x € V,,[z], and in Case 2 otherwise.
We consider the measure of points in these different sets separately.

Case 1: For z € I, we denote the part of f*(C,[z]) which lies within e="|f"(C,[z])|
of the boundary of f*(C,[z]) by Bd,[z]. We will estimate the Lebesgue measure of the
pullback f~"(Bd,[z]). Note that this set consists of more than just the pair of connected
components C, [x] NV, [x].

Clearly, m(Bd,[z]) < 2e~"m(f"(C,[z])). Hence from Proposition 6, we have the (rather
rough) estimate

m(Valz]) < m(f~"(Bdy[z])) < Ko [2¢ " m(f"(Cnla]))] e < 2hpe Fhar = 2Ucpe 2.

Case 2: Let C,[z] := C,[z]\ V,[z]. As in [BT3], the intermediate value theorem and the
Koebe lemma allow us to estimate

|Cal] L+e ™\ 1
[f7(Cala])| << en? ) |Dfr ()

|C,[z]] < 2™,

Hence for all large n,

If we set v < , then

1622

1C,[z]| < 2e 2.

If we assume that n > n(d), the sets V,,[z] C C,[z] € Pg,, in Case 1 and C,[z] C C,[z] €
Pr in Case 2 form a d-cover of E), g,(n). This implies that for n large,

H§(Ex,rn(n)) < 4™ (e -y + Koe™ ™).
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By our choice of v, this is uniformly bounded in n. Since we can make the above estimate
for all small §, we get that

HD (LG, Nfreq(R,n)) < s
So the set m; := LG, \ freq(R,n) has the required property. O

Let {e,}, be a positive sequence decreasing to 0 and let B, := B., (91).
Lemma 5. For any R € N and n > 0, there ezists N(R,n) € N so that for x € I, if

1 A .
lim sup —# {1 <j<k: fu(n)) € IR} > 1,
ok
then fi(u(x)) € Ir \ By infinitely often.

Proof. In a Hofbauer tower, if a point & € I is very close to I then its f—orbit shadows a
point in JI for a very long time, and so it must spend a long time high up in the tower.
Therefore we can choose p, N € N so that & € By(01) N I implies that

A

(&) € I\ I and %#{1 <j<p:fi(a) e <. (6)

Suppose, for a contradiction, that % is the last time that, for x € I, fk(L(ZE)) € Ip \ By.
Then if f7(u(z)) € Ig for j > k then f7(:(z)) must be contained in By. Hence by (6), we
have

1 A . A
lim sup E#{l <J<k: fux)) € Ir} <n,
K

a contradiction. O

Proof of Proposition 5. We choose R, N € N, ﬁ; as in Lemmas 4 and 5 so that for any
x € LGy, u(z) enters I \ By infinitely often.

In the following we can deal with either inducing schemes of type (a) or type (b). We can
choose & > 0 so small that I \ By C Ux ecover(e) X. We denote the set of points & € I so

that the orbit of Z enters X C I infinitely often by X°. Therefore, for z € LG, \, there
exists X € Cover(e) so that «(x) € Xg°. Thus

LG, = U{x € LG, : u(x) € XY
k=1
Therefore, we can choose a particular X} so that
D(IGy) = HD {x e IG) : u(z) € X;;O} ,

as required. O

5. PROOF OF MAIN RESULTS
For a potential ¢ : I — R, if the Birkhoff average lim,, S+(I) exists, then we denote
this limit by Sogp(z). If ® is some induced potential, we let So®(x) be the equivalent
average for the inducing scheme.
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Remark 2. Let f € F satisfy (3) and ¢ be a Hélder potential satisfying (4) and P(p) = 0.
Proposition 2 implies that there exists an equilibrium state i, but also for an inducing
scheme (X, F), it must have P(®) = 0 for the induced potential ®. In fact this is only
stated for type (a) inducing schemes in Proposition 2, but will we prove this for type (b)
schemes as well in Lemma 10.

For x € X, we define

v  log pa(CE 2]

d =1 L

)= 0 e Do ()
if the limit exists, CL[x] are the n-cylinders at x with respect to the inducing scheme
(X, F). Since P(®) =0, the Gibbs property of ue implies

3 . D, ()
d =1
= og D)
whenever one of the limits on the right exists. Also note that if both Se®(x) and Ap(x)
exist then d,,, (z) also exists. It was shown by Pollicott and Weiss [PoWe] that

o d,, () and S, ®(2) exvist = d,,(x) and A\p(2) ezist, and d,, (v) = d,, (v) = ‘ij’fgg ;
o d,,(2) and S.®(2) evist = d,,(x) and A\p(x) exist, and d,, (v) = d,, (v) = f”;fgg

Note that for x € (X, F)>® we can write

ony, (2)
o) (0)
—log |DF"(x)] (—longf"k($)|>

Nk

where ny = 7%(x). Hence we can replace any assumption on the existence of So®(x) and
Ar(x) above by the existence of Sap(x) and \¢(x).

