
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS

MIKE TODD

Abstract. Given a multimodal interval map f : I → I and a Hölder potential ϕ : I →
R, we study the dimension spectrum for equilibrium states of ϕ. The main tool here is
inducing schemes, used to overcome the presence of critical points. The key issue is to
show that enough points are ‘seen’ by a class of inducing schemes. We also compute the
Lyapunov spectrum. We obtain the strongest results when f is a Collet-Eckmann map,
but our analysis also holds for maps satisfying much weaker growth conditions.

1. Introduction

Let X be a metric space. Given a probability measure µ on X, the pointwise dimension
of µ at x ∈ X is defined as

dµ(x) := lim
r→0

log µ(Br(x))

log r

if the limit exists, where Br(x) is a ball of radius r around x. This tells us how concentrated
a measure is around a point x; the more concentrated, the lower the value of dµ(x). We
will study f -invariant measures µ for an endomorphism f : X → X. In particular we will
be interested in equilibrium states µϕ for ϕ : X → R in a certain class of potentials (see
below for definitions).

For any A ⊂ X, we let HD(A) denote the Hausdorff dimension of A. We let

Kϕ(α) :=

{
x : lim

r→0

log µϕ(Br(x))

log r
= α

}
, DSϕ(α) := HD(Kϕ(α)),

and

K′
ϕ :=

{
x : lim

r→0

log µϕ(Br(x))

log r
does not exist

}
.

Then we can make a multifractal decomposition:

X = K′
ϕ ∪ (∪α∈RKϕ(α)) .

The function DSϕ is known as the dimension spectrum.

These ideas are well understood in the case of uniformly expanding systems, see [P]. The
dimension spectrum can be obtained in terms of the Legendre transform of the pressure
function. A common way to show this in these cases is to code the system using a finite
Markov shift, and then exploit the well developed theory for those systems, see for example
[PW]. For non-uniformly expanding dynamical systems this approach is more complicated
since we generally need to code by countable Markov shifts. As has been shown by Sarig
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[S1, S3], Iommi [I1, I2] and Pesin and Zhang [PZ] among others, in going from finite to
countable Markov shifts, more exotic behaviour, including ‘phase transitions’, appears.

The coding used in non-uniformly expanding cases usually arises from an ‘inducing scheme’:
that is, for some part of the phase space, iterates of the original map are taken, and the
resulting ‘induced map’ is considered. The induced maps are Markov, and so the theory
of countable Markov shifts as in [HMU, I1] can be used. In some cases the induced map
can be a first return map, but this is not always so.

Until now, the principal example of success with this approach is in the case of Manneville-
Pomeau maps. These are interval maps which are expanding everywhere, except at a
parabolic fixed point. The presence of the parabolic point leads to phase transitions as
mentioned above. Multifractal analysis, of the dimension spectrum and the Lyapunov
spectrum (see below), of these examples has been carried out by Pollicott and Weiss
[PoWe], Nakaishi [Na] and Gelfert and Rams [GR]. In the first two of these papers,
inducing schemes were used (in the third one, the fact that the original system is Markov
is used extensively). The inducing schemes used are first return maps to a certain natural
domain. The points of the original phase space which the inducing schemes do not ‘see’
is negligible, consisting only of the (countable) set preimages of the parabolic point. We
also mention a closely related theory for certain Kleinian groups by Kesseböhmer and
Stratmann [KeS].

In the case of multimodal maps with critical points, if the critical points are dense then
there is no way that useful inducing schemes can be first return maps. Moreover, the set
of points which the inducing schemes do not ‘see’ can, in principle, be rather large. (As
explained in Section 5.2, this set will at least include the (countable) set of points which
eventually map to a critical point.) In these cases the thermodynamic formalism has a
lot of exotic behaviour: phase transitions brought about due to some polynomial growth
condition were discussed by Bruin and Keller in [BK] and shown in more detail by Bruin
and Todd [BT4]. Multiple phase transitions, which are due to renormalisations rather
than any growth behaviour, were proved by Dobbs [D2].

In this paper, we develop a theory to cope with the case of maps with critical points, by
defining inducing schemes which provide us with sufficient information on the dimension
spectrum. The main idea is that points with large enough pointwise Lyapunov exponent
must be ‘seen’ by certain inducing schemes constructed in [BT4]. These inducing schemes
are produced via the Markov extension known as the Hofbauer tower. This structure
was developed, principally for interval maps by Hofbauer and Keller, see for example
[H1, H2, K2], and in higher dimensions by Buzzi [Bu]. Once we have produced these
inducing schemes, we can use the theory of multifractal analysis developed by Iommi
in [I1] for the countable Markov shift case. Note that points with pointwise Lyapunov
exponent zero cannot be ‘seen’ by measures which are compatible to an inducing scheme,
so if we are to use measures and inducing schemes to study these questions, the inducing
methods we use may well be optimal.

There is a further property which useful inducing schemes must have: not only must they
see sufficiently many points, but also they must be well understood from the perspective
of the thermodynamic formalism. Specifically, given a potential ψ, we need its induced
version on the inducing scheme to fit into the framework of Sarig [S2]. In [PSe, BT2, BT4]
this was essentially the same as having ‘good tail behaviour’ of the equilibrium states for
the induced potentials.
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Our main theorem states that, as in the expanding case, for a large class of multimodal
maps, the multifractal spectrum can be expressed in terms of the Legendre transform of
the pressure function for important sets of parameters α. The Collet-Eckmann case is
closest to the expanding case, and here we get exactly the same kind of graph for DSϕ as
in the expanding case for the values of α we consider. In the non-Collet Eckmann case,
we expect the graph of DSϕ to be qualitatively different to the expanding case, as shown
for the related Lyapunov spectrum in [Na] and [GR]. We note that singular behaviour of
the Lyapunov spectrum was also observed by Bohr and Rand [BoR] for the special case
of the quadratic Chebyshev polynomial.

The results presented here can be seen as an extension of some of the ideas in [H3], in which
the full analysis of the dimension spectrum was only done for uniformly expanding interval
maps. See also [Y] for maps with weaker expansion properties. Moreover, Hofbauer, Raith
and Steinberger [HRS] proved the equality of various thermodynamic quantities for non-
uniformly expanding interval maps, using ‘essential multifractal dimensions’. However,
the full analysis in the uniformly expanding case, including the expression of the dimension
spectrum in terms of some Legendre transform, was left open.

For ease of exposition, in most of this paper the potential ϕ is assumed to be Hölder. In
this case existence of an equilibrium state µϕ was proved by Keller [K1]. However, as we
show in the appendix, all the results here hold for a class of potentials (SV I) considered
in [BT2]. Therefore, as an auxiliary result, we prove the existence of conformal measures
mϕ for potentials ϕ ∈ SV I. Moreover, for the corresponding equilibrium states µϕ, the

density dµϕ
dmϕ

is uniformly bounded away from 0 and ∞. This is used here in order to

compare dµΦ
(x) and dµϕ(x) where µΦ is the equilibrium state for an inducing scheme

(X,F ), with induced potential Φ : X → R (see below for more details). The equality of
dµΦ

(x) and dµϕ(x) is not immediate for x ∈ X since the measure for the inducing scheme
µΦ is not, as would be the case if the inducing schemes were simply first return maps,
simply a rescaling of the original measure µϕ. On the other hand, we show that this
rescaling property is true of the conformal measures, which then allows us to compare
dµΦ

(x) and dµϕ(x). It is interesting to note that the proof of existence of a conformal
measure also goes through for potentials of the form x 7→ −t log |Df(x)|.

1.1. Key definitions and main results. We let

M = M(f) := {f -invariant probability measures}
and

Merg = Merg(f) := {µ ∈M : µ is ergodic}.
For a potential ϕ : X → R, the pressure is defined as

P (ϕ) := sup
µ∈M

{
hµ +

∫
ϕ dµ : −

∫
ϕ dµ <∞

}
where hµ denotes the metric entropy with respect to µ. Note that by the ergodic decom-
position, we can just take the above supremum over Merg. We let htop(f) denote the
topological entropy of f , which is equal to P (0), see [K4]. A measure µ which ‘achieves
the pressure’, i.e., hµ +

∫
ϕ dµ = P (ϕ), is called an equilibrium state.

We will be interested in C2 multimodal interval maps f : I → I. Let Crit = Crit(f)
denote the set of critical points of f . We say that c ∈ Crit is a non-flat critical point of f
if there exists a diffeomorphism gc : R → R with gc(0) = 0 and 1 < `c <∞ such that for
x close to c, f(x) = f(c)± |gc(x− c)|`c . The value of `c is known as the critical order of



4 MIKE TODD

c. We define `max(f) := max{`c : c ∈ Crit(f)}. Our class of maps F will have all critical
points non-flat, as well as some other properties we describe in more detail below.

We define the lower/upper pointwise Lyapunov exponent as

λf (x) := lim inf
n→∞

1

n

n−1∑
j=0

log |Df(f j(x))|, and λf (x) := lim sup
n→∞

1

n

n−1∑
j=0

log |Df(f j(x))|

respectively. If λf (x) = λf (x), then we write this as λf (x). For a measure µ ∈ Merg,

we let λf (µ) :=
∫

log |Df | dµ denote the Lyapunov exponent of the measure. Since our
definition of F will exclude the presence of attracting cycles, [Pr] implies that λf (µ) > 0
for all f ∈ F and µ ∈M.

For λ > 0, we denote the ‘good Lyapunov exponent’ sets by

LGλ := {x : λf (x) > λ} and LGλ := {x : λf (x) > λ}.
We define

K̃ϕ(α) := Kϕ(α) ∩ LG0 and D̃Sϕ(α) := HD(K̃ϕ(α)).

As well as assuming that our maps f are in F , we will also sometimes impose certain
growth conditions on f :

An exponential growth condition (Collet-Eckmann): there exist CCE, βCE > 0,

|Dfn(f(c))| > CCEe
βCEn for all c ∈ Crit and n ∈ N. (1)

A polynomial growth condition: There exist CP > 0 > 0 and βP > 2`max(f) so that

|Dfn(f(c))| > CPn
βP for all c ∈ Crit and n ∈ N. (2)

A simple growth condition:

|Dfn(f(c))| → ∞ for all c ∈ Crit. (3)

We will consider potentials −t log |Df | and also ε-Hölder potentials ϕ : I → R satisfying

supϕ− inf ϕ < htop(f). (4)

Without loss of generality, we will usually also assume that P (ϕ) = 0. Note that our
results do not depend crucially on ε ∈ (0, 1], so we will ignore the precise value of ε from
here on.

We would like to emphasise that (4) may not be easy to remove as an assumption on our
class of Hölder potentials if the results we present here are to go through. In the setting
of Manneville-Pomeau maps, in [BT2, Section 6] it was shown that for any ε > 0, there
exists a Hölder potential ϕ with supϕ− inf ϕ = htop(f)+ ε and for which the equilibrium
state is a Dirac measure on the fixed point (which is not seen by any inducing scheme).

We briefly sketch some properties of these maps and potentials. For details, see Proposi-
tions 2 and 3. By [BT4] there exist t1 < t2 such that for t ∈ (t1, t2) there is an equilibrium
state µ−t log |Df | for t ∈ (t1, t2). If f satisfies (1) then we can choose t1 < 1 < t2. If f only
satisfies (2) then we take t2 = 1. Combining [BT4] and [BT2], for Hölder potentials ϕ we
have equilibrium states µ−t log |Df |+γϕ for −t log |Df |+γϕ if t is close to 1 and γ is close to
0. Keller shows that for a piecewise continuous map f : I → I and ϕ : I → R satisfying
(4), there is an equilibrium state µϕ. Note that by [BT2], strengthening the conditions on
f allows us to get equilibrium states for more exotic potentials, see appendix. Also, by
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[BT2], if (3) holds and ϕ is a Hölder potential satisfying (4), then there are equilibrium
states µ−t log |Df |+γϕ for −t log |Df |+ γϕ if t is close to 0 and γ is close to 1. These equi-
librium states are unique. As explained in the appendix, (3) is assumed in [BT2] in order
to ensure that the induced versions of ϕ are sufficiently regular, so if this regularity can
be shown another way, for example in the simple case that ϕ is a constant everywhere,
this condition can be omitted.

If possible, we define Tϕ(q) to be so that

P (ψq) = 0, where ψq := −Tϕ(q) log |Df |+ qϕ.

