REAL C^k KOEBE PRINCIPLE

WEIXIAO SHEN AND MICHAEL TODD

ABSTRACT. We prove a C^k version of the real Koebe principle for interval (or circle) maps with non-flat critical points.

1. Introduction

The real Koebe principle, providing estimates of the first derivative of iterates of a smooth interval map, plays a very important role in recent research of one-dimensional dynamics. See [MS]. Considering its complex counterpart, the (complex) Koebe distortion theorem, it is natural to look for a C^k , $k \ge 2$, version of this principle. This is the goal of this paper.

More precisely, let f be a C^k endomorphism of the compact interval I =[0,1] (or the circle \mathbb{R}/\mathbb{Z}). We assume that f has only non-flat critical points; that is, for each critical point c of f, there exists a real number $\alpha > 1$, such that under some C^k coordinate change, we have

$$|f(x) - f(c)| = |x|^{\alpha}$$

for x close to c. We use NF^k to denote the class of such maps.

Theorem 1. Let f be in the class NF^n , $n \geq 2$. Let T be an open interval such that $f^s: T \to f^s(T)$ is a diffeomorphism. For each $S, \kappa > 0$ and each $1 \le k \le n$ there exist $\delta = \delta(S, \kappa, f) > 0$ and $K_k = K_k(\kappa) > 0$ satisfying the following. If $\sum_{j=0}^{s-1} |f^j(T)| \le S$ and J is a closed subinterval of T such that

- f^s(T) is a κ-scaled neighbourhood of f^s(J);
 |f^j(J)| < δ for 0 ≤ j < s,

then, letting $\psi_0: J \to I$ and $\psi_s: f^s(J) \to I$ be affine diffeomorphisms, we have

$$\|\psi_s f^s \psi_0^{-1}\|_{C^k} < K_k.$$

Furthermore, $K_1 \to 1$ as $\kappa \to \infty$ and for each k > 1, $K_k \to 0$ as $\kappa \to \infty$.

The well-known real Koebe principle claims the existence of K_1 .

1.1. **Proof of Theorem 1.** To prove this theorem, we shall approximate the map $\psi_s f^s \psi_0^{-1}$ by maps in the Epstein class, and then apply the (complex) Koebe distortion theorem. The main step is to prove the following theorem.

²⁰⁰⁰ Mathematics Subject Classification. 37E05.

Theorem 2. Let f be a map in the class NF^n , n=2,3... Let T be an open interval such that $f^s: T \to f^s(T)$ is a diffeomorphism. For any $S, \kappa, \varepsilon > 0$ and $1 \le k \le n$, there exist $\delta = \delta(S, \kappa, \varepsilon) > 0$ and $\beta = \beta(\kappa) > 0$ satisfying the following. Suppose that $\sum_{j=0}^{s-1} |f^j(T)| \le S$ and J is a closed subinterval of T such that

- $f^s(T)$ is a κ -scaled neighbourhood of $f^s(J)$;
- $|f^j(J)| < \delta$ for $0 \le j < s$.

Then, letting $\psi_0: J \to I$ and $\psi_s: f^s(J) \to I$ be affine diffeomorphisms, there exists a map $G: I \to I$ in the Epstein class \mathcal{E}_{β} such that $\|\psi_s f^s \psi_0^{-1} - G\|_{C^n} < \varepsilon$. Moreover, $\beta \to \infty$ as $\kappa \to \infty$.

Here, we say that a diffeomorphism $G: I \to I$ is in the Epstein class \mathcal{E}_{β} if G^{-1} extends to a (holomorphic) univalent map from $\mathbb{C}_{(-\beta,1+\beta)} := \mathbb{C} \setminus ((-\infty,-\beta] \cup [1+\beta,\infty))$ into \mathbb{C} .

This result, for n = 2, appears as part of the proof of the Yoccoz Lemma in [T].

Proof of Theorem 1 assuming Theorem 2. By the complex Koebe distortion theorem, the fact that $G \in \mathcal{E}_{\beta}$ implies that the C^n distance between G[0,1] and the identity map is bounded by a constant $\varepsilon(\beta)$, and $\varepsilon(\beta) \to 0$ as $\beta \to \infty$. Taking $\varepsilon = \varepsilon(\beta)$ in Theorem 2, we see that the C^n distance between $\psi_s f^s \psi_0^{-1}[0,1]$ and the identity map is at most $2\varepsilon(\beta)$.