Let
Jeduy, [ ® duy,

- [log|Dfl duy, — [log|DF| dpw,”

For the proof Theorem A we will need two propositions relating the pointwise dimension
for the induced measure and the original measure. The reason we need to do this here
is that the induced measure jg is not, as it would be if the inducing scheme were a first
return map, simply a rescaling of p,.

a(q) =

Proposition 7. Given f € F and a Hélder potential p : I — 1 satisfying (4) and
P(p) =0, then there exists a p-conformal measure m, and C, > 0 so that
1 < djiy

Cy = dm,

<C,.

Notice that this implies that dm, = du, and, by the conformality of m., du,(z) =
dpy,(f"(x)) for all n € N.

This proposition follows from [K1]. However, as we mentioned in the introduction, we
can also prove the existence of conformal measures under slightly different hypotheses on
the map and the potential. The class of potentials we can deal with include discontinuous
potentials satisfying (4), as well as potentials z — —tlog |D f(x)| for ¢ close to 1. Since this
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is of independent interest, we will provide a proof of this in the appendix. A generalised
version of the following result is also proved in the appendix.

Proposition 8. Suppose that f € F satisfies (3) and ¢ : I — I is a Hélder potential
satisfying (4) and P(y) = 0. For any inducing scheme (X, F') either of type (a) or type
(b), with induced potential ® : X — R, there exists C > 0 so that

1 dpie
— < — < Ch.
Co ~ dpy ?

Our last step before proving Theorem A is to show that our pressure functions are strictly
convex, which will mean that DS, is strictly convex also, and the sets U will contain non-
trivial intervals.

Lemma 6. Suppose that f € F satisfies (3) and ¢ is a Holder potential satisfying (4).
Then either there exists 0 > 0 such that T, is strictly convex in

PB(p)N((—6,0) U(1—46,1490)),

or Uy = HU—log|Df|-

Remark 3. For the particular case when f € F and ¢ s a constant potential, in which
case P(p) = 0 implies ¢ = —hyop(f), Lemma 6 says that T, is not convez if and only
if Hotog|Df| = Hehwp(s)- By [D1, Proposition 3.1], this can only happen if f has finite
posteritical set. We have excluded such maps from F.

Proof of Lemma 6. Suppose that T, is not strictly convex on some interval U intersecting
a neighbourhood of PB(¢) N [0,1]. Since T}, is necessarily convex, in U it must be affine.
We will observe that for all ¢ € U, the equilibrium state for 1, is the same. We will then
show that [0,1] C U. Since (3) holds and hence there is an acip ji_1og|pyg|, this means that

Heo = H—log|Df]|-

Our assumptions on U imply that there exists ¢o € U so that for a relevant inducing
scheme (X, F), there exists § > 0 so that py, {7 > n} = O(e”""). Moreover, DT, is
[ e dpy,
Atyg)
P(1y) = 0, these facts imply that ju,, = py,, for all ¢ € U.

some constant v in U. This means that = ~ for all ¢ € U. Since by definition

By Proposition 4 there exists ¢ > 0 such that (1—0,1+09) C PB(g) and (0,9) C PB(yp),
and moreover if PB(y) contains a neighbourhood of 0 then (—d,9) C PB(y).

Case 1: Suppose that UNPB(¢)N(1—4,140) # 0. Since by Proposition 4, T, is analytic
in this interval, T, must be affine in the whole of (1 — 4,14 §). Therefore 1 € U. We will
prove that 0 € U. By Proposition 4 we can choose a type (a) inducing scheme (X, F') so
that g, is compatible with (X, F') for all ¢ € (1 — 6,1+ §). Recall from Proposition 2
that there exists 3p > 0 so that py, {7 = n} = O(e Pon).
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We suppose that 0 < ¢ < 1, and hence T),(¢) > 0. We choose ¢o > 1 — d very close to
1 — 6. Then by convexity T,(q) = T,,(qo) + (g — qo). Hence,

q,q) _ Zn Z |Xi|T¢(q)eq¢’z < Z Z |X ‘T¢ 90)+7(a—40) 9%

Zn sup |X |’Y 9=40) o(a—q0)® Z | X; |T«p (90) pa0®:

i

§ ne® (g—qo) inf ¢ § \X ’Tw qo)eqoi’

T;=nNn

By the Gibbs property of juy, , we can estimate > _ | X;|Tela0) 0@ Ty pu, T =n}t =
pp, {7 =n} < e P*". Soif (¢— qo) inf p < Bp then similarly to the proof of Proposition 4,
q € PB(y). Since T, is analytic in PB(p), this means that T, is still affine at ¢ and
therefore that U was not the largest domain of affinity ‘to the left’. We can continue
doing this until we hit the left-hand boundary of PB(y). In particular, this means that

0eU.

Case 2: Suppose that PB(¢)N(—0,d)NU # (). As in Case 1, this implies [0, 4] € U. We
will prove that 1 € U.

