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Abstract. We prove a Ck version of the real Koebe principle for in-
terval (or circle) maps with non-flat critical points.

1. Introduction

The real Koebe principle, providing estimates of the first derivative of iter-
ates of a smooth interval map, plays a very important role in recent research
of one-dimensional dynamics. See [MS]. Considering its complex counter-
part, the (complex) Koebe distortion theorem, it is natural to look for a Ck,
k ≥ 2, version of this principle. This is the goal of this paper.

More precisely, let f be a Ck endomorphism of the compact interval I =
[0, 1] (or the circle R/Z). We assume that f has only non-flat critical points;
that is, for each critical point c of f , there exists a real number α > 1, such
that under some Ck coordinate change, we have

|f(x)− f(c)| = |x|α

for x close to c. We use NF k to denote the class of such maps.

Theorem 1. Let f be in the class NF n, n ≥ 2. Let T be an open interval
such that f s : T → f s(T ) is a diffeomorphism. For each S, κ > 0 and each
1 ≤ k ≤ n there exist δ = δ(S, κ, f) > 0 and Kk = Kk(κ) > 0 satisfying the
following. If

∑s−1
j=0 |f j(T )| ≤ S and J is a closed subinterval of T such that

• f s(T ) is a κ-scaled neighbourhood of f s(J);
• |f j(J)| < δ for 0 ≤ j < s,

then, letting ψ0 : J → I and ψs : f s(J) → I be affine diffeomorphisms, we
have

‖ψsf sψ−1
0 ‖Ck < Kk.

Furthermore, K1 → 1 as κ→∞ and for each k > 1, Kk → 0 as κ→∞.

The well-known real Koebe principle claims the existence of K1.

1.1. Proof of Theorem 1. To prove this theorem, we shall approximate
the map ψsf

sψ−1
0 by maps in the Epstein class, and then apply the (com-

plex) Koebe distortion theorem. The main step is to prove the following
theorem.
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Theorem 2. Let f be a map in the class NF n, n = 2, 3 . . .. Let T be
an open interval such that f s : T → f s(T ) is a diffeomorphism. For any
S, κ, ε > 0 and 1 ≤ k ≤ n, there exist δ = δ(S, κ, ε) > 0 and β = β(κ) > 0
satisfying the following. Suppose that

∑s−1
j=0 |f j(T )| ≤ S and J is a closed

subinterval of T such that

• f s(T ) is a κ-scaled neighbourhood of f s(J);
• |f j(J)| < δ for 0 ≤ j < s.

Then, letting ψ0 : J → I and ψs : f s(J) → I be affine diffeomorphisms,
there exists a map G : I → I in the Epstein class Eβ such that ‖ψsf sψ−1

0 −
G‖Cn < ε. Moreover, β →∞ as κ→∞.

Here, we say that a diffeomorphism G : I → I is in the Epstein class Eβ
if G−1 extends to a (holomorphic) univalent map from C(−β,1+β) := C \
((−∞,−β] ∪ [1 + β,∞)) into C.

This result, for n = 2, appears as part of the proof of the Yoccoz Lemma in
[T].

Proof of Theorem 1 assuming Theorem 2. By the complex Koebe distortion
theorem, the fact that G ∈ Eβ implies that the Cn distance between G|[0, 1]
and the identity map is bounded by a constant ε(β), and ε(β) → 0 as
β → ∞. Taking ε = ε(β) in Theorem 2, we see that the Cn distance
between ψsf

sψ−1
0 |[0, 1] and the identity map is at most 2ε(β). �

Outline of Proof of Theorem 2. By rescaling the map f : f j(J) → f j+1(J),
we obtain a diffeomorphism fj : I → I. For each j, one can find a map
gj : I → I in the Epstein class such that the Cn distance between fj and gj is
of order o(|f j(J)|). Using the classical real Koebe principle (the C1 version
of Theorem 1), we shall prove that G = gs−1 · · · g0 is in the Epstein class
Eβ (Proposition 5). Finally, using a proposition concerning the composition
operator (Proposition 7), we show that fs−1 · · · f1 is Cn close to the map G.

