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Abstract. Let f : I → I be a C2 multimodal interval map satisfying polynomial
growth of the derivatives along critical orbits. We prove the existence and unique-
ness of equilibrium states for the potential 't : x 7→ −t log ∣Df(x)∣ for t close to
1, and also that the pressure function t 7→ P ('t) is analytic on an appropriate
interval near t = 1.

Résumé. Soit f : I → I une application multimodale de classe C2 dont les
dérivées le long des orbites des points critiques sont à croissance polynomiale, où
I est un intervalle. Nous démontrons l’existence et unicité d’un état d’equilibre
pour le potentiel 't : x 7→ −t log ∣Df(x)∣ lorsque t est proche de 1, et que la
fonction de pression t 7→ P ('t) est analytique sur un intervalle approprient près
de t = 1.

1. Introduction

Thermodynamic formalism ties potential functions ' to invariant measures of a
dynamical system (X, f). The aim is to identify and prove uniqueness of a measure
�' that maximises the free energy, i.e., the sum of the entropy and the integral over
the potential. In other words

ℎ�'(f) +

∫
X
' d�' = P (') := sup

�∈ℳerg

{
ℎ�(f) +

∫
X
' d� : −

∫
X
' d� <∞

}
where ℳerg is the set of all ergodic f -invariant Borel probability measures. Such
measures are called equilibrium states, and P (') is the pressure. This theory was
developed by Sinai, Ruelle and Bowen [Si, Ru2, Bo] in the context of Hölder poten-
tials on hyperbolic dynamical systems, and has been applied to Axiom A systems,
Anosov diffeomorphisms and other systems too, see e.g. [Ba, K2] for more recent
expositions. Apart from uniqueness, it was shown in this context that the density
d�'
dm'

of the invariant measure with respect to '-conformal measure m' is a fixed
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point of the transfer operator (ℒ'ℎ)(x) =
∑

f(y)=x e
'(y) ℎ(y). Moreover, �' is a

Gibbs measure, i.e., there are constants K > 0 and P ∈ ℝ such that

1

K
⩽

�'(Cn)

e'n(x)−nP ⩽ K

for all n ∈ ℕ, all n-cylinder sets Cn and any x ∈ Cn. Here 'n(x) := '(fn−1(x)) +
⋅ ⋅ ⋅+ '(x). We refer to P as the Gibbs constant.

In this paper we are interested in interval maps (I, f) with nonempty set Crit of
critical points. These maps are, at best, only non-uniformly hyperbolic. We say
that c is a non-flat critical point of f if there exists a diffeomorphism gc : ℝ → ℝ
with gc(0) = 0 and 1 < ℓc <∞ such that for x close to c, f(x) = f(c)±∣'c(x− c)∣ℓc .
The value of ℓc is known as the critical order of c. Let ℓmax = max{ℓc : c ∈ Crit}.
We define

ℋ :=
{
f : I → I is C2,#Crit <∞ and all critical points are non-flat

}
.

For f ∈ ℋ, there is a finite partition P1 into maximal intervals on which f is mono-
tone, called the branch partition. We will assume throughout that ∨nPn generates
the Borel �-algebra. Note that if f ∈ ℋ has no attracting cycles then ∨nPn gener-
ates the Borel �-algebra, see [MSt]. (The C2 assumption precludes wandering sets,
which are not very interesting from the measure theoretic point of view anyway.)

Fix f ∈ ℋ. The potential of our interest throughout is

't : x 7→ −t log ∣Df(x)∣.
The Lyapunov exponent of a measure � is defined as �(�) :=

∫
I log ∣Df ∣ d�. Let

ℳerg =ℳerg(f) be the set of all ergodic f -invariant probability measures, and

ℳ+ = {� ∈ℳerg : �(�) > 0, supp(�) ∕⊂ orb(Crit)} .
Measures � with supp(�) ⊂ orb(Crit) are atomic. Atomic measures in ℳerg must
be supported on periodic cycles. So if supp(�) ⊂ orb(Crit) and �(�) > 0, � must
be supported on a hyperbolic repelling periodic cycle, and thus the corresponding
critical point must be preperiodic. (Note that for t ⩽ 0 such a situation can produce
non-uniqueness of equilibrium states, see [MSm1] and Section 7.)