By Proposition 4 we can choose a type (b) inducing scheme (X, F') so that s, is compat-
ible with (X, F) for all ¢ € (¢',6) where ¢’ := §/2. Recall from Proposition 2 that there
exists Bpp > 0 so that py, {7 > n} = O(e™Prr).

We let § < ¢ < 1 and gy < ¢ be very close to §. Again by convexity T,,(¢) > T, (qo) +
v(q¢ — qo). Similarly to Case 1,

Z Z|X|Tw eq@ <Z Z|X|T¢q0+’yqq0)eq¢

< Z n sup ’XZ.P (4=40) o (4—q0)® Z | X; ’T<p (90) p20®i
n e Ti=n
Since | X;| > e 1Pl where | D f|s := sup,e; | Df(2)],

sup (|Xi|’Y(q—QO)€(q_QO)<I>i) < en(q_%)(_ﬂDﬂSup-i-supgo)‘

Ti=n

So if (¢ — qo)(—Y|D fleo +sup ) < Bpr then similarly to Case 1 we can conclude that all
points in PB(p) to the right of ¢ are in U. In particular 1 € U.

In both cases 1 and 2, we concluded that [0,1] C U. Therefore p, = pi_iog|nf|; a3
required. 0

Proof of Theorem A. Let L, be the Legendre transform of 7, when these functions exist.

The upper bound: ’lf)TSLp < L,. To get this bound, we first pick a suitable induc-
ing scheme. Given ¢ € PB(yp), since K,(a(q)) = Uy LG1 N Ky (a(q)), for all n > 0
there exists A > 0 so that HD(LG, N K,(a(q))) = HD(K,(a(q))) —n. For some

s < HD(K,(a(q))), we take an inducing scheme (X, F) as in Proposition 5 (this can
be for schemes of type (a) or (b), whichever we need).

We next show that 53@ < DSs and then use Theorem 2 and Proposition 4 to conclude
the proof of the bound. Let z € K (a) N ml/\ By transitivity there exists j so that
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z € fi(X). Let y € X be such that f/(y) = z. Since # € LG, we must also have
€ (X, F)> by Proposition 5. By Propositions 7 and 8, d,,,(z) = d,,(y) = du,(y), so
y € Ko(a). Therefore,
Ko@) N TG, © Uof (Ka(a).
Hence -
DS, — 1 < HD(K,(0) N TGY) < HD (U f*(Ka(a)))

Since f is clearly Lipschitz, HD (U2, f*(Ks())) = HD(Ks(a)), so %w(a) —n <
DSs (). Theorem 2 says that DSq(a(q)) is Lq>( ), the Legendre transform of Tg. There-
fore, DNSSO(a) — 1 < Lg(o) = Ly(or), where the final equality follows from Proposition 4.
Since n > 0 was arbitrary, we have /ﬁgw(a) < Ly(w).

The lower bound: DS, > L,. We will use the Hausdorft dimension of the equilibrium
states for 1, to give us the required upper bound here. For u € M., by Theorem 1 there
exists an inducing scheme (X, F') which p is compatible to. This can chosen to be of
type (a) or type (b). By Proposition 8, d, (r) = d,,(z) for any x € (X, F)>°, where

is the induced potential for (X, F'). Now suppose that fso(u) = —a. Then for p-a.e. x,

Sep(x) and A(z) exist, and by the above and Remark 2, since we may choose X so that
for x € (X, F))*>°, we have

Sedp()
dy, () = dpuy () =
g g —As(x)
Hence p-a.e. z is in ICy (). Therefore,

t € My and L dﬂ:—a}.

PS, () > s { 7 ()

By Lemma 3, we know that there is an equilibrium state p,, for 1,. Then by definition,
Py, + [ =T(q)log|Df| + qp dpy, = 0. Therefore, for oo = av(q),
Py,
= =T(q) + qa = Ly(a).
A (fap,) ’
And hence b\g@(a) > Ly(a). Putting our two bounds together, we conclude that
DS, (o) = L,(a).

= Q.

We next show (a), (b) and (c). First note that since we have assumed that 11, Z fi—10g |Df|,
Lemma 6 means that 7, is strictly convex in PB(y). This implies that U will contain
non-trivial intervals. For example, if (3) holds then P(¢) = 0 and [HR] imply that

d Py,
o) = 4 £ e _
Ar(tp) /\f(ﬂw)
By Proposition 4 and Lemma 6, for any « close to HD(u,) there exists ¢ such that
DT,(q) = a.. Hence by the above, DS, (a) = L, ().

= HD(py).

