REAL C* KOEBE PRINCIPLE

WEIXIAO SHEN AND MICHAEL TODD

ABSTRACT. We prove a C* version of the real Koebe principle for in-
terval (or circle) maps with non-flat critical points.

1. INTRODUCTION

The real Koebe principle, providing estimates of the first derivative of iter-
ates of a smooth interval map, plays a very important role in recent research
of one-dimensional dynamics. See [MS]. Considering its complex counter-
part, the (complex) Koebe distortion theorem, it is natural to look for a C*,
k > 2, version of this principle. This is the goal of this paper.

More precisely, let f be a C* endomorphism of the compact interval I =
[0, 1] (or the circle R/Z). We assume that f has only non-flat critical points;
that is, for each critical point ¢ of f, there exists a real number a > 1, such
that under some C* coordinate change, we have

[f(z) = f(o)] = |=|*
for = close to c. We use NF* to denote the class of such maps.

Theorem 1. Let f be in the class NF"™, n > 2. Let T be an open interval
such that f*: T — f(T) is a diffeomorphism. For each S,k > 0 and each
1 <k <n there exist 6 = 0(S, K, f) > 0 and Ky = Ki(r) > 0 satisfying the
following. If Zj;é |f(T)| < S and J is a closed subinterval of T such that

o f5(T) is a k-scaled neighbourhood of f*(J);
o [fI(J)] <8 for0<j<s,

then, letting vy : J — I and ¥ : f*(J) — I be affine diffeomorphisms, we
have

\!¢sfs¢61!\0k < K.
Furthermore, K1 — 1 as k — oo and for each k > 1, K — 0 as Kk — o0.

The well-known real Koebe principle claims the existence of Kj.

1.1. Proof of Theorem 1. To prove this theorem, we shall approximate
the map ¥, f*1, ! by maps in the Epstein class, and then apply the (com-
plex) Koebe distortion theorem. The main step is to prove the following
theorem.
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Theorem 2. Let f be a map in the class NF", n = 2,3.... Let T be
an open interval such that f* : T — f5(T) is a diffeomorphism. For any
S,k,e >0 and 1 < k <n, there exist § = 6(5,k,e) >0 and = (k) >0
satisfying the following. Suppose that Zj;(l) |f2(T)] < S and J is a closed
subinterval of T' such that

o f5(T) is a k-scaled neighbourhood of f*(.J);
o [fI(J)]<d for0<j<s.

Then, letting vy : J — I and s : f5(J) — I be affine diffeomorphisms,
there exists a map G : I — I in the Epstein class Eg such that ||, f*y " —
G|lon < e. Moreover, f — 00 as k — 0.

Here, we say that a diffeomorphism G : I — I is in the Epstein class &g
if G7! extends to a (holomorphic) univalent map from C_g144 = C\
((=00, =] U [1 + 3, 00)) into C.

This result, for n = 2, appears as part of the proof of the Yoccoz Lemma in
[T].

Proof of Theorem 1 assuming Theorem 2. By the complex Koebe distortion
theorem, the fact that G € £ implies that the C™ distance between G|[0, 1]
and the identity map is bounded by a constant (), and £(3) — 0 as
B — oo. Taking e = &() in Theorem 2, we see that the C™ distance
between v, f*1; ([0, 1] and the identity map is at most 2&(83). O

Outline of Proof of Theorem 2. By rescaling the map f : f/(J) — fI+1(J),
we obtain a diffeomorphism f; : I — I. For each j, one can find a map
gj : I — I in the Epstein class such that the C™ distance between f; and g; is
of order o(|f7(J)]). Using the classical real Koebe principle (the C! version
of Theorem 1), we shall prove that G = g,_1---¢go is in the Epstein class
&s (Proposition 5). Finally, using a proposition concerning the composition
operator (Proposition 7), we show that f,_;--- fi is C™ close to the map G.

It should be mentioned that similar ideas have appeared in the proofs of
Theorem A.6 of [FM] and Lemma 3 of [AMM], but our result applies in
more general situations.