Note that setting P (ϕ) = 0, Tϕ is convex, Tϕ(1) = 0, and by Ledrappier [L], Tϕ(0) = 1.
It may be the case that for some values of q, there is no such number. For example, let
f ∈ F be a unimodal map not satisfying (1). Then as in [NS], P (−t log |Df |) = 0 for all
t > 0. So if ϕ is the constant potential ϕ ≡ −htop(f), and q < 0, then Tϕ(q) must be
undefined.

For h a convex function, we say that (h, g) form a Fenchel pair if

g(p) = sup
x
{px− h(x)}.

If h is a convex C2 function then the function g is called the Legendre transform of h. In
this case

g(α) = h(q) + qα were q is such that α = −Dh(q).

Suppose that f ∈ F has a unique absolutely continuous invariant probability mea-
sure (acip). Since [L] implies that this measure is an equilibrium state for the po-
tential x 7→ − log |Df(x)|, we denote the measure by µ− log |Df |. In this case, we let

ϕac :=
−

∫
ϕ dµ− log |Df|

λf (µ− log |Df|)
. Note that if f ∈ F satisfies (3) then [BRSS] implies that there is a

unique acip.

Theorem A. Suppose that f ∈ F is a map satisfying (3) and ϕ : I → I is a Hölder
potential satisfying (4), and with P (ϕ) = 0. If µϕ 6≡ µ− log |Df | then there exists an open

set U ⊂ R so that for α ∈ U , the dimension spectrum D̃Sϕ(α) is the Legendre transform
of Tϕ. Moreover,

(a) U contains a neighbourhood of HD(µϕ), and D̃Sϕ(HD(µϕ)) = HD(µϕ);
(b) if f satisfies (2), then U contains both a neighbourhood of HD(µϕ), and a one-

sided neighbourhood of ϕac, where D̃Sϕ(ϕac) = 1;
(c) if f satisfies (1), then U contains both a neighbourhood of HD(µϕ) and of ϕac.

It can be seen from the proof that for all α ∈ U there is a unique equilibrium state µψq for

the family of potentials ψq so that µψq(K̃α) = 1, where α = −DTϕ(q). This measure has

full dimension on K̃α, i.e., HD(µψq) = HD(K̃α). Note that by Hofbauer and Raith [HR],

HD(µϕ) =
hµϕ

λf (µϕ)
, and as shown by Ledrappier [L], HD(µ− log |Df |) =

hµ− log |Df|
λf (µ− log |Df|)

= 1.

In Section 6 we consider the situation where ϕ is the constant potential. In that setting,
as noted above Tϕ is not defined for q < 0 when f is unimodal and satisfies (2), but not

(1). Therefore, under these conditions, we would expect D̃Sϕ to behave differently to the
expanding case for α < ϕac. This is why we only deal with a one-sided neighbourhood of
ϕac in (b). See also Remark 5 for more information on this.
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We remark that if µϕ 6≡ µ− log |Df | is not satisfied then D̃Sϕ(α) is zero for every α ∈ R,
except at α = HD(µϕ), where it takes the value 1. As in Remark 3 below, for multimodal
maps f and ϕ a constant potential, this only occurs when f has preperiodic critical points.
In view of Livšic theory for non-uniformly hyperbolic dynamical systems, in particular
the results in [BHN, Section 5], we expect this to continue to hold for more general Hölder
potentials.

According to [BS] if (1) holds then there exists λ > 0 so that for the nonwandering set
Ω, defined in Section 2, we have Ω ⊂ LGλ ∪ (∪n>0f

−n(Crit)). Therefore we have the
following corollary. Note that here the neighbourhood U is as in case (c) of Theorem A.

Corollary B. Suppose that f ∈ F satisfies the Collet-Eckmann condition (1) and ϕ :
I → I is a Hölder potential satisfying (4) and with P (ϕ) = 0. If µϕ 6≡ µ− log |Df | then there
exists an open set U ⊂ R containing HD(µϕ) and 1, so that for α ∈ U the dimension
spectrum DSϕ(α) is the Legendre transform of Tϕ.

In fact, to ensure that D̃Sϕ(α) = DSϕ(α) it is enough to show that ‘enough points
iterate into a compact part of the Hofbauer tower infinitely often’. As in [K2], one way of
guaranteeing this is to show that a large proportion of the sets we are interested in ‘go to
large scale’ infinitely often. Graczyk and Smirnov [GS] showed that for rational maps of
the complex plane satisfying a summability condition, this is true. Restricting their result
to real polynomials, we have the following Corollary, which we explain in more detail in
Section 5.1.

Corollary C. Suppose that f ∈ F extends to a polynomial on C with no parabolic points,
all critical points in I, and satisfying (2). Moreover, suppose that ϕ : I → I is a Hölder
potential satisfying (4) and P (ϕ) = 0. If µϕ 6≡ µ− log |Df | then there exists a set U ⊂ R
containing a one-sided neighbourhood of ϕac, so that for α ∈ U , the dimension spectrum

DSϕ(α) is the Legendre transform of Tϕ. Moreover, if HD(µϕ) >
`max(f)
βP−1

then the same

is true for any α in a neighbourhood of HD(µϕ).

Barreira and Schmeling [BaS] showed that in many situations the set K′
ϕ has full Hausdorff

dimension. As the following proposition states, this is also the case in our setting. The
proof follows almost immediately from [BaS], but we give some details in Section 5.

Proposition 1. Suppose that f ∈ F satisfies (3) and ϕ : I → I is a Hölder potential
satisfying (4) and with P (ϕ) = 0. Then HD(K′

ϕ) = 1.

Theorem A also allows us to compute the Lyapunov spectrum. The results in this case
are in Section 6.

We would like to point out that throughout this paper we can replace the assumption
that the potentials ϕ : I → R are Hölder with another condition (SVI) which is more
dynamically defined, see the appendix for details.

Acknowledgements: I would like to thank G. Iommi, H. Bruin, T. Jordan and N. Dobbs
for useful comments on earlier versions of this paper. I would also like to thank them and
D. Rand for fruitful conversations.
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2. The maps, the measures and the inducing schemes

Let f : I → I be a C2 multimodal map of the unit interval I. Throughout F will be the
collection of C2 interval maps which have negative Schwarzian (that is, 1/

√
|Df | is convex

away from critical points) and all critical points non-flat, and not points of inflection. We
will assume for ease of exposition that for all n 6= m, fn(Crit) ∩ fm(Crit) = ∅. Note that
the situation is simpler if critical points have finite orbits, and that if one critical orbit
maps to another, it is possible to consider these critical points together as a ‘block’, but
to simplify the exposition we will not do that here. We will also assume for simplicity
that maps f ∈ F are non-renormalisable, see [MS], and do not have any attracting
periodic points. This implies that the non-wandering set Ω: the set of points x ∈ I such
that for arbitrarily small neighbourhoods U of x there exists n = n(U) > 1 such that
fn(U)∩U 6= ∅, is a finite union ∪kΩk such that each Ωk is a finite union of intervals such
that f : Ωk → Ωk is topologically transitive. For ease of exposition, we will assume that
Ω has only one component for all maps in F .

Let (X, f) be a dynamical system and ϕ : X → [−∞,∞] be a potential. For use later,
we let

Snϕ(x) := ϕ(x) + · · ·+ ϕ ◦ fn−1(x).

We say that a measure m, is conformal for (X, f, ϕ) if m(X) = 1, and for any Borel set
A so that f : A→ f(A) is a bijection,

m(f(A)) =

∫
A

e−ϕ dm

(or equivalently, dm(f(x)) = e−ϕ(x)dm(x)).

2.1. Hofbauer towers. We next define the Hofbauer tower. The setup we present here
can be applied to general dynamical systems, since it only uses the structure of dynami-
cally defined cylinders. An alternative way of thinking of the Hofbauer tower specifically
for the case of multimodal interval maps, which explicitly makes use of the critical set, is
presented in [BB].

We first consider the dynamically defined cylinders. We let P0 := I and Pn denote the
collection of maximal intervals Cn so that fn : Cn → fn(Cn) is a homeomorphism. We
let Cn[x] denote the member of Pn containing x. If x ∈ ∪n>0f

−n(Crit) there may be more
than one such interval, but this ambiguity will not cause us any problems here.

The Hofbauer tower is defined as

Î :=
⊔
k>0

⊔
Ck∈Pk

fk(Ck)/ ∼

where fk(Ck) ∼ fk
′
(Ck′) if fk(Ck) = fk

′
(Ck′). Let D be the collection of domains of Î

and π : Î → I be the natural inclusion map. A point x̂ ∈ Î can be represented by (x,D)

where x̂ ∈ D for D ∈ D and x = π(x̂). Given x̂ ∈ Î, we can denote the domain D ∈ D it
belongs to by Dx̂.

The map f̂ : Î → Î is defined by

f̂(x̂) = f̂(x,D) = (f(x), D′)

if there are cylinder sets Ck ⊃ Ck+1 such that x ∈ fk(Ck+1) ⊂ fk(Ck) = D and D′ =
fk+1(Ck+1). In this case, we write D → D′, giving (D,→) the structure of a directed
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graph. Therefore, the map π acts as a semiconjugacy between f̂ and f :

π ◦ f̂ = f ◦ π.

We denote the ‘base’ of Î, the copy of I in Î by D0. For D ∈ D, we define lev(D) to be
the length of the shortest path D0 → · · · → D starting at the base D0. For each R ∈ N,
let ÎR be the compact part of the Hofbauer tower defined by

ÎR := t{D ∈ D : lev(D) 6 R}.

For maps in F , we can say more about the graph structure of (D,→) since Lemma 1 of
[BT4] implies that if f ∈ F then there is a closed primitive subgraph DT of D. That is,
for any D,D′ ∈ DT there is a path D → · · · → D′; and for any D ∈ DT , if there is a
path D → D′ then D′ ∈ DT too. We can denote the disjoint union of these domains by
ÎT . The same lemma says that if f ∈ F then π(ÎT ) = Ω and f̂ is transitive on ÎT .

Given µ ∈Merg, we say that µ lifts to Î if there exists an ergodic f̂ -invariant probability

measure µ̂ on Î such that µ̂ ◦ π−1 = µ. For f ∈ F , if µ ∈Merg and λ(µ) > 0 then µ lifts

to Î, see [K2, BK].

For convenience later, we let ι := π|−1
D0

. Note that there is a natural distance function dÎ
within domains D (but not between them) induced from the Euclidean metric on I.

2.2. Inducing schemes. We say that (X,F, τ) is an inducing scheme for (I, f) if

• X is an interval containing a finite or countable collection of disjoint intervals Xi such
that F maps eachXi diffeomorphically ontoX, with bounded distortion (i.e., there
exists K > 0 so that for all i and x, y ∈ Xi, 1/K 6 DF (x)/DF (y) 6 K);

• τ |Xi = τi for some τi ∈ N and F |Xi = f τi .

The function τ : ∪iXi → N is called the inducing time. It may happen that τ(x) is the
first return time of x to X, but that is certainly not the general case. For ease of notation,
we will often write (X,F ) = (X,F, τ).

Given an inducing scheme (X,F, τ), we say that a measure µF is a lift of µ if for all
µ-measurable subsets A ⊂ I,

µ(A) =
1∫

X
τ dµF

∑
i

τi−1∑
k=0

µF (Xi ∩ f−k(A)). (5)

Conversely, given a measure µF for (X,F ), we say that µF projects to µ if (5) holds. We
denote

(X,F )∞ :=
{
x ∈ X : τ(F k(x)) is defined for all k > 0

}
.

We call a measure µ compatible to the inducing scheme (X,F, τ) if

• µ(X) > 0 and µ(X \ (X,F )∞) = 0; and

• there exists a measure µF which projects to µ by (5), and in particular
∫
X
τ dµF <∞.

For a potential ϕ : I → R, we define the induced potential Φ : X → R for an inducing
scheme (X,F, τ) as Φ(x) := Sτ(x)ϕ(x) = ϕ(x) + . . .+ ϕ ◦ f τ(x)−1(x) whenever τ(x) <∞.
We denote Φi := supx∈Xi Φ(x). Note that sometimes we will abuse notation and write
(X,F,Φ) when we are particularly interested in the induced potential for the inducing
scheme. The following is known as Abramov’s formula. See for example [PSe].
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Lemma 1. Let µF be an ergodic invariant measure on (X,F, τ) such that
∫
τ dµF <∞

and with projected measure µ. Then hµF (F ) =
(∫

τ dµF
)
hµ(f). Moreover, if ϕ : I → R is

a potential, and Φ the corresponding induced potential, then
∫

Φ dµF =
(∫

τ dµF
) ∫

ϕ dµ.

Fixing f , we let

M+ := {µ ∈Merg : λf (µ) > 0}, and for ε > 0, Mε := {µ ∈Merg : hµ > ε}.