Similarly, let us assume that (2) holds. We have

J e duiogipy _
Af(f-10g D))
So the arguments above, Proposition 4 and Lemma 6 imply that for any o < ay,. there

exists ¢ such that DT,(q) = «, and also DNS¢(a) = L,(). The same holds for all o in a
neighbourhood of «,. when (1) holds. O

a(0) = —

ac:



MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS 23

Proof of Proposition 1. It was pointed out in [I1, Remark 4.9] that by [BaS], for an in-
ducing scheme (X, F)) with potential & : X — R, the Hausdorff dimension of the set
of points with d,, (z) not defined has the same dimension as the set of points for which
the inducing scheme is defined for all time. So we can choose (X, F') to be any inducing
scheme which is compatible to the acip to show that the Hausdorff dimension of this set
of points is 1. In fact any type (a) or type (b) inducing scheme is compatible to the
acip. By Proposition 8, if d,, (x) not defined then neither is d,,_(x), so the proposition is
proved. O]

5.1. Going to large scale: the proof of Corollary C. Suppose that f € F extends to
a polynomial on C with no parabolic points and all critical points in /. In the context of
rational maps, Graczyk and Smirnov [GS] prove numerous results for such maps satisfying
(2). For § > 0, we say that = goes to d-large scale at time n if there exists a neighbourhood
W of z such that f: W — Bs(f™(x)) is a diffeomorphism. It is proved in [GS] that there
exists & > 0 such that the set of points which do not go to d-large scale for an infinite
sequence of times has Hausdorff dimension less than &() < 1 where (3, is defined in

B
(2). Here we will sketch how this implies Corollary C. o

By [K2], if f is an interval map, p € M., and = goes to d-large scale with frequency
7, then there exists N = N(9) so that iterates of ¢(x) by f enter Iy with frequency at
least 7. In [K2, BT1], this idea was used to prove that for p € M,,,, if p-a.e. x goes
to d-large scale with some frequency greater than v > 0, then there exists ji an ergodlc
f-invariant probability measure on I, with f(Iy) > v (so also fi-a.e. & enters Iy with
positive frequency), and = fiomw 1. By the arguments above this means that we can
build an inducing (X, F') scheme from a set X € Iy which is compatible to .

However, to prove Corollary C, we only need that sufficiently many points x have £ > 0
such that f*(z) € (X, F)>, which does not necessarily mean that these points must go
to large scale with positive frequency. (Note that we already know that all the measures
1 we are interested in can be lifted to I .) We only need to use the fact, as above, that if
A is the set of points which go to d-large scale infinitely often, then there exists R € N so
that for all z € A, «(x) enters Ir infinitely often. Hence the machinery developed above

‘sees’ all of A, up to a set of Hausdorff dimension < . Since this value is < 1, for

maz

Bp—
our class of rational maps, we have DS,(a) = DS, () for a close to aye. Similarly, if

Zg}‘z—””_({) < HD(p,) then the same applies for o close to HD ().

Note that for rational maps as above, but satisfying (1), the same argument gives another
proof of Corollary B.

It seems likely that the analyticity condition can be weakened to include all maps in F
satisfying (2).

5.2. Points with zero Lyapunov exponent can be seen. In this section we discuss
further which points and cannot be seen by the inducing schemes we use here.

Suppose that (X, F,7) is an inducing scheme of type (a). Then there is a corresponding
set X C I such that 7'( ) is 7¢(§) where § € X is such that 7(§) = y and 7y is the
ﬁrst return time to X. Then there exist points # € X so that W(fk( )) € Crit and

fi(#) ¢ X for all 1 < j < k. This implies that from iterate k onwards, this orbit is
always in the boundary of its domain D € D. Since X is always chosen to be compactly
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contained inside its domain D¢ € D, this means that Z never returns to X. Hence for
x = 7m(Z), 7(x) = co. On the other hand, there are precritical points x with & = 7r|;(1 (x)

which returns to X before it hits a ‘critical line’ 7~ '(¢) for ¢ € Crit. For such a point,
7(z) < oo, but for all large iterates k, we must have 7(f*(x)) = oo. Hence precritical
points in X cannot have finite inducing time for all iterates. This can be shown similarly
for type (b) inducing schemes. We can extend this to show that no precritical point is
counted in our proof of Theorem A.

Moreover, in this paper we are able to find DS, («) through measures on K,. In fact we
can only properly deal with measures which are compatible to some inducing scheme. As
in Theorem 1, the only measures we can consider are in M. This means that the set of
points x with A(z) = 0 is not seen by these measures. As pointed out above Corollary B,
[BS] shows that in the Collet-Eckmann case, the set of points with A(x) = 0 is countable
and thus has zero Hausdorff dimension. (Note that even in this well-behaved case it is
not yet clear that the set of points with A(z) = 0 has zero Hausdorff dimension.) The
general question of what is the Hausdorff dimension of I'\ LG for topologically transitive
maps is, to our knowledge, open.

On the other hand, it is not always the case that given an inducing scheme (X, F, 7), all
points € X for which 7(F*(x)) < oo for all k > 0 have positive Lyapunov exponent. For
example, we say that f has uniform hyperbolic structure if inf{\(p) : p is periodic} > 0.
Nowicki and Sands [NS] showed that for unimodal maps in F this condition is equivalent
to (1). If we take f € F without uniform hyperbolic structure, then it can be shown that
for any inducing scheme (X, F, 7) as above, there is a sequence {n;}; such that

sup{log |DF(z)| : x € X,, } 0

Tn

k

There exists x € X so that F*(z) € X,,, for all k. Thus A\(x) < 0, but 7(F¥(x)) < co for
all £ > 0. In the light of the proof of Corollary C, we note that = goes to |X|-large scale
infinitely often, but with zero frequency.