Remark 3. For maps in the class NF?3, the C* version of Theorem 1 still
holds if we replace the assumption Zj;(l) |f7(T)| < Sby “f5(T) is contained
in a small neighborhood of critical points which are not in the basin of
periodic attractors”. See [K, SV]. It would be interesting to know if the C*
version of Theorems 1 and 2 remain true under this alternative assumption.
See also the recent work [KS].

2. PROOF OF THEOREM 2

By means of a C™ coordinate change, we may assume that for each critical
point ¢;, there is a neighborhood U; of ¢; such that | f(z) — f(c)| = |z — ¢;|*
for x € U;. Let us also fix an open interval U] > ¢; such that U C U,.
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Define U := |J,; U; and U’ := |J, U;. Let n = d(0U,0U’). Then any interval

of length less than 7 is either contained in U or disjoint from U’.

We fix T, J,k,S as in Theorem 2. Let Jy = J and J; = f*(J). For every
0 <4 < s we have a diffeomorphism f*7": f/(T) — f*(T) where f*(T) is a
r-scaled neighbourhood of f*(.J).

We will rescale our maps as follows. Let ¢; : J; — I be the affine homeo-
morphisms such that each f; = 10,1 f1;  is monotone increasing. Then the
following diagram commutes.

JO L) Jl ! ! Js—l L) JS

ol [ R PRV

0,1 —2 0,1 =L o L2 0,1 L5 (o, 1]

We then approximate f; as follows. For 0 <1i < s —1, let

(@) :{ fi(x) it J, C U,

(1-%)z+ %:ﬂ otherwise,

where §; = fol D2 f(t)dt.
We use C"(I) to denote Banach space of C™ maps ¢ : I — R with the
C™-norm
Al = max{|D*¢(z)| : 0 < k < n,x € I}.
Let C™(I;I) denote the space of maps ¢ € C"(I), with the same norm, such

that ¢(I) C I. Let Diff! (I) denote the space of all orientation-preserving
C™ automorphisms of I.

Lemma 4. There exists a continuous monotone increasing function w :
(0,00) — (0,00) (depending on f) such that lim;_oy w(t) = 0 and such that
forall0<i<s-—1,

lgi = filln < w(]Ji])[ il

Proof. Assume J; is not in U, otherwise g; = f;. We will first estimate
|D%g;(x) — D? f;(z)| for = € [0, 1]. Observe that D?g;(z) = & = fol D2 f(t)dt
and D2f;(z) = 2L D2f(y; ) (2)). Since there exists some zo € [0, 1] with

o il i
fol D?fi(t)dt = D?fi(wo), so D*gi(x) = D fi(xo) and
|D?gi(x) — D*fi(x)| = |D?fi(xo) — D*fi(x)|
Jil? _ _
|’J+|1| 1D f(;H(20)) — D* (3 (2))]
| Jil?
< |Ji+1|w1(|Ji|) < ClJilwi(|4i]),

where w; is the modulus of continuity of D?f, i.e. the function w(e) =
SUP|,_yj<c | D*f(2) — D> f(y)|, and C' = sup,gy [Df ()|
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Note that there exists some x; € [0, 1] such that D f;(x;) = Dg;(x1). So for
z € [0,1],

|Dgi(x) — Dfi(z)] < /x |D?gi(t) — D* fi(t)]dt < C|J;wi(] Ji]).
Similarly,
|9:(x) — fi(z)| < /0 |Dgi(t) — Dfi(t)|dt < ClJi|wi (] ).

For any 2 < k < n, D*¥g;, = 0. Hence, for z € I,

Jil® - _
DM = £0(o)] = Do) = LDk )] < L
Setting w(t) = C'max(wy(t),t) completes the proof. O

The map gs_1--- go is our candidate for G. Let us first apply the classical
real Koebe principle to prove that G is in the Epstein class.

Proposition 5. Assume that supj;é |f2(J)| is sufficiently small. Then for
each 0 < j<s—1, gs_1---g; belongs to the Epstein class Eg, where 3 > 0
is a constant depending only on k. Moreover, f — 00 as kK — 00.