Outline of Proof of Theorem 2. By rescaling the map $f: f^j(J) \to f^{j+1}(J)$, we obtain a diffeomorphism $f_j: I \to I$. For each j, one can find a map $g_j: I \to I$ in the Epstein class such that the C^n distance between f_j and g_j is of order $o(|f^j(J)|)$. Using the classical real Koebe principle (the C^1 version of Theorem 1), we shall prove that $G = g_{s-1} \cdots g_0$ is in the Epstein class \mathcal{E}_{β} (Proposition 5). Finally, using a proposition concerning the composition operator (Proposition 7), we show that $f_{s-1} \cdots f_1$ is C^n close to the map G.

It should be mentioned that similar ideas have appeared in the proofs of Theorem A.6 of [FM] and Lemma 3 of [AMM], but our result applies in more general situations.

Remark 3. For maps in the class NF^3 , the C^1 version of Theorem 1 still holds if we replace the assumption $\sum_{j=0}^{s-1} |f^j(T)| \leq S$ by " $f^s(T)$ is contained in a small neighborhood of critical points which are not in the basin of periodic attractors". See $[\mathbf{K}, \mathbf{SV}]$. It would be interesting to know if the C^k version of Theorems 1 and 2 remain true under this alternative assumption. See also the recent work $[\mathbf{KS}]$.

2. Proof of Theorem 2

By means of a C^n coordinate change, we may assume that for each critical point c_i , there is a neighborhood U_i of c_i such that $|f(x) - f(c)| = |x - c_i|^{\alpha_i}$ for $x \in U_i$. Let us also fix an open interval $U'_i \ni c_i$ such that $\overline{U'_i} \subset U_i$.

Define $U := \bigcup_i U_i$ and $U' := \bigcup_i U_i'$. Let $\eta = d(\partial U, \partial U')$. Then any interval of length less than η is either contained in U or disjoint from U'.

We fix T, J, κ, S as in Theorem 2. Let $J_0 = J$ and $J_i = f^i(J)$. For every $0 \le i < s$ we have a diffeomorphism $f^{s-i}: f^i(T) \to f^s(T)$ where $f^s(T)$ is a κ -scaled neighbourhood of $f^s(J)$.

We will rescale our maps as follows. Let $\psi_i: J_i \to I$ be the affine homeomorphisms such that each $f_i = \psi_{i+1} f \psi_i^{-1}$ is monotone increasing. Then the following diagram commutes.

$$J_{0} \xrightarrow{f} J_{1} \xrightarrow{f} \cdots \xrightarrow{f} J_{s-1} \xrightarrow{f} J_{s}$$

$$\psi_{0} \downarrow \qquad \qquad \downarrow \psi_{1} \qquad \qquad \downarrow \qquad \qquad \downarrow \psi_{s-1} \qquad \downarrow \psi_{s}$$

$$[0,1] \xrightarrow{f_{0}} [0,1] \xrightarrow{f_{1}} \cdots \xrightarrow{f_{s-2}} [0,1] \xrightarrow{f_{s-1}} [0,1]$$

We then approximate f_i as follows. For $0 \le i \le s-1$, let

$$g_i(x) = \begin{cases} f_i(x) & \text{if } J_i \subset U, \\ \left(1 - \frac{\xi_i}{2}\right) x + \frac{\xi_i}{2} x^2 & \text{otherwise,} \end{cases}$$

where $\xi_i = \int_0^1 D^2 f_i(t) dt$.

We use $C^n(I)$ to denote Banach space of C^n maps $\phi:I\to\mathbb{R}$ with the C^n -norm

$$||h||_n = \max\{|D^k\phi(x)| : 0 \le k \le n, x \in I\}.$$

Let $C^n(I;I)$ denote the space of maps $\phi \in C^n(I)$, with the same norm, such that $\phi(I) \subset I$. Let $\mathrm{Diff}^n_+(I)$ denote the space of all orientation-preserving C^n automorphisms of I.