In conclusion, while it may not be necessary, it seems to be extremely difficult to study
notions such as dimension spectra unless we are allowed to exclude points = with A(z) < 0
from consideration.

6. LYAPUNOV SPECTRUM

For A > 0 we let
Ly=L\(f):={x: Af(z) = A} and L' = L'(f) := {x : A\¢(x) does not exist}.

The function A — HD(L,) is called the Lyapunov spectrum. Notice that by [BS], if f € F
satisfies (3) then if the Lyapunov exponent at a given point exists then it must be greater
than or equal to 0. In this section we explain how the results above for pointwise dimension
are naturally related to the Lyapunov spectrum. As we show below, the equilibrium states
U—tiog|pf| found in [PSe, BT4] for certain values of ¢, depending on the properties of f,
are the measures of maximal dimension sitting on the sets Ly for some A = \(t).

Recall that g1, py| is the acip for f. We denote the measure of maximal entropy by
H—hyop(f) Since it is the equilibrium state for a constant potential ¢,(x) = a for all x € I;
and in order to ensure P(yp,) = 0, we can set a = —hy,(f). We let DS_y,  (p(a) =
HD(K_p,,,5)(a)) where K_p,, (s is defined for the measure i_,,, () as above.
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Proposition 9. If f € F then there exists an open set U C R containing —)\f(zt"z(f)(f)) S0
—Ntop

that the values of HD (L;Ltop(f)> = DS _j,,,(5)() are given as the Legendre transform of
T o) 0t o for all o € U. If f satisfies (2), then /\fLm) is in the closure of U, and

('u*htop(f)
if [ satisfies (1) then #ﬁﬁuﬂ is contained in U.
op

As observed by Bohr and Rand, this proposition would have to be adapted slightly when
we are dealing with quadratic Chebyshev polynomial (which is not in our class F). In this
Case, fh_p,,,(f) = H—1log|Df|> SO the Lyapunov spectrum can not analytic in a neighbourhood
of 1. Note that this agrees with Lemma 6 and Remark 3.

Note that the first part of the proposition makes no assumption on the growth of | D f(f(c))|
for ¢ € Crit. The proof of this proposition follows almost exactly as in the proof of Propo-
sition 4, so we only give a sketch.

Proof. Given an inducing scheme (X, F'), by Remark 2, for all z € (X, F)™ if A\¢(z) exists

then
htop (f)

Ap(x) = :
d#—rhtop(f) (I)
Here the potential is ¢ = —hy,(f), and the induced potential is —7hs,(f) This means

that we can get the Lyapunov spectrum directly from Dy 1y As in Proposition 8,
op

d“—fhtop(f)<x> = d“—htop(f)<x> for all z € X.

Therefore it only remains to discuss the interval U. First we note that Lemma 6 holds
in this case without any assumption on the proof of |Df"(f(c))| for ¢ € Crit. We fix an
inducing scheme (X, F). That Z;(¥,+9,7) < oo for some small §, > 0, for ¢ in some open
interval U can be proved exactly in the same way as in the proof of Proposition 4. 0

Note that similarly to Proposition 1, the set of points for which the Lyapunov exponent
is not defined has Hausdorff dimension 1.

Remark 4. Fort € R, let P, := P(—tlog|Df|). It follows that P, @ = qhiop(f)-

Since fiy, is an equilibrium state for —Tp,,,5)(q)log|Df| — qhiop(f), then is also an
equilibrium state for —T_y,, (p(q)1log|Df|. Therefore, the measures for 1, are precisely
those found for the potential —tlog|D f| in Proposition 3 and in [BT2, Theorem 6].

Remark 5. If (1) does not hold, then Proposition 9 does not deal with Ly for A\ <
M pi—10g|Dg))- This is because, at least in the unimodal case, we have no equilibrium state
with positive Lyapunov exponent for the potential x — —tlog |Df(x)| fort > 1 (i.e., there
is a phase transition at 1).

Nakaishi [Na] and Gelfert and Rams [GR] consider the Lyapunov spectrum for Manneuville-
Pomeau maps with an absolutely continuous invariant measure, which has polynomaial
decay of correlations. Despite there being a phase transition for t — P, att =1, they are
still able to compute the Lyapunov spectrum in the regime X € [0, A(fi—10g|py))). Indeed
they show that HD(Ly) = 1 for all these values of X. In forthcoming work we will show
that we have the same phenomenon in our setting when (2), but not (1), holds.

Remark 6. If (1) holds then it can be computed that in the above proof, Z§(V,+07) < 00
whenever (1 —T_p,. (5(q) — @Q)heop(f) — T, (5)(q), where a is the rate of decay of
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P—tog|pFI{T > n} and 0 is some constant > 0. If f is a Collet-Eckmann map very close
to the Chebyshev polynomial, then t — P(—tlog|Df|) is close to an affine map, and thus
T_p,,, () 18 also close to an affine map, then Z5(V,+0,7) < oo for all q in a neighbourhood
of [0,1] and for some §, > 0.