For a proof of the following result, see [BT4, Theorem 3].

Theorem 1. If f ∈ F and µ ∈ M+, then there is an inducing scheme (X,F, τ) and a
measure µF on X such that

∫
X
τ dµF < ∞. Here µF is the lifted measure of µ (i.e., µ

and µF are related by (5)). Moreover, (X,F )∞ = X ∩ Ω.

Conversely, if (X,F, τ) is an inducing scheme and µF an ergodic F -invariant measure
such that

∫
X
τdµF <∞, then µF projects to a measure µ ∈M+.

The proof of the above theorem uses the theory of [B, Section 3]. The main idea is that

the Hofbauer tower can be used to produce inducing schemes. We pick X̂ ⊂ ÎT and use a
first return map to X̂ to give the inducing scheme on X := π(X̂). We will always choose

X to be a cylinder in Pn, for various values of n ∈ N. Sets X̂, and thus the inducing
schemes they give rise to, will be of two types.

Type (a): X̂ is an interval in a single domain D ∈ DT . Then for x ∈ X there exists

a unique x̂ ∈ X̂ so that π(x̂) = x. Then τ(x) is defined as the first return time of x̂ to

X̂. We choose X̂ so that X ∈ Pn for some n, and X̂ is compactly contained in D. These
properties mean that (X,F, τ) is an inducing scheme which is extendible. That is to say,
letting X ′ = π(D), for any domain Xi of (X,F ) there is an extension of f τi to X ′

i ⊃ Xi so
that f τi : X ′

i → X ′ is a homeomorphism. Since f has negative Schwarzian derivative, this
fact coupled with the Koebe lemma, see [MS], means that (X,F ) has uniformly bounded

distortion, with distortion constant depending on δ := dÎ(X̂, ∂D).

Type (b): We fix δ > 0 and some interval X ∈ Pn for some n. We say that the
interval X ′ is a δ-scaled neighbourhood of X if, denoting the left and right components
of X ′ \ X by L and R respectively, we have |L|, |R| = δ|X|. We fix such an X ′ and let

X̂ = t{D ∩ π−1(X) : D ∈ DT , π(D) ⊃ X ′}. Let rX̂ denote the first return time to X̂.

Given x ∈ X, for any x̂ ∈ X̂ with π(x̂) = x, we set τ(x) = rX̂(x̂). In [B] it is shown that
by the setup, this time is independent of the choice of x̂ in π|−1

X̂
(x). Also for each Xi there

exists X ′
i ⊃ Xi so that f τi : X ′

i → X ′ is a homeomorphism, and so, again by the Koebe
Lemma, F has uniformly bounded distortion, with distortion constant depending on δ.

We will need to deal with both kinds of inducing scheme since we want information on the
tail behaviour, i.e., the measure of {τ > n} for different measures. As in Propositions 2
and 3 below, for measures close to µϕ we have good tail behaviour for schemes of type (a);
and for measures close to the acip µ− log |Df | we have good tail behaviour for schemes of
type (b). We would like to point out that any type (a) inducing time τ1 can be expressed
as a power of a type (b) inducing time τ2, i.e., τ1 = τ p2 where p : X → N. Moreover,∫
p dµ1 < ∞ for the induced measure µ1 for the type (a) inducing scheme. This type of

relation is considered by Zweimüller [Z].
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2.3. Method of proof. The main difficulty in the proof of Theorem A is to get an upper
bound on the dimension spectrum in terms of Tϕ. To do this, we show that there are
inducing schemes which have sufficient multifractal information to give an upper bound
on R̃. Then we can use Iommi’s main theorem in [I1], which gives upper bounds in terms
of the T for the inducing scheme. It is the use of these inducing schemes which is the key
to this paper.

We first show in Section 3 that for a given range of α there are inducing schemes which are
compatible to any measure µ which has hµ +

∫
ψq dµ sufficiently large, where q depends

on α. In doing this we will give most of the theory of thermodynamic formalism needed
in this paper. For example, we show the existence of equilibrium states on Kα which will
turn out to have full dimension (these also give the lower bound for R̃).

In Section 4 we prove that for a set A, there is an inducing scheme that ‘sees’ all points
x ∈ A with λf (x) bounded below, up to set of small Hausdorff dimension. This means that
we can fix inducing schemes which contain all the relevant measures, as above, and also
contain the multifractal data. Then in Section 5 we prove Theorem A and Proposition 1.
In Section 6 we show how our results immediately give us information on the Lyapunov
spectrum. In the appendix we show that pointwise dimensions for induced measures and
the original ones are the same, also extending our results to potentials in the class SV I.

3. The range of parameters

In this section we determine what U is in Theorem A. In order to do so, we must introduce
most of the theory of the thermodynamical properties for inducing schemes required in
this paper. Firstly we show that if α(q) ∈ U , then the equilibrium states for ψq are forced
to have positive entropy. By Theorem 1, this ensures that the equilibrium states must be
compatible to some inducing scheme, and thus we will be able to use Iommi’s theory.

We let

Gε(ϕ) :=

{
q : ∃δ < 0 such that

∫
ψq dµ > δ ⇒ hµ > ε

}
.

The next lemma shows that most of the relevant parameters q which we are interested in
must lie in Gε(ϕ).

Lemma 2. Let ϕ : I → I be a potential satisfying (4) and with P (ϕ) = 0. Suppose
that (3) holds for f . There exist ε > 0, q1 < 1 < q2 so that (q1, q2) ⊂ Gε. If we take
ε > 0 arbitrarily close to 0 then we can take q1 arbitrarily close to 0. If (1) holds then
[0, 1] ⊂ (q1, q2).

Proof. First note that (4) and P (ϕ) = 0 implies that ϕ < 0:

0 = P (ϕ) > htop(f) +

∫
ϕ dµ−htop(f) > htop(f) + inf ϕ > supϕ

where µ−htop(f) denotes the measure of maximal entropy (for more details of this measure,
see Section 6). For q ∈ (0, 1], suppose that for some δ < 0, a measure µ ∈ Merg has
hµ +

∫
−Tϕ(q) log |Df |+ qϕ dµ > δ. Recall that by [Pr], λ(µ) > 0 since we excluded the

possibility of attracting cycles for maps f ∈ F . Then

hµ > δ +

∫
Tϕ(q) log |Df | − qϕ dµ > δ + q| supϕ|.

So if δ is close enough to 0 we must have positive entropy.
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Suppose now that (1) holds. Then by [BS], there exists η > 0 so that any invariant
measure µ ∈Merg must have λf (µ) > η. So if hµ +

∫
−Tϕ(q) log |Df |+ qϕ dµ > δ, then

hµ > δ +

∫
Tϕ(q) log |Df | − qϕ dµ > δ + Tϕ(q)η + q| supϕ|.

For q close to 0, Tϕ(q) must be close to 1, so we can choose δ and q1 < 0 so that the
lemma holds. �

The sets Cover(ε) and SCover(ε): Let ε > 0. By [BT4, Lemma 3] there exists η > 0

and a compact set Ê ⊂ ÎT so that µ ∈ Mε implies that µ̂(Ê) > η. Moreover Ê can be

taken inside ÎR \Bδ(∂Î) for some R ∈ N and δ > 0. (Here Bδ(∂Î) is a δ-neighbourhood of

∂Î with respect to the distance function dÎ). As in the discussion above Proposition 2 in

[BT4], Ê can be covered with sets X̂1, . . . , X̂n so that each X̂k acts as the set which gives

the inducing schemes (Xk, Fk) (where Xk = π(X̂k)) as in Theorem 1. We will suppose
that these sets are either all of type (a), or all of type (b). This means that any µ ∈Mε

must be compatible to at least one of (Xk, Fk). We denote Covera(ε) = {X̂1, . . . , X̂n} and
the corresponding set of schemes by SCovera(ε) if we are dealing with type (a) inducing
schemes. Similarly we use Coverb(ε) and SCoverb(ε) for type (b) inducing schemes. If a
result applies to both schemes of types then we omit the superscript.

We let {Xk,i}i denote the domains of the inducing scheme (Xk, Fk) and we denote the
value of τk on Xk,i by τk,i. Given (Xk, Fk, τk), we let Ψq,k denote the induced potential for
ψq.

From this setup, given q ∈ Gε(ϕ) there must exist a sequence of measures {µn}n ⊂ Mε

and a scheme (Xk, Fk) so that hµn +
∫
ψq dµn → P (ψq) = 0 and µn are all compatible to

(Xk, Fk). Later this fact will allow us to use [BT4, Proposition 1] to study equilibrium
states for ψq.

If υ : I → R is some potential and (X,F ) is an inducing scheme with induced potential
Υ : X → R, we let Υi := supx∈Xi Υ(x). We define the kth variation as Vk(Υ) :=
supCk∈Pk{|Υ(x)−Υ(y)| : x, y ∈ Ck}. We say that Υ is locally Hölder continuous if there
exists α > 0 so that Vk(Υ) = O(e−αn). We let

Z0(Υ) :=
∑
i

eΥi , and Z∗0(Υ) :=
∑
i

τie
Υi .

As in [S2], if Υ is locally Hölder continuous, then Z0(Υ) <∞ implies P (Υ) <∞.

We say that a measure µ satisfies the Gibbs property with constant P ∈ R for (X,F,Υ) if
there exists KΦ, P ∈ R so that

1

KΦ

6
µ(Cn)

eSnΥ(x)−nP 6 KΦ

for every n-cylinder Cn and all x ∈ Cn.

The following is the main result of [BT2] (in fact it is proved for a larger class of potentials
there).

Proposition 2. Given f ∈ F satisfying (3) and ϕ : I → R a Hölder potential satisfying
(4) and with P (ϕ) = 0, then for any ε > 0 and any (X,F ) ∈ SCovera(ε):

(a) There exists βΦ > 0 such that
∑

τi=n
eΦi = O(e−nβΦ);

(b) Φ is locally Hölder continuous and P (Φ) = 0;
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(c) There exists a unique Φ-conformal measure mΦ, and a unique equilibrium state µΦ

for (X,F,Φ).
(d) There exists CΦ so that 1

CΦ
6 dµΦ

dmΦ
6 CΦ;

(e) There exists an equilibrium state µϕ for (I, f, ϕ);

(f) The map t 7→ P (tϕ) is analytic for t ∈
(

−htop(f)

supϕ−inf ϕ
, htop(f)

supϕ−inf ϕ

)
.

The existence of the equilibrium state under even weaker conditions than these was proved
by Keller [K1]. However, we need all of the properties above for this paper, which are not
all proved in [K1].

The following is proved in [BT4]. For the same result for unimodal maps satisfying (1)
see [BK], which used tools from [KN].

Proposition 3. Suppose that f ∈ F satisfies (2) and let ψ(x) = ψt(x) := −t log |Df(x)|−
P (−t log |Df(x)|). Then there exists t0 < 1 such that for any t ∈ (t0, 1) there is ε = ε(t) >
0 so that for any (X,F ) ∈ SCoverb(ε):

(a) There exists βDF > 0 such that
∑

τi=n
eΨi = O(e−nβDF );

(b) Ψ is locally Hölder continuous and P (Ψ) = 0;
(c) There exists a unique Ψ-conformal measure mΨ, and a unique equilibrium state µΨ

for (X,F,Ψ);
(d) There exists CΨ so that 1

CΨ
6 dµΨ

dmΨ
6 CΨ;

(e) There exists an equilibrium state µψ for (I, f, ψ) and thus for (I, f,− log |Df |);
(f) The map t 7→ P (−t log |Df |) is analytic in (t0, 1).

If f ∈ F satisfies (1), then this proposition can be extended so that t can be taken in a
neighbourhood of 1.

In Proposition 2 both mΦ and µΦ satisfy the Gibbs property, and in Proposition 3 both
mΨ and µΨ satisfy the Gibbs property; in all these cases, the Gibbs constant P is 0.
By the Gibbs property, part (a) of Proposition 2 and 3 imply that µΦ({τ = n}) and
µΨ({τ = n}) respectively decay exponentially. These systems are referred to as having
exponential tails.

One consequence of the first item in both of these propositions, as noted in [BT2, Theorem
10] and [BT4, Theorem 5], is that we can consider combinations of the potentials above:
x 7→ −t log |Df(x)| + sϕ(x) − P (−t log |Df | + sϕ). We can derive the same results for
this potential for t close to 1 and s sufficiently close to 0, or alternatively for s close to 1
and t sufficiently close to 0. Note that by [KN, BK] this can also be shown in the setting
of unimodal maps satisfying (1) with potentials ϕ of bounded variation.