Proof. Let T be the open interval with J C T" C T such that both compo-
nents of f(1") \ f*(J) have length x|f*(J)|/2. Let T]’ = ;(f*(1")) for all
0 < j <s. Clearly f; extends to a diffeomorphism from T]’ onto T]’ 4+1- By
the classical real Koebe principle, there exists a constant C' = C'(k) > 1 such

that provided that sup3Zg | f7(T')| is small enough, then for all z,y € T’ we
have |Df*(z)|/|Df*(y)| < C. Therefore, for each 0 < j <s—1, fo_1---f;
is a well-defined diffeomorphism from 77 onto T with derivative between

1/C and C. Clearly, there exists § = (k) > 0 such that T]’ D [—28,1420]
for all j and moreover § — 0o as Kk — 0.

Note that for each 0 < 57 < s —1, gj_1 extends to a univalent map from
CT}-H into CT;. Moreover, for a given k, arguing as in the previous lemma,
we have that for all 0 < 7 < s—1,

sup |f5(y) = g;(y) = o(| ;1)

all
yETj

Claim. There exists § such that if sup’Zg | f(J)| < & then for any z € T
and any 0 <r <s—1,if g;--- go(2) ETJ{H for all 0 < j <r —1, then
g

|fr—1- fo(x) = gr—1 -~ go(2)] < 20"
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To prove this claim, let A, = B_; = id and for all 0 < ¢ < r — 1 let
Aj=fr_1--- fiand B; = g;--- go. Then

|fr—1 T fo(ﬁ) —Gr-1"- '90(93)|

r—1
= [40B_i(z) — A4, B,y (2)| <Y |ABi_1(z) — A1 Bi(z))|
i=0

r—1
= Z |Az‘+1fz‘Bi—1(9E) - Az‘+19z‘Bz‘—1($)|

i=0

1

—_

r— r—

<D suwp A (2)]sup | fily) — gi(w)] < C Dol Iil,

i=0 2€T,, y€eT] i

I
=)

which is arbitrarily small provided that sup3—g | f7(.J)| is small enough. This
proves the claim.

Forz eI’ :=[-3,1+8and 0 <r <s—1,d(fr_y--- fo(z),dT) > B/C.
Together with the claim, this implies (by induction on r) that for all 0 <
r<s—1, g_1---go is well-defined on I® and maps I” diffeomorphically
onto a subinterval of qu Since fo_1--- fo(I?) D I%/¢ applying the claim
once again gives us G(I%) D I%/2¢. This proves that for any 0 < j < s — 1,
gj_1 -~ gY extends to a univalent map from Cjs/2c, S0 gs_1 - - -gj is in the
Epstein class £3/2¢c. Redefining 3 completes the proof. O

Applying the complex Koebe distortion theorem, this implies the following.

Corollary 6. There exists a constant C = C(k) > 0 such that for any
0<j<s—1, we have

Ilog D(gs—1 -+ 9;)lln < C.
The proof of Theorem 2 is then completed by the following proposition and

lemma.

Proposition 7. Let n € NU {0}, let g; € Difft"'(I), f; € Diff}(I), for
0<j<s—1. Forany C > 1 there ezxists E = E(C,n) > 0 such that if the
following hold:

(1) for each 0 < j <s, |[log D(gs—1---9;)|ln < C;
(2) ifn>1, ||logDg; —log Dfjlln-1 < C forall0 < j<s—1;

(3) Yo llgs — filln < C,
then

s—1
1gs—1-++g0 — fs—1-++ folln < EZ 1fi = gilln-
=0

The proof of this proposition will be given in the next section.

Lemma 8. For any C > 1 and k € N, there exists C' = C'(C, k) > 1 with
the following property. Let ¢, € C*(I) have ||¢|x, ||@llx < C. Then
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(1) lle?lle < € : .
(2) 6 = dllx < lle? — e?llx < C"ll¢ = -

Proof. Let ¢ = e® and ?ﬁ = ¢9. By induction it is easy to compute that for
all k > 1, there exist polynomials P, and ; such that

o D*(e?) =e? - Pi(¢, Do,...,DFo);
o D¥(¢) = Qu(¢, DY, ..., D*) Jy*.