The unimodal maps considered by Pesin and Senti [PSe] have the above property and so
there exists € > 0 so that [0,1] C PB.(—hiy(f)). However, this may not be the whole
spectrum.

In [PSe], they ask if it is possible to find a unimodal map f : I — I so that there is a
equilibrium state for the potential x — —tlog|Df| for all t € (—o00,0), and that the
pressure function ¢t — P(—tlog|Df|) is analytic in this interval. This would be in order
to implement a complete study of the thermodynamic formalism. As Dobbs points out in
[D2], in order to show this, even in the ‘most hyperbolic’ cases, one must restrict attention
to measures on a subset of the phase space: otherwise we would at least expect a phase
transition in the negative spectrum.

APPENDIX

In this appendix we introduce a class of potentials for which the results in the rest of the
paper hold. We will also prove slightly generalised versions of Propositions 7 and 8.

Given a potential ¢, and an inducing scheme (X, F) of type (a) or (b), as usual we let ®
be the induced potential. If

> V(@) < oo, (7)

then we say that ¢ satisfies the summable variations for induced potential condition, with
respect to this inducing scheme. If ¢ satisfies this condition for every type (a) or (b)
inducing scheme (X, F) with |X| sufficiently small, we write ¢ € SVI. Note that in
[BT2, Lemma 3] it is proved that if ¢ is Holder and f € F satisfies (4) then ¢ € SVI.
Also in [BT2] it was proved that Proposition 2 holds for all potentials in SV'I satisfying
(4), with no assumptions on the growth along the critical orbits.

Proposition 7 is already known in the case that ¢ is Holder. For interest, we will change
the class of potentials in that proposition to those in SV I satisfying (4), as well as to
potentials of the form = — —tlog | D f(x)|. We also widen the class of potentials considered
in Proposition 8. We will refer to Propositions 7 and 8, but with only the assumptions
that f € F and ¢ € SVI, as Propositions 7’ and 8’. Note that Proposition 8 plus [BT2,
Lemma 3] implies Proposition 8. The proof of these propositions requires three steps:

e Proving the existence of a conformal measure m,, for a potential ¢ € SVI satisfy-
ing (4) and P(y) = 0. Since we do this using the measure mgq from Proposition 2,
we only really need to prove this for inducing schemes of type (a). However,
it is of independent interest that this step can also be done for the potential
xz+— —tlog|Df(x)| — P(—tlog|Df]), so we allow type (b) inducing schemes also.

e Proving that a rescaling of the measure m, is also conformal for our inducing
schemes. This will be used directly in the proof of Proposition 7’, so must hold
for both type (a) and type (b) inducing schemes. Note that this step works for all
of the types of potential mentioned above.



MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS 27

e Proving that the density ;ﬁi—i is bounded. We will use type (a) inducing schemes

to prove this. In this step, we must assume that ¢ is in SV I, satisfies (4) and
P(p) =0.

The necessary parts of the first and third of these steps are the content of Proposition 7’.
As above, for the proof of this proposition, we only need to use type (a) inducing schemes.
But we will give the proof of the existence of the conformal measure for both types of
schemes for interest. Our inducing scheme (X, F, 7) is derived from a first return map
to a set X C I. Recall that if we have a type (a) scheme, then X is an interval in a
single domain X C D € D in the Hofbauer tower. In the type (b) case, X may consist
of infinitely many such intervals. We let r¢ be the first return time to X and Ry = frx.
We let XZ denote the first return domains of Ry.

ﬂtptfg
X
[BT4], the measure pg is the same as fl, x0T 1. Proposition 2 implies that for type (a)
inducing schemes (X, F), the induced potentlal qD has P(®) = 0, and there a conformal
measure and equilibrium state mge and pe and Cy > 0 so that C—I(I) < %—Z < Cp. We show
in Lemma 10 that this is also true for type (b) inducing schemes.

be the conditional measure on X. As explained in

We let ¢ := pom, and fi, ¢ =

We define 1| := me o m|y. We can propagate this measure throughout I as follows.

For & € X with r¢ (&) < oo, for 0 < k < r¢(2) — 1, we define
ding (f*(2)) = e Ddring | ¢ (2).

Let (X, f) be a dynamical system and ¢ : X — R be a potential. We say that a measure
m, is @-sigma-conformal for (X, f) if for any Borel set A so that f : A — f(A) is a
bijection,

m(F(A)) :/Aw dm.

Or equivalently dm(f(z)) = e ¢@dm(x). So the usual conformal measures are also
sigma-conformal, but this definition allows us to deal with infinite measures. The next
two lemmas apply to potentials ¢ € SV I satisfying (4) and P(¢) = 0, or of the form
x+— —tlog|Df(z)| — P(—tlog|Df|) as in Proposition 3.