If (X,F ) is an inducing scheme with induced potential Φ : X → R, we define

PBε(Φ) := {q ∈ Gε(ϕ) : ∃δ > 0 s.t. Z∗0(Ψq + τδ) <∞} .

Lemma 3. For (Xk, Fk) ∈ SCover(ε), if q ∈ PBε(Φk) then P (Ψq,k) = 0. Moreover, there
is an equilibrium state µΨq,k for (Xk, Fk,Ψq,k) and the corresponding projected equilibrium
state µψq is compatible to any (Xj, Fj) ∈ SCover(ε).

In this lemma, SCover(ε) can be SCovera(ε) or SCoverb(ε). Note that by [BT4, Propo-
sition 1], if for any (X,F ) ∈ SCover(ε) and q ∈ PBε(Φ), then there exists an equilibrium
state µΨq for (X,F,Ψq), as well as an equilibrium state µψq for (I, f, ψq).
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Proof. Firstly we have P (Ψq,k) = 0 for the inducing scheme (Xk, Fk) by Case 3 of [BT4,
Proposition 1]. Secondly we can replace (Xk, Fk) with any inducing scheme (Xj, Fj) ∈
SCover(ε) by [BT4, Lemma 9]. �

This lemma means that if q ∈ PBε(Φk) for (Xk, Fk) ∈ SCovera(ε), then q ∈ PBε(Φj) for
any (Xj, Fj) ∈ SCovera(ε). Therefore, we can denote this set of q by PBa

ε (ϕ). Since the
same argument holds for inducing schemes of type (b), we can analogously define the set
PBb

ε(ϕ). Note that ε′ < ε implies PBε′(ϕ) ⊃ PBε(ϕ). We define PB(ϕ) := ∪ε>0PBε(ϕ).

Remark 1. The structure of inducing schemes here means that we could just fix a sin-
gle inducing scheme which has all the required thermodynamic properties in this section.
However, in Section 4 we need to consider all the inducing schemes here in order to
investigate the dimension spectrum.

In [I1], the following conditions are given.

q∗ := inf{q : there exists t ∈ R such that P (−t log |DF |+ qΦ) 6 0}.

TΦ(q) :=

{
inf{t ∈ R : P (−t log |DF |+ qΦ) 6 0} if q > q∗,

∞ if q < q∗.

The following is the main result of [I1, Theorem 4.1]. We can apply it to our schemes
(X,F ) since they can be seen as the full shift on countably many symbols (Σ, σ). In
applying this theorem, we choose the metric dΣ on Σ to be compatible with the Euclidean
metric on X.

Theorem 2. Suppose that (Σ, σ) is the full shift on countably many symbols and Φ :
Σ → R is locally Hölder continuous. The dimension spectrum DSΦ(α) is the Legendre
transform of TΦ.

If we know that an inducing scheme has sufficiently high, but not infinite, pressure for the
potential Ψq then the measures we are interested in are all compatible to this inducing
scheme. This leads to TΦ being equal to Tϕ, as in the following proposition.

Proposition 4. Suppose that f ∈ F is a map satisfying (3) and ϕ : I → I is a Hölder
potential satisfying (4). Let ε > 0. For all q ∈ PBa

ε (ϕ), if (X,F ) ∈ SCovera(ε) with
induced potential Φ, then TΦ(q) = Tϕ(q). Similarly for type (b) inducing schemes.

Moreover,

(a) there exists ε > 0 and q0 < 1 < q1 so that (q0, q1) ⊂ PBa
ε (ϕ);

(b) if f satisfies (2), then for all ε > 0 there exist 0 < q2 < q3 so that (q2, q3) ⊂ PBb
ε(ϕ)

(taking ε small, q3 can be taken arbitrarily close to 0);
(c) if f satisfies (1), for all ε > 0 there exist q2 < 0 < q3 so that (q2, q3) ⊂ PBb

ε(ϕ).
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Proof. By Lemma 3, for q ∈ PBε(ϕ), and any (X,F ) ∈ SCover(ε), P (Ψq) = 0. The
Abramov formula in Lemma 1 implies that

0 = hµψq (f) +

∫
−Tϕ(q) log |Df |+ qϕ dµψq

=

(
1∫

τ dµΨq

)(
hµΨq

(F ) +

∫
−Tϕ(q) log |DF |+ qΦ dµΨq

)
and hence TΦ(q) 6 Tϕ(q) on PBε(ϕ). Since we also know that t 7→ P (−t log |DF | + qΦ)
is strictly convex for t near Tϕ(q), we have TΦ(q) = Tϕ(q) on PBε(ϕ).

By Lemma 3, for ε > 0, in order to check if q ∈ PBε(ϕ) and thus prove (a), (b) and (c),
we only need to check if q ∈ PBε(Φ) for one scheme (X,F ) ∈ SCover(ε). We will show
that the estimate for Z∗0(Ψq) is a sum of exponentially decaying terms, which is enough
to show that there exists δ > 0 so that Z∗0(Ψq + δτ) <∞.

As in the proof of Lemma 2, (4) and P (ϕ) = 0 imply that ϕ < 0. Recall that P (−Tϕ(q) log |Df |+
qϕ) = 0. Given (X,F ) ∈ SCover(ε), by the local Hölder continuity of every Ψq, there
exists C > 0 such that

Z∗0(Ψq) :=
∑
i

τie
−Tϕ(q) log |DFi|+qΦi 6 C

∑
n

n
∑
τi=n

|Xi|Tϕ(q)eqΦi .

We will first assume only that f satisfies (3) and that q is close to 1. In this case we
work with inducing schemes of type (a). By Proposition 2, there exists βΦ > 0 so that∑

τi=n
eΦi = O(e−nβΦ).

Case 1: q near 1 and q > 1. In this case Tϕ(q) < 0. Since |Xi| > (sup |Df |)−τi ,

Z∗0(Ψq) 6 C
∑
n

n(sup |Df |)−n|Tϕ(q)|
∑
τi=n

eqΦi 6 C ′
∑
n

n(sup |Df |)−n|Tϕ(q)|e−nqβΦ .

Since for q near to 1, Tϕ(q) is close to 0, the terms on the right decay exponentially,
proving the existence of q1 > 1 in part (a).

Case 2: q near 1 and q < 1. In this case Tϕ(q) > 0. By the Hölder inequality there exists
C ′ > 0 such that

Z∗0(Ψq) 6 C
∑
n

n

(∑
τi=n

eΦi

)q(∑
τi=n

|Xi|
Tϕ(q)

1−q

)1−q

6 C ′
∑
n

ne−qnβΦ

(∑
τi=n

|Xi|
Tϕ(q)

1−q

)1−q

.

Case 2(a): Tϕ(q)

1−q > 1

In this case obviously Z∗0(Ψq) can be estimated by exponentially decaying terms. (In fact,
it is not too hard to show that this case is empty, but there is no need to give the details
here.)

Case 2(b): Tϕ(q)

1−q < 1. Here the term we need to control is, by the Hölder inequality(∑
τi=n

|Xi|
Tϕ(q)

1−q

)1−q

6

(∑
τi=n

|Xi|

)Tϕ(q)

1−q

#{τi = n}1−
(
Tϕ(q)

1−q

)
1−q

.

We have (
#{τi = n}1−

(
Tϕ(q)

1−q

))1−q

= #{τi = n}1−q−Tϕ(q).
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As explained in [BT4], for any η > 0 there exists Cη > 0 such that #{τi = n} 6
Cηe

n(htop(f)+η). Since we also know that for q close to 1, 1 − q − Tϕ(q) is close to 0, the
terms e−nqβΦ dominate the estimate for Z∗0(Ψq), which completes the proof of (a).

Next we assume that f satisfies (2) and q > 0 is close to 0. In this case we work with
inducing schemes of type (b).

Case 3: q near 0 and q > 0. In this case Tϕ(q) < 1. By [BT4, Proposition 3], if t is close
to 1 then

∑
τi=n

|Xi|t is uniformly bounded. Thus, as in Case 2,

Z∗0(Ψq) 6 C
∑
n

n

(∑
τi=n

eΦi

)q(∑
τi=n

|Xi|
Tϕ(q)

1−q

)1−q

= O

(
n
∑
τi=n

eΦi

)q

.

As in Case 2, there exists βΦ > 0 so that µΦ{τ = n} = O(e−nβΦ), which implies Z∗0(Ψq)
can be estimated by exponentially decaying terms.

Case 4: q near 0 and q < 0. This can only be considered when f satisfies (1). In this
case Tϕ(q) > 1. Note that by Proposition 3 there exists βDF > 0 so that µ− log |DF |{τ =
n} = O(e−nβDF ). Thus,

Z∗0(Ψq) 6 C
∑
n

neqn inf ϕ

(∑
τi=n

|Xi|

)Tϕ(q)

= O

(∑
n

nen(q inf ϕ−Tϕ(q)βDF )

)
.

For q close to 0 we have q inf ϕ − Tϕ(q)βDF < 0 and so Z∗0(Ψq) can be estimated by
exponentially decaying terms, proving (c). �

4. Inducing schemes see most points with positive Lyapunov Exponent

The purpose of this section is to show that if we are only interested in those sets for
which the Lyapunov exponent is bounded away from 0, then there are inducing schemes
which contain all the multifractal data for these sets. This is the content of the following
proposition.

Proposition 5. For all λ, s > 0 there exist ε = ε(λ, s) > 0, a set LG
′
λ ⊂ LGλ, and

an inducing scheme (X,F ) ∈ SCovera(ε) so that HD(LGλ \ LG
′
λ) 6 s and for all

x ∈ LG
′
λ there exists k > 0 so that fk(x) ∈ (X,F )∞. There is also an inducing scheme

in SCoverb(ε) with the same property.

By the structure of the inducing schemes outlined above, we can replace ε with any
ε′ ∈ (0, ε).

This means that if there is a set A ⊂ I and λ > 0 so that HD(A ∩ LGλ) > 0 then there
is an inducing scheme (X,F ) so that HD(A ∩ LGλ ∩ (X,F )∞) = HD(A ∩ LGλ). Hence
the multifractal information for A ∩ LGλ can be found using (X,F ). We remark that by
Lemma 3, for λ > 0 and q ∈ PB(ϕ), if HD(Kα ∩ LGλ) > 0 then we can fix an inducing
scheme (X,F ) such that

HD(Kα ∩ LGλ ∩ (X,F )∞) = HD(Kα ∩ LGλ).

For the proof of Proposition 5 we will need two lemmas.
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Partly for completeness and partly in order to fix notation, we recall the definition of
Hausdorff measure and dimension. For E ⊂ I and s, δ > 0, we let

Hs
δ (E) := inf

{∑
i

diam(Ai)
s

}
where the infimum is taken over collections {Ai}i which cover E and with diam(Ai) <
δ. Then the s-Hausdorff measure of E is defined as Hs(E) := lim supδ→0H

s
δ (E). The

Hausdorff dimension is then HD(E) := sup{s : Hs(E) = ∞}.

Lemma 4. For all λ, s > 0 there exists η > 0, R ∈ N and LG
′
λ ⊂ LGλ so that HD(LGλ \

LG
′
λ) 6 s, and x ∈ LG′

λ implies

lim sup
k

1

k
#{1 6 k 6 n : f̂k(ι(x)) ∈ ÎR} > η.

Note on the proof: It is important that here that we can prove this lemma for LGλ

rather than LGλ. Otherwise Proposition 5 and, for example, our main corollaries would
not hold. We would like to briefly discuss why we can prove this result for LGλ rather
than LGλ. The argument we use in the proof is similar to arguments which show that
under some condition on pointwise Lyapunov exponents for m-almost every point, then
there is an invariant measure absolutely continuous with respect to m. Here m is usually a
conformal measure. For example in [BT1] we showed that if m(LGλ) > 0 for a conformal
measure m then ‘most points’ spend a positive frequency of their orbit in a compact part
of the Hofbauer tower, and hence there is an absolutely continuous invariant measure
µ � m. In that case it was convenient to use LGλ rather than LGλ. In [K3], and in a
similar proof in [MS], m is Lebesgue measure and the ergodicity of m is used to allow
them to weaken assumptions and to consider LGλ instead. In our case here, we cannot
use such an ergodic property, but on the other hand we do not need points to enter a
compact part of the tower with positive frequency (which is essentially what is required
in all the above cases), but simply infinitely often. Hence we can use LGλ instead.

For the proof of the lemma we will need the following result from [BRSS, Theorem 4].
Here m denotes Lebesgue measure.