It should be mentioned that similar ideas have appeared in the proofs of
Theorem A.6 of [FM] and Lemma 3 of [AMM], but our result applies in
more general situations.

Remark 3. For maps in the class NF 3, the C1 version of Theorem 1 still
holds if we replace the assumption

∑s−1
j=0 |f j(T )| ≤ S by “f s(T ) is contained

in a small neighborhood of critical points which are not in the basin of
periodic attractors”. See [K, SV]. It would be interesting to know if the Ck

version of Theorems 1 and 2 remain true under this alternative assumption.
See also the recent work [KS].

2. Proof of Theorem 2

By means of a Cn coordinate change, we may assume that for each critical
point ci, there is a neighborhood Ui of ci such that |f(x)− f(c)| = |x− ci|αi

for x ∈ Ui. Let us also fix an open interval U ′
i 3 ci such that U ′

i ⊂ Ui.
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Define U :=
⋃
i Ui and U ′ :=

⋃
i U

′
i . Let η = d(∂U, ∂U ′). Then any interval

of length less than η is either contained in U or disjoint from U ′.

We fix T, J, κ, S as in Theorem 2. Let J0 = J and Ji = f i(J). For every
0 ≤ i < s we have a diffeomorphism f s−i : f i(T ) → f s(T ) where f s(T ) is a
κ-scaled neighbourhood of f s(J).

We will rescale our maps as follows. Let ψi : Ji → I be the affine homeo-
morphisms such that each fi = ψi+1fψ

−1
i is monotone increasing. Then the

following diagram commutes.

J0
f−−−→ J1

f−−−→ · · · f−−−→ Js−1
f−−−→ Js

ψ0

y yψ1

y yψs−1

yψs

[0, 1]
f0−−−→ [0, 1]

f1−−−→ · · · fs−2−−−→ [0, 1]
fs−1−−−→ [0, 1]

We then approximate fi as follows. For 0 ≤ i ≤ s− 1, let

gi(x) =

{
fi(x) if Ji ⊂ U,(
1− ξi

2

)
x+ ξi

2
x2 otherwise,

where ξi =
∫ 1

0
D2fi(t)dt.

We use Cn(I) to denote Banach space of Cn maps φ : I → R with the
Cn-norm

‖h‖n = max{|Dkφ(x)| : 0 ≤ k ≤ n, x ∈ I}.
Let Cn(I; I) denote the space of maps φ ∈ Cn(I), with the same norm, such
that φ(I) ⊂ I. Let Diffn+(I) denote the space of all orientation-preserving
Cn automorphisms of I.

Lemma 4. There exists a continuous monotone increasing function w :
(0,∞) → (0,∞) (depending on f) such that limt→0+w(t) = 0 and such that
for all 0 ≤ i ≤ s− 1,

‖gi − fi‖n ≤ w(|Ji|)|Ji|.

Proof. Assume Ji is not in U , otherwise gi = fi. We will first estimate
|D2gi(x)−D2fi(x)| for x ∈ [0, 1]. Observe that D2gi(x) = ξi =

∫ 1

0
D2fi(t)dt

and D2fi(x) = |Ji|2
|Ji+1|D

2f(ψ−1
i (x)). Since there exists some x0 ∈ [0, 1] with∫ 1

0
D2fi(t)dt = D2fi(x0), so D2gi(x) = D2fi(x0) and

|D2gi(x)−D2fi(x)| = |D2fi(x0)−D2fi(x)|

=
|Ji|2

|Ji+1|
|D2f(ψ−1

i (x0))−D2f(ψ−1
i (x))|

≤ |Ji|2

|Ji+1|
w1(|Ji|) ≤ C|Ji|w1(|Ji|),

where w1 is the modulus of continuity of D2f , i.e. the function w(ε) =
sup|x−y|<ε |D2f(x)−D2f(y)|, and C = supx 6∈U ′ |Df(x)|−1.
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Note that there exists some x1 ∈ [0, 1] such that Dfi(x1) = Dgi(x1). So for
x ∈ [0, 1],

|Dgi(x)−Dfi(x)| ≤
∫ x

x1

|D2gi(t)−D2fi(t)|dt ≤ C|Ji|w1(|Ji|).