From these the lemma follows easily. U

Proof of Theorem 2 assuming Proposition 7. It suffices to check that the
conditions in Proposition 7 are satisfied. The first condition was verified
in Corollary 6. By Lemma 4, ||f; — g;ll, < [Jj|w(]J;]). Furthermore, from
the proof of that lemma, we can show that || log D f;||,—1, || log Dg;|l,—1 are
bounded above. Whence by Lemma 8, provided that sup—g | f7(.J)| is small
enough, the second condition is verified. For the third one, we use the as-
sumption Z;;é If7())] < Z;;é |f9(T)| < S and the fact that w(|J;|) is
small when |J;| is small. O

3. PROOF OF PROPOSITION 7

The goal of this section is to prove Proposition 7. Let us begin with a small
lemma.

Lemma 9. For any k € NU{0} and C > 0 there ezists K = K(C, k) with
the following property. Letu,v, B € C*(I;I), and let A € C**(I). Assume
that ||Allgs1 < C and |B|lx < C. Then

|AuB — AvB||, < Klju — v||.
Proof. This lemma is a straightforward consequence of the chain rule. [J
Proof of Proposition 7. We first introduce some notation for our calcula-

tions. Let Ay, = By =id and for 0 < j <s—1,let A; = gs_1---¢g; and
Bj = f] .. 'fo. Then

Gs—1° 9o — fs—1 - fo=AoB_1 — A;Bs_1

S—

—_

I
ng

RS
I
= o

(A;Bj_1 — Aj11B))

(Aj119iBj-1 — Ajr1fiBj-1).

o

.

ertlng Sj = Aij_l = Aj+1ngj—1 = 0s—1""" gjfj—l cee fo, we have
s—1

Gaet+ g0 — faor- - fo=> (Sj = Sin).

j=0
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The proof of the proposition will proceed by induction on n. First, by
Lemmas 8 and 9, |5, — ;410 < K(C.0)[1f; — gjllo. Thus, [lg.---go -
fs—1- follo < Z;:é |/ — g;llo- This proves the lemma for the case n = 0.

Now let m > 1 and assume that the proposition holds for n = m — 1. Let
us prove it for n = m.

First, for each 0 < r < s — 1, applying the induction hypothesis to the
mappings f;, g;, 0 < j < r, we have

j—1
(1) Ife e fo— g gollm1 < Bv Y fi = gillm—r,
=0

where Fj is a constant (depending only on C' and m). Also, it is easy to show
that the first assumption of the proposition implies || log D(g, ... go)|l» <
2C'. Therefore, by the first part of Lemma 8 we have ||D(g, ... g)|. < C".
Hence,

g+ -+ gollm = max(L, [[D(gr -~ go)lm-1) < C".
Applying this to (1), we have

(2) ||Br||m—1 S Cl-

To complete the induction it suffices to prove that there exists a constant
FE5 such that

(3) 1D™(S; = Sjv1)llo < Ellf5 — gillm-
To this end let us first prove the following.

Claim. There exists a constant C; depending only on C' such that for all
0<j<s, |logDS; —log DSji1llm—1 < Callfj — gjllm-

In fact, for each 0 < j < s — 1, by the chain rule,
log DS; —log DS 14
= [log(DA;419;Bj-1) +1og(Dyg;Bj-1) + log DB;_1]
— [log(DA;41f;Bj-1) +log(Df;Bj-1) + log DB;_1]
= [log(DAj119;Bj-1) — log(DAjy1 f;Bj-1)]
+ [log(Dg;Bj-1) — log(f;Bj-1)]
= P+ Q.

From the assumption ||log DA 1|m < C and from (2), by Lemma 9, we
obtain

1Pjllm—1 < K(Cr,m = DI f; = gjllm-,
and
1Qjllm—1 < K(C1,m — 1) log Dg; —10g D f;|m—1-
Since || log Dgjl|m-1 and || log D f;||,—1 are bounded from above, the second
statement of Lemma 8 implies the claim.

Finally let us deduce (3) from the claim. By the second part of Lemma 8,
it suffices to show that || log DS;||;m—1 is bounded from above by a constant.
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Since |[log DSo|lm-1 = ||log DAg|lm-1 < C, this follows from the third
assumption by applying the claim. This completes the proof.

g
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