Proposition 6. If f satisfies (3) then there exists C > 0 so that for any Borel set A,

m(f−n(A)) 6 Cm(A)
1

2`max(f) .

Proof of Lemma 4. For this proof we use ideas of [K2], see also [BT1]. We suppose that
HD(LGλ) > 0, otherwise there is nothing to prove. Then let s > 0 be so that s <
HD(LGλ). Throughout this proof, we write `max = `max(f).

For γ > 0 and n ∈ N, let LGn
γ := {x : |Dfn(x)| > eγn}.

For x ∈ I, we define

freq(R, η, n) :=

{
x :

1

n
#
{

0 6 k < n : f̂k(ι(x)) ∈ ÎR
}

6 η

}
and

freq(R, η) :=

{
y : lim sup

k

1

k
#
{

1 6 k 6 n : f̂k(ι(y)) ∈ ÎR
}

6 η

}
.
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For λ0 ∈ (0, λ), R, n > 1 and η > 0 we consider the set

Eλ0,R,n(η) := LGn
λ0
∩ freq(R, η, n).

If x ∈ LGλ ∩ freq(R, η) then there exists arbitrarily large n ∈ N so that |Dfn(x)| > eλ0n,
and x ∈ freq(R, η, n). Hence

freq(R, η) ∩ LGλ ⊂
⋂
k

⋃
n>k

Eλ0,R,n(η).

This means we can estimate the Hausdorff dimension of freq(R, η)∩LGλ through estimates
on HD(Eλ0,R,n(η)).

We let PE,n denote the collection of cylinder sets of Pn which intersect Eλ0,R,n(η). We will
compute Hs

δ (Eλ0,R,n(η)) using the natural structure of the dynamical cylinders Pn. First
note that by [H2, Corollary 1] (see also, for example, the proof of [BT1, Theorem 4]), for
all γ > 0 there exists R > 1 and η > 0 so that #PE,n 6 eγn for all large n. In [BT1] this
type of estimate was sufficient to show that conformal measure ‘lifted’ to the Hofbauer
tower. The Hausdorff measure is more difficult to handle, since in this case we have an
issue with distortion. Here we use an argument of [BT3] to deal with the distortion. We
will make some conditions on γ, depending on s and λ below.

Let n(δ) ∈ N be so that n > n(δ) implies |Cn| < δ for all Cn ∈ Pn.

Given γ > 0, let θ := γ(4`2max)
s

. For x ∈ I, let

Vn[x] :=
{
y ∈ Cn[x] : |fn(y)− ∂fn(Cn[x])| < e−θn|fn(Cn[x])|

}
.

For a point x ∈ Eλ0,R,n, we say that x is in Case 1 if x ∈ Vn[x], and in Case 2 otherwise.
We consider the measure of points in these different sets separately.

Case 1: For x ∈ I, we denote the part of fn(Cn[x]) which lies within e−θn|fn(Cn[x])|
of the boundary of fn(Cn[x]) by Bdn[x]. We will estimate the Lebesgue measure of the
pullback f−n(Bdn[x]). Note that this set consists of more than just the pair of connected
components Cn[x] ∩ Vn[x].

Clearly, m(Bdn[x]) 6 2e−θnm(fn(Cn[x])). Hence from Proposition 6, we have the (rather
rough) estimate

m(Vn[x]) 6 m(f−n(Bdn[x])) 6 K0

[
2e−θnm(fn(Cn[x]))

] 1

2`2max 6 2K0e
− θn

2`2max = 2K0e
− 2γn

s .

Case 2: Let C̃n[x] := Cn[x]\Vn[x]. As in [BT3], the intermediate value theorem and the
Koebe lemma allow us to estimate

|C̃n[x]|
|fn(C̃n[x])|

6

(
1 + e−nθ

e−nθ

)2
1

|Dfn(x)|
.

Hence for all large n,
|C̃n[x]| 6 2e2θne−λn.

If we set γ 6 λs
16`2max

, then

|C̃n[x]| 6 2e−n
λ
2 .

If we assume that n > n(δ), the sets Vn[x] ⊂ Cn[x] ∈ PE,n in Case 1 and C̃n[x] ⊂ Cn[x] ∈
PE,n in Case 2 form a δ-cover of Eλ0,R,n(η). This implies that for n large,

Hs
δ (Eλ0,R,n(η)) 6 4eγn(e−n

λs
2 +K0e

−2γn).
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By our choice of γ, this is uniformly bounded in n. Since we can make the above estimate
for all small δ, we get that

HD
(
LGλ ∩ freq(R, η)

)
6 s.

So the set LG
′
λ := LGλ \ freq(R, η) has the required property. �

Let {εn}n be a positive sequence decreasing to 0 and let Bn := Bεn(∂Î).

Lemma 5. For any R ∈ N and η > 0, there exists N(R, η) ∈ N so that for x ∈ I, if

lim sup
k

1

k
#
{

1 6 j 6 k : f̂ j(ι(x)) ∈ ÎR
}
> η,

then f̂ j(ι(x)) ∈ ÎR \BN infinitely often.

Proof. In a Hofbauer tower, if a point x̂ ∈ Î is very close to ∂Î then its f̂ -orbit shadows a
point in ∂Î for a very long time, and so it must spend a long time high up in the tower.
Therefore we can choose p,N ∈ N so that x̂ ∈ BN(∂Î) ∩ ÎR implies that

f̂p(x̂) ∈ Î \ ÎR and
1

p
#{1 6 j 6 p : f̂ j(x̂) ∈ ÎR} < η. (6)

Suppose, for a contradiction, that k is the last time that, for x ∈ I, f̂k(ι(x)) ∈ ÎR \ BN .

Then if f̂ j(ι(x)) ∈ ÎR for j > k then f̂ j(ι(x)) must be contained in BN . Hence by (6), we
have

lim sup
k

1

k
#{1 6 j 6 k : f̂ j(ι(x)) ∈ ÎR} < η,

a contradiction. �

Proof of Proposition 5. We choose R,N ∈ N, LG
′
λ as in Lemmas 4 and 5 so that for any

x ∈ LG′
λ, ι(x) enters ÎR \BN infinitely often.

In the following we can deal with either inducing schemes of type (a) or type (b). We can

choose ε > 0 so small that ÎR \BN ⊂ ∪X̂∈Cover(ε)X̂. We denote the set of points x̂ ∈ Î so

that the orbit of x̂ enters X̂ ⊂ Î infinitely often by X̂∞. Therefore, for x ∈ LG
′
λ, there

exists X̂k ∈ Cover(ε) so that ι(x) ∈ X̂∞
k . Thus

LG
′
λ =

n⋃
k=1

{x ∈ LG′
λ : ι(x) ∈ X̂∞

k }.

Therefore, we can choose a particular X̂k so that

HD(LG
′
λ) = HD

{
x ∈ LG′

λ : ι(x) ∈ X̂∞
k

}
,

as required. �

5. Proof of main results

For a potential ϕ : I → R, if the Birkhoff average limn→∞
Snϕ(x)
n

exists, then we denote
this limit by S∞ϕ(x). If Φ is some induced potential, we let S∞Φ(x) be the equivalent
average for the inducing scheme.
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Remark 2. Let f ∈ F satisfy (3) and ϕ be a Hölder potential satisfying (4) and P (ϕ) = 0.
Proposition 2 implies that there exists an equilibrium state µϕ, but also for an inducing
scheme (X,F ), it must have P (Φ) = 0 for the induced potential Φ. In fact this is only
stated for type (a) inducing schemes in Proposition 2, but will we prove this for type (b)
schemes as well in Lemma 10.

For x ∈ X, we define

ďµΦ
(x) := lim

n→∞

log µΦ(CF
n [x])

− log |DF n(x)|
if the limit exists, CF

n [x] are the n-cylinders at x with respect to the inducing scheme
(X,F ). Since P (Φ) = 0, the Gibbs property of µΦ implies

ďµΦ
(x) = lim

n→∞

Φn(x)

− log |DF n(x)|
whenever one of the limits on the right exists. Also note that if both S∞Φ(x) and λF (x)
exist then ďµΦ

(x) also exists. It was shown by Pollicott and Weiss [PoWe] that

• ďµΦ
(x) and S∞Φ(x) exist ⇒ dµΦ

(x) and λF (x) exist, and dµΦ
(x) = ďµΦ

(x) = S∞Φ(x)
−λF (x)

;

• dµΦ
(x) and S∞Φ(x) exist ⇒ ďµΦ

(x) and λF (x) exist, and ďµΦ
(x) = dµΦ

(x) = S∞Φ(x)
−λF (x)

.

Note that for x ∈ (X,F )∞ we can write

Φn(x)

− log |DF n(x)|
=

(
ϕnk (x)

nk

)
(
− log |Dfnk (x)|

nk

)
where nk = τ k(x). Hence we can replace any assumption on the existence of S∞Φ(x) and
λF (x) above by the existence of S∞ϕ(x) and λf (x).

Let

α(q) := −
∫
ϕ dµψq∫

log |Df | dµψq
= −

∫
Φ dµΨq∫

log |DF | dµΨq

.

For the proof Theorem A we will need two propositions relating the pointwise dimension
for the induced measure and the original measure. The reason we need to do this here
is that the induced measure µΦ is not, as it would be if the inducing scheme were a first
return map, simply a rescaling of µϕ.

Proposition 7. Given f ∈ F and a Hölder potential ϕ : I → I satisfying (4) and
P (ϕ) = 0, then there exists a ϕ-conformal measure mϕ and Cϕ > 0 so that

1

Cϕ
6

dµϕ
dmϕ

6 Cϕ.

Notice that this implies that dmϕ = dµϕ and, by the conformality of mϕ, dµϕ(x) =
dµϕ(f

n(x)) for all n ∈ N.

This proposition follows from [K1]. However, as we mentioned in the introduction, we
can also prove the existence of conformal measures under slightly different hypotheses on
the map and the potential. The class of potentials we can deal with include discontinuous
potentials satisfying (4), as well as potentials x 7→ −t log |Df(x)| for t close to 1. Since this
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is of independent interest, we will provide a proof of this in the appendix. A generalised
version of the following result is also proved in the appendix.

Proposition 8. Suppose that f ∈ F satisfies (3) and ϕ : I → I is a Hölder potential
satisfying (4) and P (ϕ) = 0. For any inducing scheme (X,F ) either of type (a) or type
(b), with induced potential Φ : X → R, there exists C ′

Φ > 0 so that

1

C ′
Φ

6
dµΦ

dµϕ
6 C ′

Φ.

Our last step before proving Theorem A is to show that our pressure functions are strictly
convex, which will mean that DSϕ is strictly convex also, and the sets U will contain non-
trivial intervals.

Lemma 6. Suppose that f ∈ F satisfies (3) and ϕ is a Hölder potential satisfying (4).
Then either there exists δ > 0 such that Tϕ is strictly convex in

PB(ϕ) ∩ ((−δ, δ) ∪ (1− δ, 1 + δ)) ,

or µϕ = µ− log |Df |.

Remark 3. For the particular case when f ∈ F and ϕ is a constant potential, in which
case P (ϕ) = 0 implies ϕ ≡ −htop(f), Lemma 6 says that Tϕ is not convex if and only
if µ− log |Df | = µ−htop(f). By [D1, Proposition 3.1], this can only happen if f has finite
postcritical set. We have excluded such maps from F .

Proof of Lemma 6. Suppose that Tϕ is not strictly convex on some interval U intersecting
a neighbourhood of PB(ϕ)∩ [0, 1]. Since Tϕ is necessarily convex, in U it must be affine.
We will observe that for all q ∈ U , the equilibrium state for ψq is the same. We will then
show that [0, 1] ⊂ U . Since (3) holds and hence there is an acip µ− log |Df |, this means that
µϕ ≡ µ− log |Df |.

Our assumptions on U imply that there exists q0 ∈ U so that for a relevant inducing
scheme (X,F ), there exists β > 0 so that µΨq0

{τ > n} = O(e−βn). Moreover, DTϕ is

some constant γ in U . This means that
∫
ϕ dµψq
λ(µψq )

= γ for all q ∈ U . Since by definition

P (ψq) = 0, these facts imply that µψq = µψq0 for all q ∈ U .

By Proposition 4 there exists δ > 0 such that (1− δ, 1+ δ) ⊂ PB(ϕ) and (0, δ) ⊂ PB(ϕ),
and moreover if PB(ϕ) contains a neighbourhood of 0 then (−δ, δ) ⊂ PB(ϕ).