Similarly,

|gi(x)− fi(x)| ≤
∫ x

0

|Dgi(t)−Dfi(t)|dt ≤ C|Ji|w1(|Ji|).

For any 2 < k ≤ n, Dkgi = 0. Hence, for x ∈ I,

|Dk(gi − fi)(x)| = |Dkfi(x)| =
|Ji|k

|Ji+1|
|Dkf(ψ−1

i (x))| ≤ C|Ji|k−1.

Setting w(t) = Cmax(w1(t), t) completes the proof. �

The map gs−1 · · · g0 is our candidate for G. Let us first apply the classical
real Koebe principle to prove that G is in the Epstein class.

Proposition 5. Assume that sups−1
j=0 |f j(J)| is sufficiently small. Then for

each 0 ≤ j ≤ s− 1, gs−1 · · · gj belongs to the Epstein class Eβ, where β > 0
is a constant depending only on κ. Moreover, β →∞ as κ→∞.

Proof. Let T ′ be the open interval with J ⊂ T ′ ⊂ T such that both compo-
nents of f s(T ′) \ f s(J) have length κ|f s(J)|/2. Let T̂ ′

j = ψj(f
s(T ′)) for all

0 ≤ j ≤ s. Clearly fj extends to a diffeomorphism from T̂ ′
j onto T̂ ′

j+1. By
the classical real Koebe principle, there exists a constant C = C(κ) > 1 such
that provided that sups−1

j=0 |f j(T )| is small enough, then for all x, y ∈ T ′ we
have |Df s(x)|/|Df s(y)| ≤ C. Therefore, for each 0 ≤ j ≤ s− 1, fs−1 · · · fj
is a well-defined diffeomorphism from T̂ ′

j onto T̂ ′
s with derivative between

1/C and C. Clearly, there exists β = β(κ) > 0 such that T̂ ′
j ⊃ [−2β, 1+2β]

for all j and moreover β →∞ as κ→∞.

Note that for each 0 ≤ j ≤ s − 1, g−1
j extends to a univalent map from

CT ′j+1
into CT ′j

. Moreover, for a given κ, arguing as in the previous lemma,

we have that for all 0 ≤ j ≤ s− 1,

sup
y∈T̂ ′j

|fj(y)− gj(y)| = o(|Jj|).

Claim. There exists δ such that if sups−1
j=0 |f j(J)| < δ then for any x ∈ T̂ ′

0

and any 0 ≤ r ≤ s− 1, if gj · · · g0(x) ∈ T̂ ′
j+1 for all 0 ≤ j ≤ r − 1, then

|fr−1 · · · f0(x)− gr−1 · · · g0(x)| <
β

2C
.
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To prove this claim, let Ar = B−1 = id and for all 0 ≤ i ≤ r − 1 let
Ai = fr−1 · · · fi and Bi = gi · · · g0. Then

|fr−1 · · · f0(x)− gr−1 · · · g0(x)|

= |A0B−1(x)− ArBr−1(x)| ≤
r−1∑
i=0

|AiBi−1(x)− Ai+1Bi(x)|

=
r−1∑
i=0

|Ai+1fiBi−1(x)− Ai+1giBi−1(x)|

≤
r−1∑
i=0

sup
z∈T̂ ′i+1

|Ai+1(z)| sup
y∈T̂ ′i

|fi(y)− gi(y)| ≤ C

r−1∑
i=0

o(|Ji|)|Ji|,

which is arbitrarily small provided that sups−1
j=0 |f j(J)| is small enough. This

proves the claim.