Lemma 4. There exists a continuous monotone increasing function $w: (0,\infty) \to (0,\infty)$ (depending on f) such that $\lim_{t\to 0+} w(t) = 0$ and such that for all $0 \le i \le s-1$,

$$||g_i - f_i||_n \le w(|J_i|)|J_i|.$$

Proof. Assume J_i is not in U, otherwise $g_i = f_i$. We will first estimate $|D^2g_i(x) - D^2f_i(x)|$ for $x \in [0, 1]$. Observe that $D^2g_i(x) = \xi_i = \int_0^1 D^2f_i(t)dt$ and $D^2f_i(x) = \frac{|J_i|^2}{|J_{i+1}|}D^2f(\psi_i^{-1}(x))$. Since there exists some $x_0 \in [0, 1]$ with $\int_0^1 D^2f_i(t)dt = D^2f_i(x_0)$, so $D^2g_i(x) = D^2f_i(x_0)$ and

$$|D^{2}g_{i}(x) - D^{2}f_{i}(x)| = |D^{2}f_{i}(x_{0}) - D^{2}f_{i}(x)|$$

$$= \frac{|J_{i}|^{2}}{|J_{i+1}|}|D^{2}f(\psi_{i}^{-1}(x_{0})) - D^{2}f(\psi_{i}^{-1}(x))|$$

$$\leq \frac{|J_{i}|^{2}}{|J_{i+1}|}w_{1}(|J_{i}|) \leq C|J_{i}|w_{1}(|J_{i}|),$$

where w_1 is the modulus of continuity of $D^2 f$, i.e. the function $w(\varepsilon) = \sup_{|x-y|<\varepsilon} |D^2 f(x) - D^2 f(y)|$, and $C = \sup_{x \notin U'} |D f(x)|^{-1}$.

Note that there exists some $x_1 \in [0,1]$ such that $Df_i(x_1) = Dg_i(x_1)$. So for $x \in [0,1]$,

$$|Dg_i(x) - Df_i(x)| \le \int_{x_1}^x |D^2g_i(t) - D^2f_i(t)| dt \le C|J_i|w_1(|J_i|).$$

Similarly,

$$|g_i(x) - f_i(x)| \le \int_0^x |Dg_i(t) - Df_i(t)| dt \le C|J_i|w_1(|J_i|).$$

For any $2 < k \le n$, $D^k g_i = 0$. Hence, for $x \in I$,

$$|D^{k}(g_{i}-f_{i})(x)| = |D^{k}f_{i}(x)| = \frac{|J_{i}|^{k}}{|J_{i+1}|}|D^{k}f(\psi_{i}^{-1}(x))| \le C|J_{i}|^{k-1}.$$

Setting $w(t) = C \max(w_1(t), t)$ completes the proof.

The map $g_{s-1} \cdots g_0$ is our candidate for G. Let us first apply the classical real Koebe principle to prove that G is in the Epstein class.

Proposition 5. Assume that $\sup_{j=0}^{s-1} |f^j(J)|$ is sufficiently small. Then for each $0 \le j \le s-1$, $g_{s-1} \cdots g_j$ belongs to the Epstein class \mathcal{E}_{β} , where $\beta > 0$ is a constant depending only on κ . Moreover, $\beta \to \infty$ as $\kappa \to \infty$.

Proof. Let T' be the open interval with $J \subset T' \subset T$ such that both components of $f^s(T') \setminus f^s(J)$ have length $\kappa |f^s(J)|/2$. Let $\hat{T}'_j = \psi_j(f^s(T'))$ for all $0 \le j \le s$. Clearly f_j extends to a diffeomorphism from \hat{T}'_j onto \hat{T}'_{j+1} . By the classical real Koebe principle, there exists a constant $C = C(\kappa) > 1$ such that provided that $\sup_{j=0}^{s-1} |f^j(T)|$ is small enough, then for all $x, y \in T'$ we have $|Df^s(x)|/|Df^s(y)| \le C$. Therefore, for each $0 \le j \le s-1$, $f_{s-1} \cdots f_j$ is a well-defined diffeomorphism from \hat{T}'_j onto \hat{T}'_s with derivative between 1/C and C. Clearly, there exists $\beta = \beta(\kappa) > 0$ such that $\hat{T}'_j \supset [-2\beta, 1+2\beta]$ for all j and moreover $\beta \to \infty$ as $\kappa \to \infty$.