Case 1: Suppose that U∩PB(ϕ)∩(1−δ, 1+δ) 6= ∅. Since by Proposition 4, Tϕ is analytic
in this interval, Tϕ must be affine in the whole of (1− δ, 1 + δ). Therefore 1 ∈ U . We will
prove that 0 ∈ U . By Proposition 4 we can choose a type (a) inducing scheme (X,F ) so
that µψq is compatible with (X,F ) for all q ∈ (1 − δ, 1 + δ). Recall from Proposition 2
that there exists βΦ > 0 so that µΨ1{τ > n} = O(e−βΦn).
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We suppose that 0 6 q < 1, and hence Tϕ(q) > 0. We choose q0 > 1 − δ very close to
1− δ. Then by convexity Tϕ(q) > Tϕ(q0) + γ(q − q0). Hence,

Z∗0(Ψq) =
∑
n

n
∑
τi=n

|Xi|Tϕ(q)eqΦi 6
∑
n

n
∑
τi=n

|Xi|Tϕ(q0)+γ(q−q0)eqΦi

6
∑
n

n sup
τi=n

(
|Xi|γ(q−q0)e(q−q0)Φi

)∑
τi=n

|Xi|Tϕ(q0)eq0Φi

6
∑
n

nen(q−q0) inf ϕ
∑
τi=n

|Xi|Tϕ(q0)eq0Φi .

By the Gibbs property of µΨq0
, we can estimate

∑
τi=n

|Xi|Tϕ(q0)eq0Φi by µΨq0
{τ = n} =

µΨ1{τ = n} 6 e−βΦn. So if (q−q0) inf ϕ < βΦ then similarly to the proof of Proposition 4,
q ∈ PB(ϕ). Since Tϕ is analytic in PB(ϕ), this means that Tϕ is still affine at q and
therefore that U was not the largest domain of affinity ‘to the left’. We can continue
doing this until we hit the left-hand boundary of PB(ϕ). In particular, this means that
0 ∈ U .

Case 2: Suppose that PB(ϕ)∩ (−δ, δ)∩U 6= ∅. As in Case 1, this implies [0, δ] ∈ U . We
will prove that 1 ∈ U .

By Proposition 4 we can choose a type (b) inducing scheme (X,F ) so that µψq is compat-
ible with (X,F ) for all q ∈ (δ′, δ) where δ′ := δ/2. Recall from Proposition 2 that there
exists βDF > 0 so that µΨδ′

{τ > n} = O(e−nβDF ).

We let δ < q 6 1 and q0 < δ be very close to δ. Again by convexity Tϕ(q) > Tϕ(q0) +
γ(q − q0). Similarly to Case 1,

Z∗0(Ψq) =
∑
n

n
∑
τi=n

|Xi|Tϕ(q)eqΦi 6
∑
n

n
∑
τi=n

|Xi|Tϕ(q0)+γ(q−q0)eqΦi

6
∑
n

n sup
τi=n

(
|Xi|γ(q−q0)e(q−q0)Φi

)∑
τi=n

|Xi|Tϕ(q0)eq0Φi .

Since |Xi| > e−τi|Df |∞ where |Df |∞ := supx∈I |Df(x)|,

sup
τi=n

(
|Xi|γ(q−q0)e(q−q0)Φi

)
6 en(q−q0)(−γ|Df |sup+supϕ).

So if (q− q0)(−γ|Df |∞ + supϕ) < βDF then similarly to Case 1 we can conclude that all
points in PB(ϕ) to the right of q0 are in U . In particular 1 ∈ U .

In both cases 1 and 2, we concluded that [0, 1] ⊂ U . Therefore µϕ ≡ µ− log |Df |, as
required. �

Proof of Theorem A. Let Lϕ be the Legendre transform of Tϕ when these functions exist.

The upper bound: D̃Sϕ 6 Lϕ. To get this bound, we first pick a suitable induc-

ing scheme. Given q ∈ PB(ϕ), since K̃ϕ(α(q)) = ∪n>1LG 1
n
∩ K̃ϕ(α(q)), for all η > 0

there exists λ > 0 so that HD(LG
′
λ ∩ K̃ϕ(α(q))) > HD(K̃ϕ(α(q))) − η. For some

s < HD(K̃ϕ(α(q))), we take an inducing scheme (X,F ) as in Proposition 5 (this can
be for schemes of type (a) or (b), whichever we need).

We next show that D̃Sϕ 6 DSΦ and then use Theorem 2 and Proposition 4 to conclude

the proof of the bound. Let x ∈ Kϕ(α) ∩ LG′
λ. By transitivity there exists j so that
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x ∈ f j(X). Let y ∈ X be such that f j(y) = x. Since x ∈ LG
′
λ, we must also have

y ∈ (X,F )∞ by Proposition 5. By Propositions 7 and 8, dµϕ(x) = dµϕ(y) = dµΦ
(y), so

y ∈ KΦ(α). Therefore,

K̃ϕ(α) ∩ LG′
λ ⊂ ∪∞k=0f

k(KΦ(α)).

Hence
D̃Sϕ − η 6 HD(Kϕ(α) ∩ LG′

λ) 6 HD
(
∪∞k=0f

k(KΦ(α))
)
.

Since f is clearly Lipschitz, HD
(
∪∞k=0f

k(KΦ(α))
)

= HD(KΦ(α)), so D̃Sϕ(α) − η 6
DSΦ(α). Theorem 2 says that DSΦ(α(q)) is LΦ(α), the Legendre transform of TΦ. There-

fore, D̃Sϕ(α)− η 6 LΦ(α) = Lϕ(α), where the final equality follows from Proposition 4.

Since η > 0 was arbitrary, we have D̃Sϕ(α) 6 Lϕ(α).

The lower bound: D̃Sϕ > Lϕ. We will use the Hausdorff dimension of the equilibrium
states for ψq to give us the required upper bound here. For µ ∈M+, by Theorem 1 there
exists an inducing scheme (X,F ) which µ is compatible to. This can chosen to be of
type (a) or type (b). By Proposition 8, dµϕ(x) = dµΦ

(x) for any x ∈ (X,F )∞, where Φ

is the induced potential for (X,F ). Now suppose that
∫
ϕ dµ

λf (µ)
= −α. Then for µ-a.e. x,

S∞ϕ(x) and λ(x) exist, and by the above and Remark 2, since we may choose X so that
for x ∈ (X,F )∞, we have

dµϕ(x) = dµΦ
(x) =

S∞ϕ(x)

−λf (x)
= α.

Hence µ-a.e. x is in Kϕ(α). Therefore,

D̃Sϕ(α) > sup

{
hµ

λf (µ)
: µ ∈M+ and

∫
ϕ dµ

λf (µ)
= −α

}
.

By Lemma 3, we know that there is an equilibrium state µψq for ψq. Then by definition,
hµψq +

∫
−T (q) log |Df |+ qϕ dµψq = 0. Therefore, for α = α(q),

hµψq
λf (µψq)

= T (q) + qα = Lϕ(α).

And hence D̃Sϕ(α) > Lϕ(α). Putting our two bounds together, we conclude that

D̃Sϕ(α) = Lϕ(α).

We next show (a), (b) and (c). First note that since we have assumed that µϕ 6≡ µ− log |Df |,
Lemma 6 means that Tϕ is strictly convex in PB(ϕ). This implies that U will contain
non-trivial intervals. For example, if (3) holds then P (ϕ) = 0 and [HR] imply that

α(1) = −
∫
ϕ dµϕ
λf (µϕ)

=
hµϕ

λf (µϕ)
= HD(µϕ).

By Proposition 4 and Lemma 6, for any α close to HD(µϕ) there exists q such that

DTϕ(q) = α. Hence by the above, D̃Sϕ(α) = Lϕ(α).

Similarly, let us assume that (2) holds. We have

α(0) = −
∫
ϕ dµ− log |Df |

λf (µ− log |Df |)
= αac.

So the arguments above, Proposition 4 and Lemma 6 imply that for any α < αac there

exists q such that DTϕ(q) = α, and also D̃Sϕ(α) = Lϕ(α). The same holds for all α in a
neighbourhood of αac when (1) holds. �
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Proof of Proposition 1. It was pointed out in [I1, Remark 4.9] that by [BaS], for an in-
ducing scheme (X,F ) with potential Φ : X → R, the Hausdorff dimension of the set
of points with dµΦ

(x) not defined has the same dimension as the set of points for which
the inducing scheme is defined for all time. So we can choose (X,F ) to be any inducing
scheme which is compatible to the acip to show that the Hausdorff dimension of this set
of points is 1. In fact any type (a) or type (b) inducing scheme is compatible to the
acip. By Proposition 8, if dµΦ

(x) not defined then neither is dµϕ(x), so the proposition is
proved. �

5.1. Going to large scale: the proof of Corollary C. Suppose that f ∈ F extends to
a polynomial on C with no parabolic points and all critical points in I. In the context of
rational maps, Graczyk and Smirnov [GS] prove numerous results for such maps satisfying
(2). For δ > 0, we say that x goes to δ-large scale at time n if there exists a neighbourhood
W of x such that f : W → Bδ(f

n(x)) is a diffeomorphism. It is proved in [GS] that there
exists δ > 0 such that the set of points which do not go to δ-large scale for an infinite

sequence of times has Hausdorff dimension less than `max(f)
βP−1

< 1 where βP is defined in

(2). Here we will sketch how this implies Corollary C.

By [K2], if f is an interval map, µ ∈ Merg and x goes to δ-large scale with frequency

γ, then there exists N = N(δ) so that iterates of ι(x) by f̂ enter ÎN with frequency at
least γ. In [K2, BT1], this idea was used to prove that for µ ∈ Merg, if µ-a.e. x goes
to δ-large scale with some frequency greater than γ > 0, then there exists µ̂ an ergodic
f̂ -invariant probability measure on Î, with µ̂(ÎN) > γ (so also µ̂-a.e. x̂ enters ÎN with
positive frequency), and µ = µ̂ ◦ π−1. By the arguments above this means that we can

build an inducing (X,F ) scheme from a set X̂ ∈ ÎN which is compatible to µ.

However, to prove Corollary C, we only need that sufficiently many points x have k > 0
such that fk(x) ∈ (X,F )∞, which does not necessarily mean that these points must go
to large scale with positive frequency. (Note that we already know that all the measures

µ we are interested in can be lifted to Î.) We only need to use the fact, as above, that if
A is the set of points which go to δ-large scale infinitely often, then there exists R ∈ N so
that for all x ∈ A, ι(x) enters ÎR infinitely often. Hence the machinery developed above

‘sees’ all of A, up to a set of Hausdorff dimension < `max(f)
βP−1

. Since this value is < 1, for

our class of rational maps, we have DSϕ(α) = D̃Sϕ(α) for α close to αac. Similarly, if
`max(f)
βP−1

< HD(µϕ) then the same applies for α close to HD(µϕ).

Note that for rational maps as above, but satisfying (1), the same argument gives another
proof of Corollary B.

It seems likely that the analyticity condition can be weakened to include all maps in F
satisfying (2).

5.2. Points with zero Lyapunov exponent can be seen. In this section we discuss
further which points and cannot be seen by the inducing schemes we use here.

Suppose that (X,F, τ) is an inducing scheme of type (a). Then there is a corresponding

set X̂ ⊂ Î such that τ(y) is rX̂(ŷ) where ŷ ∈ X̂ is such that π(ŷ) = y and rX̂ is the

first return time to X̂. Then there exist points x̂ ∈ X̂ so that π(f̂k(x)) ∈ Crit and

f̂ j(x̂) /∈ X̂ for all 1 6 j < k. This implies that from iterate k onwards, this orbit is

always in the boundary of its domain D ∈ D. Since X̂ is always chosen to be compactly
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contained inside its domain DX̂ ∈ D, this means that x̂ never returns to X̂. Hence for
x = π(x̂), τ(x) = ∞. On the other hand, there are precritical points x with x̂ = π|−1

X̂
(x)

which returns to X̂ before it hits a ‘critical line’ π−1(c) for c ∈ Crit. For such a point,
τ(x) < ∞, but for all large iterates k, we must have τ(fk(x)) = ∞. Hence precritical
points in X cannot have finite inducing time for all iterates. This can be shown similarly
for type (b) inducing schemes. We can extend this to show that no precritical point is
counted in our proof of Theorem A.