For x ∈ Iβ := [−β, 1 + β] and 0 ≤ r ≤ s − 1, d(fr−1 · · · f0(x), ∂T̂
′
r) ≥ β/C.

Together with the claim, this implies (by induction on r) that for all 0 ≤
r ≤ s − 1, gr−1 · · · g0 is well-defined on Iβ and maps Iβ diffeomorphically
onto a subinterval of T̂ ′

r. Since fs−1 · · · f0(I
β) ⊃ Iβ/C , applying the claim

once again gives us G(Iβ) ⊃ Iβ/2C . This proves that for any 0 ≤ j ≤ s− 1,
g−1
j · · · g−1

s−1 extends to a univalent map from CIβ/2C , so gs−1 · · · gj is in the
Epstein class Eβ/2C . Redefining β completes the proof. �

Applying the complex Koebe distortion theorem, this implies the following.

Corollary 6. There exists a constant C = C(κ) > 0 such that for any
0 ≤ j ≤ s− 1, we have

‖ logD(gs−1 · · · gj)‖n ≤ C.

The proof of Theorem 2 is then completed by the following proposition and
lemma.

Proposition 7. Let n ∈ N ∪ {0}, let gj ∈ Diffn+1
+ (I), fj ∈ Diffn+(I), for

0 ≤ j ≤ s− 1. For any C > 1 there exists E = E(C, n) > 0 such that if the
following hold:

(1) for each 0 ≤ j < s, ‖ logD(gs−1 · · · gj)‖n ≤ C;
(2) if n ≥ 1, ‖ logDgj − logDfj‖n−1 ≤ C for all 0 ≤ j ≤ s− 1;

(3)
∑s−1

j=0 ‖gj − fj‖n ≤ C,

then

‖gs−1 · · · g0 − fs−1 · · · f0‖n ≤ E
s−1∑
j=0

‖fj − gj‖n.

The proof of this proposition will be given in the next section.

Lemma 8. For any C > 1 and k ∈ N, there exists C ′ = C ′(C, k) > 1 with

the following property. Let φ, φ̃ ∈ Ck(I) have ‖φ‖k, ‖φ̃‖k ≤ C. Then
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(1) ‖eφ‖k ≤ C ′;

(2) 1
C′‖φ− φ̃‖k ≤ ‖eφ − eφ̃‖k ≤ C ′‖φ− φ̃‖k.

Proof. Let ψ = eφ and ψ̃ = eφ̃. By induction it is easy to compute that for
all k ≥ 1, there exist polynomials Pk and Qk such that

• Dk(eφ) = eφ · Pk(φ,Dφ, . . . , Dkφ);
• Dk(φ) = Qk(ψ,Dψ, . . . , D

kψ)/ψk.

From these the lemma follows easily. �

Proof of Theorem 2 assuming Proposition 7. It suffices to check that the
conditions in Proposition 7 are satisfied. The first condition was verified
in Corollary 6. By Lemma 4, ‖fj − gj‖n ≤ |Jj|w(|Jj|). Furthermore, from
the proof of that lemma, we can show that ‖ logDfj‖n−1, ‖ logDgj‖n−1 are
bounded above. Whence by Lemma 8, provided that sups−1

j=0 |f j(J)| is small
enough, the second condition is verified. For the third one, we use the as-
sumption

∑s−1
j=0 |f j(J)| ≤

∑s−1
j=0 |f j(T )| ≤ S and the fact that w(|Jj|) is

small when |Jj| is small. �

3. Proof of Proposition 7

The goal of this section is to prove Proposition 7. Let us begin with a small
lemma.