Lemma 7. Suppose that (X, F) is a type (a) or type (b) system and P(®) = 0.

(a) My, as defined above is a @-sigma-conformal measure.
(b) Given a ¢-sigma-conformal measure m;, for (I, f), then up to a rescaling, My, =

M.

Proof. We first prove (a). The ®-conformality of mg implies that 7| ¢ is ®-conformal
for the system (X, Ry, ®) for () := ®(7(2)).

Given & € X, if 0 < j < r¢(#) — 1, then the relation dri, o f( (i)) = e @ dmn (f](i))
is immediate from the definition. For j = r¢(Z) — 1, then f(f J(:i")) R (z) and we
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obtain, for = € X,
ding o f(FI(@)) = e Dy (&) = din,(R(&)) = &= iy ()
_ oo X OTN@) =P @2 % ding (2)
_ (@)— 1 7o (@ —o(fi(z A Fi /A
so(fX dm<p(f (@)- @) =e (7 ( ))dmw(f](m)),
as required.

For the proof of (b), for & € X, by definition dm (Rg (%)) = e*&(‘%)dm;(ﬁ). Let X' be
some domain in X contained in some single domain D € D (this is not a necessary step
if the inducing scheme is of type (a)). This implies that m/, := 1, o 7T)_(,1 is ®-conformal
after rescaling. As in Proposition 2, there is only one ®-conformal measure for (X, F),

which implies that 7, = 7, up to a rescaling. O

Given X C I, we consider the system (X, R¢) where Ry is the first return map to X.
The measure i, is an invariant measure for (X, R¢), see [K4]. Adding Kac’s Lemma to
(5), for any A C I we have

=Y. Y mUHANX). (8)

i 0<k<rglg,~1
1

This means we can compare 7, and ji,, on domains f/(X;), for 0 < k < r¢lg, —1,in a
relatively simple way.

We will project the measure m, to I. Although it is possible to show that for many
potentials we consider, m(p(f ) < 00, we allow the possibility that our conformal measures
are infinite. This leaves the possibility to extend this theory to a wider class of measures
open. So in the following lemma, we use another way to project 1.

Lemma 8. Suppose that Y C I} z'§ so that Y = I_Inf/n for'Y, an interval contained in a
single domain Dy, € Dy and w1 Y — I is a bijection. Then for v, := my, o 71";/1, we

have v,(I) < co. Moreover, m, 1= % is a conformal measure for (I, f,p), and my, is

independent of Y.

Proof. We first prove that v, is independent of Y, up to rescaling. In doing so, the
p-sigma-conformal property of v, become clear. The we show that v,(I) < oco.

Let us pick some Y, and let v, be as in the statement of the lemma. Let 2 ¢ Upenf™(Crit).
Suppose that &y, &, have m(i) = m(i,) = x. By our condition on z, we have &; ¢ I for
1 = 1,2. We denote Dy, Dy € D to be the domains containing x, x5 respectively. The
independence of the measure from Y follows if we can show for any neighbourhood U of x
such that for U; := 7~ 1(U)N D; such that U; € D; for i = 1,2, we have m¢(01) = fnso(f]g).

As in [K2] there exists n > 0 so that f"(#;) = f"(#). Since we are only interested
in t}le inﬁniAtesimal properties 0}“ our measures, we may assume that the same is true
of Uy and Us, i.e., f*(Uy) = f*(Us). Therefore m,(f"(Uy)) = ffh e #n dr,. Since
i, (f*(01)) = m,(f*(Us)) and ¢ = ¢ o 7, we have 11, (U1) = 1, (U3), as required. So it
only v,(I) < oo.
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By the above, the ¢-sigma-conformality of 71, passes to yp-sigma-conformality of v,. We
can pick U C I such that U = 7(U) for some U C D € D7. Recall that m,, was obtained
from a conformal measure mg for some inducing scheme (X, F). We may assume that
U is such that U c f*(X;) N D for some 0 < k < r%lx, —1 and some D € D. This
implies that Thq,(f] ) < 00, and so v,(U) < oo. Since f is in F, it is locally eventually
onto, i.e., for any small open interval W C I there exists n € N so that f*(WW) D .
Therefore there exists n so that f"(U) D I. Then by the ¢-sigma-conformality of v, we
have

vo(I) = v,(f"(U)) = / e dv, < v,(U)e™ ™ < oo
U
Hence m,, is conformal. 0
Note that combining Lemmas 7 and 8, we deduce that m,, is independent of the inducing
scheme that produced it. We next consider the density.

Lemma 9. For ¢ € SV I satisfying (4) and P(p) =0, jr’i‘i is uniformly bounded above.

Proof. Suppose that jﬁl‘; (r) > 0. We let 7! (z) = {&1, 29, ...}, where the ordering is by

the level, i.e., lev(#;11) > lev(z;) for all j € N. Then since p, = fi, om !,

d,ucp - dji, N
Z dmw o 7r .