Moreover, in this paper we are able to find D̃Sϕ(α) through measures on Kα. In fact we
can only properly deal with measures which are compatible to some inducing scheme. As
in Theorem 1, the only measures we can consider are in M+. This means that the set of
points x with λ(x) = 0 is not seen by these measures. As pointed out above Corollary B,
[BS] shows that in the Collet-Eckmann case, the set of points with λ(x) = 0 is countable
and thus has zero Hausdorff dimension. (Note that even in this well-behaved case it is
not yet clear that the set of points with λ(x) = 0 has zero Hausdorff dimension.) The
general question of what is the Hausdorff dimension of I \LG0 for topologically transitive
maps is, to our knowledge, open.

On the other hand, it is not always the case that given an inducing scheme (X,F, τ), all
points x ∈ X for which τ(F k(x)) <∞ for all k > 0 have positive Lyapunov exponent. For
example, we say that f has uniform hyperbolic structure if inf{λf (p) : p is periodic} > 0.
Nowicki and Sands [NS] showed that for unimodal maps in F this condition is equivalent
to (1). If we take f ∈ F without uniform hyperbolic structure, then it can be shown that
for any inducing scheme (X,F, τ) as above, there is a sequence {nk}k such that

sup{log |DF (x)| : x ∈ Xnk}
τnk

→ 0.

There exists x ∈ X so that F k(x) ∈ Xnk for all k. Thus λ(x) 6 0, but τ(F k(x)) <∞ for
all k > 0. In the light of the proof of Corollary C, we note that x goes to |X|-large scale
infinitely often, but with zero frequency.

In conclusion, while it may not be necessary, it seems to be extremely difficult to study
notions such as dimension spectra unless we are allowed to exclude points x with λ(x) 6 0
from consideration.

6. Lyapunov spectrum

For λ > 0 we let

Lλ = Lλ(f) := {x : λf (x) = λ} and L′ = L′(f) := {x : λf (x) does not exist} .
The function λ 7→ HD(Lλ) is called the Lyapunov spectrum. Notice that by [BS], if f ∈ F
satisfies (3) then if the Lyapunov exponent at a given point exists then it must be greater
than or equal to 0. In this section we explain how the results above for pointwise dimension
are naturally related to the Lyapunov spectrum. As we show below, the equilibrium states
µ−t log |Df | found in [PSe, BT4] for certain values of t, depending on the properties of f ,
are the measures of maximal dimension sitting on the sets Lλ for some λ = λ(t).

Recall that µ− log |Df | is the acip for f . We denote the measure of maximal entropy by
µ−htop(f) since it is the equilibrium state for a constant potential ϕa(x) = a for all x ∈ I;
and in order to ensure P (ϕa) = 0, we can set a = −htop(f). We let DS−htop(f)(α) =
HD(K−htop(f)(α)) where K−htop(f) is defined for the measure µ−htop(f) as above.
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Proposition 9. If f ∈ F then there exists an open set U ⊂ R containing htop(f)

λf (µ−htop(f))
so

that the values of HD
(
Lhtop(f)

α

)
= DS−htop(f)(α) are given as the Legendre transform of

T−htop(f) at α for all α ∈ U . If f satisfies (2), then htop(f)

λf (µ−htop(f))
is in the closure of U , and

if f satisfies (1) then htop(f)

λf (µ−htop(f))
is contained in U .

As observed by Bohr and Rand, this proposition would have to be adapted slightly when
we are dealing with quadratic Chebyshev polynomial (which is not in our class F). In this
case, µ−htop(f) = µ− log |Df |, so the Lyapunov spectrum can not analytic in a neighbourhood
of 1. Note that this agrees with Lemma 6 and Remark 3.

Note that the first part of the proposition makes no assumption on the growth of |Dfn(f(c))|
for c ∈ Crit. The proof of this proposition follows almost exactly as in the proof of Propo-
sition 4, so we only give a sketch.

Proof. Given an inducing scheme (X,F ), by Remark 2, for all x ∈ (X,F )∞ if λf (x) exists
then

λf (x) =
htop(f)

dµ−τhtop(f)
(x)

.

Here the potential is ϕ = −htop(f), and the induced potential is −τhtop(f) This means
that we can get the Lyapunov spectrum directly from dµ−τhtop(f)

. As in Proposition 8,

dµ−τhtop(f)
(x) = dµ−htop(f)

(x) for all x ∈ X.

Therefore it only remains to discuss the interval U . First we note that Lemma 6 holds
in this case without any assumption on the proof of |Dfn(f(c))| for c ∈ Crit. We fix an
inducing scheme (X,F ). That Z∗0(Ψq+δqτ) <∞ for some small δq > 0, for q in some open
interval U can be proved exactly in the same way as in the proof of Proposition 4. �

Note that similarly to Proposition 1, the set of points for which the Lyapunov exponent
is not defined has Hausdorff dimension 1.

Remark 4. For t ∈ R, let Pt := P (−t log |Df |). It follows that PT−htop(f)(q) = qhtop(f).

Since µψq is an equilibrium state for −T−htop(f)(q) log |Df | − qhtop(f), then is also an
equilibrium state for −T−htop(f)(q) log |Df |. Therefore, the measures for ψq are precisely
those found for the potential −t log |Df | in Proposition 3 and in [BT2, Theorem 6].

Remark 5. If (1) does not hold, then Proposition 9 does not deal with Lλ for λ <
λ(µ− log |Df |). This is because, at least in the unimodal case, we have no equilibrium state
with positive Lyapunov exponent for the potential x 7→ −t log |Df(x)| for t > 1 (i.e., there
is a phase transition at 1).

Nakaishi [Na] and Gelfert and Rams [GR] consider the Lyapunov spectrum for Manneville-
Pomeau maps with an absolutely continuous invariant measure, which has polynomial
decay of correlations. Despite there being a phase transition for t 7→ Pt at t = 1, they are
still able to compute the Lyapunov spectrum in the regime λ ∈ [0, λ(µ− log |Df |)). Indeed
they show that HD(Lλ) = 1 for all these values of λ. In forthcoming work we will show
that we have the same phenomenon in our setting when (2), but not (1), holds.

Remark 6. If (1) holds then it can be computed that in the above proof, Z∗0(Ψq+δτ) <∞
whenever (1 − T−htop(f)(q) − q)htop(f) − αT−htop(f)(q), where α is the rate of decay of
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µ− log |DF |{τ > n} and δ is some constant > 0. If f is a Collet-Eckmann map very close
to the Chebyshev polynomial, then t 7→ P (−t log |Df |) is close to an affine map, and thus
T−htop(f) is also close to an affine map, then Z∗0(Ψq+δqτ) <∞ for all q in a neighbourhood
of [0, 1] and for some δq > 0.

The unimodal maps considered by Pesin and Senti [PSe] have the above property and so
there exists ε > 0 so that [0, 1] ⊂ PBε(−htop(f)). However, this may not be the whole
spectrum.

In [PSe], they ask if it is possible to find a unimodal map f : I → I so that there is a
equilibrium state for the potential x 7→ −t log |Df | for all t ∈ (−∞,∞), and that the
pressure function t 7→ P (−t log |Df |) is analytic in this interval. This would be in order
to implement a complete study of the thermodynamic formalism. As Dobbs points out in
[D2], in order to show this, even in the ‘most hyperbolic’ cases, one must restrict attention
to measures on a subset of the phase space: otherwise we would at least expect a phase
transition in the negative spectrum.

Appendix

In this appendix we introduce a class of potentials for which the results in the rest of the
paper hold. We will also prove slightly generalised versions of Propositions 7 and 8.

Given a potential ϕ, and an inducing scheme (X,F ) of type (a) or (b), as usual we let Φ
be the induced potential. If ∑

n

Vn(Φ) <∞, (7)

then we say that ϕ satisfies the summable variations for induced potential condition, with
respect to this inducing scheme. If ϕ satisfies this condition for every type (a) or (b)
inducing scheme (X,F ) with |X| sufficiently small, we write ϕ ∈ SV I. Note that in
[BT2, Lemma 3] it is proved that if ϕ is Hölder and f ∈ F satisfies (4) then ϕ ∈ SV I.
Also in [BT2] it was proved that Proposition 2 holds for all potentials in SV I satisfying
(4), with no assumptions on the growth along the critical orbits.

Proposition 7 is already known in the case that ϕ is Hölder. For interest, we will change
the class of potentials in that proposition to those in SV I satisfying (4), as well as to
potentials of the form x 7→ −t log |Df(x)|. We also widen the class of potentials considered
in Proposition 8. We will refer to Propositions 7 and 8, but with only the assumptions
that f ∈ F and ϕ ∈ SV I, as Propositions 7’ and 8’. Note that Proposition 8’ plus [BT2,
Lemma 3] implies Proposition 8. The proof of these propositions requires three steps:

• Proving the existence of a conformal measure mϕ for a potential ϕ ∈ SV I satisfy-
ing (4) and P (ϕ) = 0. Since we do this using the measure mΦ from Proposition 2,
we only really need to prove this for inducing schemes of type (a). However,
it is of independent interest that this step can also be done for the potential
x 7→ −t log |Df(x)| − P (−t log |Df |), so we allow type (b) inducing schemes also.

• Proving that a rescaling of the measure mϕ is also conformal for our inducing
schemes. This will be used directly in the proof of Proposition 7’, so must hold
for both type (a) and type (b) inducing schemes. Note that this step works for all
of the types of potential mentioned above.
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• Proving that the density dµϕ
dmϕ

is bounded. We will use type (a) inducing schemes

to prove this. In this step, we must assume that ϕ is in SV I, satisfies (4) and
P (ϕ) = 0.

The necessary parts of the first and third of these steps are the content of Proposition 7’.
As above, for the proof of this proposition, we only need to use type (a) inducing schemes.
But we will give the proof of the existence of the conformal measure for both types of
schemes for interest. Our inducing scheme (X,F, τ) is derived from a first return map

to a set X̂ ⊂ Î. Recall that if we have a type (a) scheme, then X̂ is an interval in a

single domain X̂ ⊂ D ∈ D in the Hofbauer tower. In the type (b) case, X̂ may consist

of infinitely many such intervals. We let rX̂ be the first return time to X̂ and RX̂ = f̂ rX̂ .

We let X̂i denote the first return domains of RX̂ .

We let ϕ̂ := ϕ ◦ π, and µ̂ϕ,X̂ :=
µ̂ϕ|X̂
µ̂(X̂)

be the conditional measure on X̂. As explained in

[BT4], the measure µΦ is the same as µ̂ϕ,X̂ ◦ π−1. Proposition 2 implies that for type (a)
inducing schemes (X,F ), the induced potential Φ has P (Φ) = 0, and there a conformal
measure and equilibrium state mΦ and µΦ and CΦ > 0 so that 1

CΦ
6 dµΦ

dmΦ
6 CΦ. We show

in Lemma 10 that this is also true for type (b) inducing schemes.

We define m̂ϕ|X̂ := mΦ ◦ π|X̂ . We can propagate this measure throughout Î as follows.

For x̂ ∈ X̂ with rX̂(x̂) <∞, for 0 6 k 6 rX̂(x̂)− 1, we define

dm̂ϕ(f̂
k(x̂)) = e−ϕ̂k(x̂)dm̂ϕ|X̂(x̂).

Let (X, f) be a dynamical system and ϕ : X → R be a potential. We say that a measure
m, is ϕ-sigma-conformal for (X, f) if for any Borel set A so that f : A → f(A) is a
bijection,

m(f(A)) =

∫
A

e−ϕ dm.

Or equivalently dm(f(x)) = e−ϕ(x)dm(x). So the usual conformal measures are also
sigma-conformal, but this definition allows us to deal with infinite measures. The next
two lemmas apply to potentials ϕ ∈ SV I satisfying (4) and P (ϕ) = 0, or of the form
x 7→ −t log |Df(x)| − P (−t log |Df |) as in Proposition 3.

Lemma 7. Suppose that (X,F ) is a type (a) or type (b) system and P (Φ) = 0.

(a) m̂ϕ as defined above is a ϕ-sigma-conformal measure.

(b) Given a ϕ̂-sigma-conformal measure m̂′
ϕ for (Î , f̂), then up to a rescaling, m̂′

ϕ =
m̂ϕ.

Proof. We first prove (a). The Φ-conformality of mΦ implies that m̂ϕ|X̂ is Φ̂-conformal

for the system (X̂, RX̂ , Φ̂) for Φ̂(x̂) := Φ(π(x̂)).