Lemma 9. For any k ∈ N ∪ {0} and C > 0 there exists K = K(C, k) with
the following property. Let u, v, B ∈ Ck(I; I), and let A ∈ Ck+1(I). Assume
that ‖A‖k+1 ≤ C and ‖B‖k ≤ C. Then

‖AuB − AvB‖k ≤ K‖u− v‖k.

Proof. This lemma is a straightforward consequence of the chain rule. �

Proof of Proposition 7. We first introduce some notation for our calcula-
tions. Let As = B−1 = id and for 0 ≤ j ≤ s − 1, let Aj = gs−1 · · · gj and
Bj = fj · · · f0. Then

gs−1 · · · g0 − fs−1 · · · f0 = A0B−1 − AsBs−1

=
s−1∑
j=0

(AjBj−1 − Aj+1Bj)

=
s−1∑
j=0

(Aj+1gjBj−1 − Aj+1fjBj−1).

Writing Sj := AjBj−1 = Aj+1gjBj−1 = gs−1 · · · gjfj−1 · · · f0, we have

gs−1 · · · g0 − fs−1 · · · f0 =
s−1∑
j=0

(Sj − Sj+1).
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The proof of the proposition will proceed by induction on n. First, by
Lemmas 8 and 9, ‖Sj − Sj+1‖0 ≤ K(C, 0)‖fj − gj‖0. Thus, ‖gs−1 · · · g0 −
fs−1 · · · f0‖0 ≤

∑s−1
i=0 ‖fj − gj‖0. This proves the lemma for the case n = 0.

Now let m ≥ 1 and assume that the proposition holds for n = m − 1. Let
us prove it for n = m.

First, for each 0 ≤ r ≤ s − 1, applying the induction hypothesis to the
mappings fj, gj, 0 ≤ j ≤ r, we have

(1) ‖fr · · · f0 − gr · · · g0‖m−1 ≤ E1

j−1∑
i=0

‖fi − gi‖m−1,

where E1 is a constant (depending only on C andm). Also, it is easy to show
that the first assumption of the proposition implies ‖ logD(gr . . . g0)‖n <
2C. Therefore, by the first part of Lemma 8 we have ‖D(gr . . . g0)‖n < C ′.
Hence,

‖gr · · · g0‖m = max(1, ‖D(gr · · · g0)‖m−1) ≤ C ′.

Applying this to (1), we have

(2) ‖Br‖m−1 ≤ C1.

To complete the induction it suffices to prove that there exists a constant
E2 such that

(3) ‖Dm(Sj − Sj+1)‖0 ≤ E2‖fj − gj‖m.

To this end let us first prove the following.

Claim. There exists a constant C2 depending only on C such that for all
0 ≤ j ≤ s, ‖ logDSj − logDSj+1‖m−1 ≤ C2‖fj − gj‖m.

In fact, for each 0 ≤ j ≤ s− 1, by the chain rule,

logDSj − logDSj+1

= [log(DAj+1gjBj−1) + log(DgjBj−1) + logDBj−1]

− [log(DAj+1fjBj−1) + log(DfjBj−1) + logDBj−1]

= [log(DAj+1gjBj−1)− log(DAj+1fjBj−1)]

+ [log(DgjBj−1)− log(fjBj−1)]

=: Pj +Qj.

From the assumption ‖ logDAj+1‖m ≤ C and from (2), by Lemma 9, we
obtain

‖Pj‖m−1 ≤ K(C1,m− 1)‖fj − gj‖m−1,

and

‖Qj‖m−1 ≤ K(C1,m− 1)‖ logDgj − logDfj‖m−1.

Since ‖ logDgj‖m−1 and ‖ logDfj‖m−1 are bounded from above, the second
statement of Lemma 8 implies the claim.

Finally let us deduce (3) from the claim. By the second part of Lemma 8,
it suffices to show that ‖ logDSj‖m−1 is bounded from above by a constant.
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Since ‖ logDS0‖m−1 = ‖ logDA0‖m−1 ≤ C, this follows from the third
assumption by applying the claim. This completes the proof.

�
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