We will use this fact allied to equation (8) for return maps on the Hofbauer tower, and
the bounded distortion of the measures for these first return maps to get the bound on
the density. We note that since for any R € N, there are at most 2#Crit domains of D
of level R (see for example [BB, Chapter 9]), there can be at most 2#Crit elements z; of
the same level.

We let (X, F') be a type (a) inducing scheme with induced potential ® : X — R. Let
X be the interval in I for which the first return map Ry defines the inducing scheme

fpom| 2t
(X, F). Recall that pue can be represented as —MZ ( )L); and by Lemma 8, we can express
®

Me as Moreover as in Proposition 2 there exists Cs > 0 so that d’“’ < Csp.

(X)

Since Ry is a first return map, for each ¢ there exists at most one point &,; in X, so that
fH(&54) = & for 0 < k < rg|g . We denote this value k by ;. Let kj := inf{r;; : i € N}.

By (8), dji,(z;) = >, dfi,(Z;,). By conformality, for each 4,

dﬁllp(i’j) — o Pryi(Eis) dmw(fj,@') > e PP dmga(xj i)-

Therefore, letting z;; = 7(Z;,),

X su IS X nsu
< C ( ) >Ze Perii < Op (u 0 >Z#{z ri; =npe"SPe.

go

By [H1], if lev(Z;) = R then there exist C' > 0 and y(R) > 0 so that y(R) — 0 as
R — oo and the number of n-paths terminating at D;, € D at most Ce™ ) Then
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#{i:r;; =n} < Ceme@)) Also k; > lev(#;) — lev(X). Therefore,

ditg | . my,(X) ((1
Ol a0y < X $ enoles(a) o)
din, (z;) < CCys < K )

o

nz=k;

< CCy ( X)) (lev Z5) lev(X))('y(lev(z] +sup ¢) Z ~v(lev(Z;))+sup ap)
fip (X))

n=0

Since, as in Lemma 10, our conditions on ¢ ensure that sup¢ < 0, there exists k > 0,
and jo € N so that y(lev(Z;)) +sup ¢ < —x for all j > jo. Since there are at most 2#Crit
points Z; of any given level R, there are only finitely many j with lev(z;) — lev(X) < 0.
Moreover, there exists C' > 0 so that

1 o) ~ o]
d'“so JOZ _dii, y _diy Y _z)<C+C" Z eIk
dmy, o 7r %) dmy o TS —
J=Jo J=Jjo
which is uniformly bounded. 0

Proof of Proposition 7. The existence of the conformal measure m,, is proved in the above

lemmas. Lemma 9 implies that the densfcy p P2 is uniformly bounded above. The lower

bound follows by a standard argument, which we give for completeness. Proposition 2

implies that we can take a type (a) inducing scheme (X, F, ®) so that d“‘i is uniformly

bounded below by some Cz' € (0,00). Also, Lemma 7 implies that mv(X) = mg. Since,

as in the proof of Lemma 8, (I, f) is locally eventually onto, there exists n € N so that
fM(X) C Q. So for a small interval A C Q, there exists some A; C X; so that fF(A;) = A
for some 0 < k& < n. Then (5) implies that

pold) | (A g (mwm ) (ucp(Ai) ) pnten > (WX) ) () |

m@(A) - mq,(AZ) fT d/lap mq,(Al) fT d/ubq> Cq>
Hence z‘?‘l—‘; is uniformly bounded below. O

Lemma 10. Suppose that f € F satisfies (3) and p € SVI. Then there ezists € > 0 so
that for any inducing scheme (X, F) € SCover®(e), the induced potential ® has P(®) = 0.

Proof. We will apply Case 3 of [BT4, Proposition 1|. Firstly we need to show that
Zy(®) < oo. By Proposition 7’ there exists a conformal measure m,,, coming from an
inducing scheme of type (a) in Proposition 2’. By the ¢-conformality of m, and the
local Holder continuity of ®, as in Proposition 2(b), there exists C' > 0 so that ZJ(®) <

C >, 1imy,(X;). Then by Proposition 7" and the facts that (X, F') was generated by a first

return map to some X and p, = fi, 0 n 1

< ¢, ZTZIM<P = CC ZTX|X i (X5).

By Kac’s Lemma this is bounded.

Now the fact that p., is compatible to (X, F') follows simply, see for example Claim 1 in the
proof of [BT4, Proposition 2]. Then Case 3 of [BT4, Proposition 1] implies P(®) =0. O



MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS 31

Proof of Proposition 8’. Suppose that (X, F') is an inducing scheme as in the statement,
with induced potential ®. If (X, F) is of type (a) then by Lemma 7, the measure m,,
works as a conformal measure for (X, F, ®), up to renormalisation. By Proposition 2(c),

m,, is in fact equal to me up to renormalisation. By Lemma 10, this is also true for type

dpy
dm

(b) inducing schemes. Since by Proposition 7’,

Proposition 2, we have C%p < i‘;—z < (g, this implies that ‘;Z—‘i is also uniformly bounded

above and below. O

is bounded above and below, and as in
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