Given x̂ ∈ X̂, if 0 6 j < rX̂(x̂)− 1, then the relation dm̂ϕ ◦ f̂(f̂ j(x̂)) = e−ϕ̂(x̂)dm̂ϕ(f̂
j(x̂))

is immediate from the definition. For j = rX̂(x̂) − 1, then f̂(f̂ j(x̂)) = RX̂(x̂) and we
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obtain, for x̂ ∈ X̂,

dm̂ϕ ◦ f̂(f̂ j(x̂)) = e−ϕ̂j(x̂)dm̂ϕ(x̂) = dm̂ϕ(R̂(x̂)) = e−Φ̂(x̂)dm̂ϕ(x̂)

= e−ϕ̂(f̂
r̂
X̂

(x̂)−1
(x̂))e

−ϕ̂r
X̂

(x̂)−2(x̂)
dm̂ϕ(x̂)

= e−ϕ̂(f̂
r̂
X̂

(x̂)−1
(x̂))dm̂ϕ(f̂

r̂X̂(x̂)−1(x̂)) = e−ϕ̂(f̂j(x̂))dm̂ϕ(f̂
j(x̂)),

as required.

For the proof of (b), for x̂ ∈ X̂, by definition dm̂′
ϕ(RX̂(x̂)) = e−Φ̂(x̂)dm̂′

ϕ(x̂). Let X̂ ′ be

some domain in X̂ contained in some single domain D ∈ D (this is not a necessary step
if the inducing scheme is of type (a)). This implies that m′

ϕ := m̂′
ϕ ◦ π−1

X̂′ is Φ-conformal

after rescaling. As in Proposition 2, there is only one Φ-conformal measure for (X,F ),
which implies that m̂′

ϕ = m̂ϕ up to a rescaling. �

Given X̂ ⊂ Î, we consider the system (X̂, RX̂) where RX̂ is the first return map to X̂.

The measure µ̂ϕ is an invariant measure for (X̂, RX̂), see [K4]. Adding Kac’s Lemma to

(5), for any Â ⊂ Î we have

µ̂ϕ(Â) :=
∑
i

∑
06k6rX̂ |X̂i−1

µ̂ϕ(f̂
−k(Â) ∩ X̂i). (8)

This means we can compare m̂ϕ and µ̂ϕ on domains f̂ j(X̂i), for 0 6 k 6 rX̂ |X̂i − 1, in a
relatively simple way.

We will project the measure m̂ϕ to I. Although it is possible to show that for many

potentials we consider, m̂ϕ(Î) <∞, we allow the possibility that our conformal measures
are infinite. This leaves the possibility to extend this theory to a wider class of measures
open. So in the following lemma, we use another way to project m̂ϕ.

Lemma 8. Suppose that Ŷ ⊂ ÎT is so that Ŷ = tnŶn for Yn an interval contained in a
single domain DYn ∈ DT and π : Ŷ → I is a bijection. Then for νϕ := m̂ϕ ◦ π|−1

Ŷ
, we

have νϕ(I) < ∞. Moreover, mϕ := νϕ
ν(I)

is a conformal measure for (I, f, ϕ), and mϕ is

independent of Ŷ .

Proof. We first prove that νϕ is independent of Ŷ , up to rescaling. In doing so, the
ϕ-sigma-conformal property of νϕ become clear. The we show that νϕ(I) <∞.

Let us pick some Ŷ , and let νϕ be as in the statement of the lemma. Let x /∈ ∪n∈Nf
n(Crit).

Suppose that x̂1, x̂2 have π(x̂1) = π(x̂2) = x. By our condition on x, we have x̂i /∈ ∂Î for
i = 1, 2. We denote D1, D2 ∈ D to be the domains containing x1, x2 respectively. The
independence of the measure from Ŷ follows if we can show for any neighbourhood U of x
such that for Ûi := π−1(U)∩Di such that Ûi b Di for i = 1, 2, we have m̂ϕ(Û1) = m̂ϕ(Û2).

As in [K2] there exists n > 0 so that f̂n(x̂1) = f̂n(x̂2). Since we are only interested
in the infinitesimal properties of our measures, we may assume that the same is true
of Û1 and Û2, i.e., f̂n(Û1) = f̂n(Û2). Therefore m̂ϕ(f̂

n(Û1)) =
∫
Û1
e−ϕ̂n dm̂ϕ. Since

m̂ϕ(f̂
n(Û1)) = m̂ϕ(f̂

n(Û2)) and ϕ̂ = ϕ ◦ π, we have m̂ϕ(Û1) = m̂ϕ(Û2), as required. So it
only νϕ(I) <∞.



MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS 29

By the above, the ϕ̂-sigma-conformality of m̂ϕ passes to ϕ-sigma-conformality of νϕ. We

can pick U ⊂ I such that U = π(Û) for some Û ⊂ D ∈ DT . Recall that mϕ was obtained
from a conformal measure mΦ for some inducing scheme (X,F ). We may assume that

Û is such that Û ⊂ f̂k(X̂i) ∩ D for some 0 6 k 6 rX̂ |X̂i − 1 and some D ∈ D. This

implies that m̂ϕ(Û) < ∞, and so νϕ(U) < ∞. Since f is in F , it is locally eventually
onto, i.e., for any small open interval W ⊂ I there exists n ∈ N so that fn(W ) ⊃ Ω.
Therefore there exists n so that fn(U) ⊃ I. Then by the ϕ-sigma-conformality of νϕ, we
have

νϕ(I) = νϕ(f
n(U)) =

∫
U

e−ϕn dνϕ 6 νϕ(U)e− inf ϕn <∞.

Hence mϕ is conformal. �

Note that combining Lemmas 7 and 8, we deduce that mϕ is independent of the inducing
scheme that produced it. We next consider the density.

Lemma 9. For ϕ ∈ SV I satisfying (4) and P (ϕ) = 0, dµϕ
dmϕ

is uniformly bounded above.

Proof. Suppose that dµϕ
dmϕ

(x) > 0. We let π−1(x) = {x̂1, x̂2, . . .}, where the ordering is by

the level, i.e., lev(x̂j+1) > lev(x̂j) for all j ∈ N. Then since µϕ = µ̂ϕ ◦ π−1,

dµϕ
dmϕ

(x) =
∞∑
j=1

dµ̂ϕ
dmϕ ◦ π

(x̂j).

We will use this fact allied to equation (8) for return maps on the Hofbauer tower, and
the bounded distortion of the measures for these first return maps to get the bound on
the density. We note that since for any R ∈ N, there are at most 2#Crit domains of D
of level R (see for example [BB, Chapter 9]), there can be at most 2#Crit elements x̂j of
the same level.

We let (X,F ) be a type (a) inducing scheme with induced potential Φ : X → R. Let

X̂ be the interval in Î for which the first return map RX̂ defines the inducing scheme

(X,F ). Recall that µΦ can be represented as
µ̂ϕ◦π|−1

X̂

µ̂ϕ(X̂)
and by Lemma 8, we can express

mΦ as mϕ
mϕ(X)

. Moreover as in Proposition 2 there exists CΦ > 0 so that dµΦ

dmΦ
6 CΦ.

Since RX̂ is a first return map, for each i there exists at most one point x̂j,i in X̂i so that

f̂k(x̂j,i) = x̂j for 0 6 k < rX̂ |X̂i . We denote this value k by rj,i. Let kj := inf{rj,i : i ∈ N}.

By (8), dµ̂ϕ(x̂j) =
∑

i dµ̂ϕ(x̂j,i). By conformality, for each i,

dm̂ϕ(x̂j) = e−ϕ̂rj,i (x̂j,i) dm̂ϕ(x̂j,i) > e− supϕrj,i dm̂ϕ(x̂j,i).

Therefore, letting xj,i = π(x̂j,i),

dµ̂ϕ
dm̂ϕ

(x̂j) 6
∑
i

dµ̂ϕ
dm̂ϕ

(x̂j,i)e
supϕrj,i 6

(
mϕ(X)

µ̂ϕ(X̂)

)∑
i

dµΦ

dmΦ

(xj,i)e
supϕrj,i

6 CΦ

(
mϕ(X)

µ̂ϕ(X̂)

)∑
i

esupϕrj,i 6 CΦ

(
mϕ(X)

µ̂ϕ(X̂)

)∑
n

#{i : rj,i = n}en supϕ.

By [H1], if lev(x̂j) = R then there exist C > 0 and γ(R) > 0 so that γ(R) → 0 as
R → ∞ and the number of n-paths terminating at Dx̂j ∈ D at most Cenγ(R). Then
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#{i : rj,i = n} 6 Cenγ(lev(x̂j)). Also kj > lev(x̂j)− lev(X̂). Therefore,

dµ̂ϕ
dm̂ϕ

(x̂j) 6 CCΦ

(
mϕ(X)

µ̂ϕ(X̂)

)∑
n>kj

en(γ(lev(x̂j))+supϕ)

6 CCΦ

(
mϕ(X)

µ̂ϕ(X̂)

)
e(lev(x̂j)−lev(X̂))(γ(lev(x̂j))+supϕ)

∑
n>0

en(γ(lev(x̂j))+supϕ).

Since, as in Lemma 10, our conditions on ϕ ensure that supϕ < 0, there exists κ > 0,
and j0 ∈ N so that γ(lev(x̂j))+ supϕ < −κ for all j > j0. Since there are at most 2#Crit

points x̂j of any given level R, there are only finitely many j with lev(x̂j)− lev(X̂) 6 0.
Moreover, there exists C ′ > 0 so that

dµϕ
dmϕ

(x) 6
j0−1∑
j=1

dµ̂ϕ
dmϕ ◦ π

(x̂j) +
∞∑
j=j0

dµ̂ϕ
dmϕ ◦ π

(x̂j) 6 C ′ + C ′
∞∑
j=j0

e−jκ

which is uniformly bounded. �

Proof of Proposition 7’. The existence of the conformal measuremϕ is proved in the above

lemmas. Lemma 9 implies that the density dµϕ
dmϕ

is uniformly bounded above. The lower

bound follows by a standard argument, which we give for completeness. Proposition 2
implies that we can take a type (a) inducing scheme (X,F,Φ) so that dµΦ

dmΦ
is uniformly

bounded below by some C−1
Φ ∈ (0,∞). Also, Lemma 7 implies that mϕ

mϕ(X)
= mΦ. Since,

as in the proof of Lemma 8, (I, f) is locally eventually onto, there exists n ∈ N so that
fn(X) ⊂ Ω. So for a small interval A ⊂ Ω, there exists some Ai ⊂ Xi so that fk(Ai) = A
for some 0 6 k 6 n. Then (5) implies that

µϕ(A)

mϕ(A)
>

µϕ(Ai)

mϕ(Ai)
einf ϕn >

(
mϕ(X)∫
τ dµΦ

)(
µΦ(Ai)

mΦ(Ai)

)
einf ϕn >

(
mϕ(X)∫
τ dµΦ

)(
einf ϕn

CΦ

)
.

Hence dµϕ
dmϕ

is uniformly bounded below. �

Lemma 10. Suppose that f ∈ F satisfies (3) and ϕ ∈ SV I. Then there exists ε > 0 so
that for any inducing scheme (X,F ) ∈ SCoverb(ε), the induced potential Φ has P (Φ) = 0.

Proof. We will apply Case 3 of [BT4, Proposition 1]. Firstly we need to show that
Z0(Φ) < ∞. By Proposition 7’ there exists a conformal measure mϕ, coming from an
inducing scheme of type (a) in Proposition 2’. By the ϕ-conformality of mϕ and the
local Hölder continuity of Φ, as in Proposition 2(b), there exists C > 0 so that Z∗0(Φ) 6
C
∑

i τimϕ(Xi). Then by Proposition 7’ and the facts that (X,F ) was generated by a first

return map to some X̂ and µϕ = µ̂ϕ ◦ π−1,

Z∗0(Φ) 6 CC ′
ϕ

∑
i

τiµϕ(Xi) = CC ′
ϕ

∑
i

rX̂ |X̂iµ̂ϕ(X̂i).

By Kac’s Lemma this is bounded.

Now the fact that µϕ is compatible to (X,F ) follows simply, see for example Claim 1 in the
proof of [BT4, Proposition 2]. Then Case 3 of [BT4, Proposition 1] implies P (Φ) = 0. �
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Proof of Proposition 8’. Suppose that (X,F ) is an inducing scheme as in the statement,
with induced potential Φ. If (X,F ) is of type (a) then by Lemma 7, the measure mϕ

works as a conformal measure for (X,F,Φ), up to renormalisation. By Proposition 2(c),
mϕ is in fact equal to mΦ up to renormalisation. By Lemma 10, this is also true for type

(b) inducing schemes. Since by Proposition 7’, dµϕ
dmϕ

is bounded above and below, and as in

Proposition 2, we have 1
CΦ

6 dµΦ

dmΦ
6 CΦ, this implies that dµΦ

dµϕ
is also uniformly bounded

above and below. �
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