Note that for each $0 \leq j \leq s-1$, g_j^{-1} extends to a univalent map from $\mathbb{C}_{T'_{j+1}}$ into $\mathbb{C}_{T'_j}$. Moreover, for a given κ , arguing as in the previous lemma, we have that for all $0 \leq j \leq s-1$,

$$\sup_{y \in \hat{T}'_j} |f_j(y) - g_j(y)| = o(|J_j|).$$

Claim. There exists δ such that if $\sup_{j=0}^{s-1} |f^j(J)| < \delta$ then for any $x \in \hat{T}'_0$ and any $0 \le r \le s-1$, if $g_j \cdots g_0(x) \in \hat{T}'_{j+1}$ for all $0 \le j \le r-1$, then

$$|f_{r-1}\cdots f_0(x) - g_{r-1}\cdots g_0(x)| < \frac{\beta}{2C}.$$

To prove this claim, let $A_r = B_{-1} = id$ and for all $0 \le i \le r - 1$ let $A_i = f_{r-1} \cdots f_i$ and $B_i = g_i \cdots g_0$. Then

$$|f_{r-1}\cdots f_0(x) - g_{r-1}\cdots g_0(x)|$$

$$= |A_0B_{-1}(x) - A_rB_{r-1}(x)| \le \sum_{i=0}^{r-1} |A_iB_{i-1}(x) - A_{i+1}B_i(x)|$$

$$= \sum_{i=0}^{r-1} |A_{i+1}f_iB_{i-1}(x) - A_{i+1}g_iB_{i-1}(x)|$$

$$\le \sum_{i=0}^{r-1} \sup_{z \in \hat{T}'_{i+1}} |A_{i+1}(z)| \sup_{y \in \hat{T}'_i} |f_i(y) - g_i(y)| \le C \sum_{i=0}^{r-1} o(|J_i|)|J_i|,$$

which is arbitrarily small provided that $\sup_{j=0}^{s-1} |f^j(J)|$ is small enough. This proves the claim.

For $x \in I^{\beta} := [-\beta, 1 + \beta]$ and $0 \le r \le s - 1$, $d(f_{r-1} \cdots f_0(x), \partial \hat{T}'_r) \ge \beta/C$. Together with the claim, this implies (by induction on r) that for all $0 \le$ $r \leq s-1, g_{r-1}\cdots g_0$ is well-defined on I^{β} and maps I^{β} diffeomorphically onto a subinterval of \hat{T}'_r . Since $f_{s-1}\cdots f_0(I^\beta)\supset I^{\beta/C}$, applying the claim once again gives us $G(I^\beta)\supset I^{\beta/2C}$. This proves that for any $0\leq j\leq s-1$, $g_j^{-1}\cdots g_{s-1}^{-1}$ extends to a univalent map from $\mathbb{C}_{I^{\beta/2C}}$, so $g_{s-1}\cdots g_j$ is in the Epstein class $\mathcal{E}_{\beta/2C}$. Redefining β completes the proof.

Applying the complex Koebe distortion theorem, this implies the following.

Corollary 6. There exists a constant $C = C(\kappa) > 0$ such that for any $0 \le j \le s - 1$, we have

$$\|\log D(g_{s-1}\cdots g_j)\|_n \le C.$$

The proof of Theorem 2 is then completed by the following proposition and lemma.

Proposition 7. Let $n \in \mathbb{N} \cup \{0\}$, let $g_j \in \operatorname{Diff}_+^{n+1}(I)$, $f_j \in \operatorname{Diff}_+^n(I)$, for $0 \le j \le s-1$. For any C > 1 there exists E = E(C, n) > 0 such that if the following hold:

- (1) for each $0 \le j < s$, $\|\log D(g_{s-1} \cdots g_j)\|_n \le C$; (2) if $n \ge 1$, $\|\log Dg_j \log Df_j\|_{n-1} \le C$ for all $0 \le j \le s-1$; (3) $\sum_{j=0}^{s-1} \|g_j f_j\|_n \le C$,

then

$$||g_{s-1}\cdots g_0-f_{s-1}\cdots f_0||_n \le E\sum_{j=0}^{s-1}||f_j-g_j||_n.$$

The proof of this proposition will be given in the next section.

Lemma 8. For any C > 1 and $k \in \mathbb{N}$, there exists C' = C'(C, k) > 1 with the following property. Let $\phi, \tilde{\phi} \in C^k(I)$ have $\|\phi\|_k, \|\tilde{\phi}\|_k < C$. Then

(1) $||e^{\phi}||_k \leq C'$;

(2)
$$\frac{1}{C'} \|\phi - \tilde{\phi}\|_k \le \|e^{\phi} - e^{\tilde{\phi}}\|_k \le C' \|\phi - \tilde{\phi}\|_k$$
.

Proof. Let $\psi = e^{\phi}$ and $\tilde{\psi} = e^{\tilde{\phi}}$. By induction it is easy to compute that for all $k \geq 1$, there exist polynomials P_k and Q_k such that

- $D^k(e^{\phi}) = e^{\phi} \cdot P_k(\phi, D\phi, \dots, D^k\phi);$
- $D^k(\phi) = Q_k(\psi, D\psi, \dots, D^k\psi)/\psi^k$

From these the lemma follows easily.

Proof of Theorem 2 assuming Proposition 7. It suffices to check that the conditions in Proposition 7 are satisfied. The first condition was verified in Corollary 6. By Lemma 4, $||f_j - g_j||_n \leq |J_j|w(|J_j|)$. Furthermore, from the proof of that lemma, we can show that $||\log Df_j||_{n-1}$, $||\log Dg_j||_{n-1}$ are bounded above. Whence by Lemma 8, provided that $\sup_{j=0}^{s-1} |f^j(J)|$ is small enough, the second condition is verified. For the third one, we use the assumption $\sum_{j=0}^{s-1} |f^j(J)| \leq \sum_{j=0}^{s-1} |f^j(T)| \leq S$ and the fact that $w(|J_j|)$ is small when $|J_j|$ is small.

3. Proof of Proposition 7

The goal of this section is to prove Proposition 7. Let us begin with a small lemma.

Lemma 9. For any $k \in \mathbb{N} \cup \{0\}$ and C > 0 there exists K = K(C, k) with the following property. Let $u, v, B \in C^k(I; I)$, and let $A \in C^{k+1}(I)$. Assume that $||A||_{k+1} \leq C$ and $||B||_k \leq C$. Then

$$||AuB - AvB||_k \le K||u - v||_k.$$

Proof. This lemma is a straightforward consequence of the chain rule. \Box

Proof of Proposition 7. We first introduce some notation for our calculations. Let $A_s = B_{-1} = id$ and for $0 \le j \le s-1$, let $A_j = g_{s-1} \cdots g_j$ and $B_j = f_j \cdots f_0$. Then

$$g_{s-1} \cdots g_0 - f_{s-1} \cdots f_0 = A_0 B_{-1} - A_s B_{s-1}$$

$$= \sum_{j=0}^{s-1} (A_j B_{j-1} - A_{j+1} B_j)$$

$$= \sum_{j=0}^{s-1} (A_{j+1} g_j B_{j-1} - A_{j+1} f_j B_{j-1}).$$

Writing $S_j := A_j B_{j-1} = A_{j+1} g_j B_{j-1} = g_{s-1} \cdots g_j f_{j-1} \cdots f_0$, we have

$$g_{s-1}\cdots g_0 - f_{s-1}\cdots f_0 = \sum_{j=0}^{s-1} (S_j - S_{j+1}).$$

The proof of the proposition will proceed by induction on n. First, by Lemmas 8 and 9, $||S_j - S_{j+1}||_0 \le K(C,0)||f_j - g_j||_0$. Thus, $||g_{s-1} \cdots g_0 - f_{s-1} \cdots f_0||_0 \le \sum_{i=0}^{s-1} ||f_j - g_j||_0$. This proves the lemma for the case n = 0.

Now let $m \ge 1$ and assume that the proposition holds for n = m - 1. Let us prove it for n = m.

First, for each $0 \le r \le s - 1$, applying the induction hypothesis to the mappings f_j , g_j , $0 \le j \le r$, we have

(1)
$$||f_r \cdots f_0 - g_r \cdots g_0||_{m-1} \le E_1 \sum_{i=0}^{j-1} ||f_i - g_i||_{m-1},$$

where E_1 is a constant (depending only on C and m). Also, it is easy to show that the first assumption of the proposition implies $\|\log D(g_r \dots g_0)\|_n < 2C$. Therefore, by the first part of Lemma 8 we have $\|D(g_r \dots g_0)\|_n < C'$. Hence,

$$||g_r \cdots g_0||_m = \max(1, ||D(g_r \cdots g_0)||_{m-1}) \le C'.$$

Applying this to (1), we have

$$||B_r||_{m-1} \le C_1.$$

To complete the induction it suffices to prove that there exists a constant E_2 such that

(3)
$$||D^m(S_i - S_{i+1})||_0 \le E_2 ||f_i - g_i||_m.$$

To this end let us first prove the following.

Claim. There exists a constant C_2 depending only on C such that for all $0 \le j \le s$, $\|\log DS_j - \log DS_{j+1}\|_{m-1} \le C_2 \|f_j - g_j\|_m$.

In fact, for each $0 \le j \le s - 1$, by the chain rule,

$$\begin{split} \log DS_{j} - \log DS_{j+1} \\ &= \left[\log(DA_{j+1}g_{j}B_{j-1}) + \log(Dg_{j}B_{j-1}) + \log DB_{j-1} \right] \\ &- \left[\log(DA_{j+1}f_{j}B_{j-1}) + \log(Df_{j}B_{j-1}) + \log DB_{j-1} \right] \\ &= \left[\log(DA_{j+1}g_{j}B_{j-1}) - \log(DA_{j+1}f_{j}B_{j-1}) \right] \\ &+ \left[\log(Dg_{j}B_{j-1}) - \log(f_{j}B_{j-1}) \right] \\ &=: P_{j} + Q_{j}. \end{split}$$

From the assumption $\|\log DA_{j+1}\|_m \leq C$ and from (2), by Lemma 9, we obtain

$$||P_j||_{m-1} \le K(C_1, m-1)||f_j - g_j||_{m-1},$$

and

$$||Q_j||_{m-1} \le K(C_1, m-1)||\log Dg_j - \log Df_j||_{m-1}.$$

Since $\|\log Dg_j\|_{m-1}$ and $\|\log Df_j\|_{m-1}$ are bounded from above, the second statement of Lemma 8 implies the claim.

Finally let us deduce (3) from the claim. By the second part of Lemma 8, it suffices to show that $\|\log DS_i\|_{m-1}$ is bounded from above by a constant.

Since $\|\log DS_0\|_{m-1} = \|\log DA_0\|_{m-1} \leq C$, this follows from the third assumption by applying the claim. This completes the proof.

References

- [AMM] A. Avila, M. Martens, W. de Melo On the dynamics of the renormalisation operator, preprint, 2000.
- [FM] E. de Faria, W. de Melo Rigidity of critical circle mappings I, J. Eur. Math. Soc. 1 (1999), 339-392.
- [K] O. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. Math. (2), **152** (2000), no. 3, 743-762.
- [KS] O. Kozlovski and D. Sands The real koebe lemma, Manuscript.
- [MS] W. de Melo and S. van Strien, *One dimensional dynamics*, Ergebnisse Series 25, Springer-Verlag, 1993.
- [SV] S. van Strien, E. Vargas, Real Bounds, ergodicity and negative Schwarzian for multimodal maps, preprint, 2002.
- [Su] D. Sullivan, Bounds, quadratic differentials, and renormalisation conjectures, AMS Centennial Publications, vol. 2, Mathematics into the Twenty-first Century, 1992.
- [T] M. Todd, One dimensional dynamics: cross-ratios, negative Schwarzian and structural stability, thesis, University of Warwick, 2003.

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, CV4 7AL

E-mail address: wxshen@maths.warwick.ac.uk

MATHEMATICS DEPARTMENT, UNIVERSITY OF SURREY, GUILDFORD, SURREY, GU2 7XH, UK

 $E ext{-}mail\ address: m.todd@surrey.ac.uk}$