1.1. Historical background. The principal examples of maps in ℋ are unimodal
maps with non-flat critical point. Equilibrium states (in particular of the potential
't) have been studied in this case by various authors [HK2, KN, St.P, BK], using
transfer operators. The transfer operator, in combination with Markov extensions
(commonly known as Hofbauer towers), proved a powerful tool for so-called Collet-
Eckmann unimodal maps (i.e., the derivatives along the critical orbit grow exponen-
tially, see (3) below) for Keller and Nowicki [KN], who showed that an appropriately
weighted version of the transfer operator is quasi-compact. To our knowledge, how-
ever, these methods cannot be applied to non-Collet-Eckmann maps.

A less direct approach was taken by Pesin and Senti, results which were announced
in [PSe2], with details given in preprint [PSe1] and the final publication [PSe3].
They used an inducing scheme (X,F, �) (where � is the inducing time and F = f � ),
which is a hyperbolic expanding with full, albeit infinitely many, branches, to find
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a unique equilibrium state �Φt for the lifted potential Φt. This equilibrium state is
then projected to the interval to give a measure �'t , a candidate equilibrium state
for the system (I, f, 't). The down-side for the more general case is that �'t is
only an ‘equilibrium state’ within the class of measures that are compatible to the
inducing scheme, i.e., the induced map F = f � is defined for all iterates �-a.e. on
X, and the inducing time � is �F -integrable (here �F is the ‘lift’ of �, see (4)). A
priori, the ‘equilibrium states’ obtained in this way may not be true equilibrium
states for the whole system, and different inducing schemes may lead to different
measures �'t .

In this paper, with preprint versions since 2006, and in a companion paper [BT2],
Hofbauer tower techniques are used to

∙ construct inducing schemes as first return maps on the Hofbauer tower;
∙ identify the class of compatible measures;
∙ compare various inducing schemes; and
∙ establish that candidate equilibrium states for emerging from a single induc-

ing scheme, indeed maximise free energy over all measures in ℳ+.

In (versions leading up to) [PSe3], identifying which measures are compatible to an
inducing scheme is called the liftability problem. Most of the results in [PSe3] apply
only to measures compatible to a given inducing scheme. Only for specific unimodal
maps, called strongly regular [PSe3, Section 7.2], which are close to the Chebyshev
polynomial and satisfy the Collet-Eckmann condition, is a genuine equilibrium state
established. Strongly regular maps allow an inducing scheme (X,F ) for which the
number of branches Xi of inducing time �i = n increases at an arbitrarily slow
exponential rate. This is used to show that measures with sufficiently large entropy
are compatible to the inducing scheme, and hence that the obtained equilibrium
state indeed maximises free energy over all of ℳerg.

Branch counting arguments for both Collet-Eckmann and non-Collet-Eckmann maps
are given in Section 5 and especially Proposition 4 of this paper. Together with the
Hofbauer tower ideas, this allows us to treat a much wider class of maps than
[PSe3]. On the other hand, for the strongly regular maps in [PSe3], the control
of the branch count for their specific inducing scheme enables Pesin and Senti to
establish the existence and uniqueness of an equilibrium state �t for 't and t in a
neighbourhood of [0, 1]. Such a neighbourhood V is difficult to obtain for general
interval maps where a priori there is no single inducing scheme to rely on for all
t ∈ V . It should be noted that the results on general multimodal maps in [PSe3,
Section 8.1] apply only to Collet-Eckmann maps, as condition (23) of that paper
shows, as well as only applying to measures compatible to the inducing scheme.

1.2. Main results. In our main theorems we will assume that f is transitive, i.e.,
f has a dense orbit. If transitivity fails and instead the interval decomposes into
finitely many transitive cycles of intervals, then our results remain valid for each
transitive cycle, but uniqueness of equilibrium states may fail.
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Theorem 1. Let f ∈ ℋ be transitive with negative Schwarzian derivative and let
't := −t log ∣Df ∣ for t ∈ ℝ. Suppose that for some C > 0 and � > 2ℓmax − 1,

(1) ∣Dfn(f(c))∣ ⩾ Cn� for all c ∈ Crit and n ⩾ 1.

Then there exists t1 < 1 such that the following hold for all t ∈ (t1, 1]:

(a) (I, f, 't) has an equilibrium state �'t ∈ℳ+;
(b) if t1 < t < 1, then �'t is the unique equilibrium state in ℳerg and a com-

patible inducing scheme with respect to which �'t has exponential tails;
(c) if t = 1, then there may be other equilibrium states inℳerg ∖ℳ+. However,

for �'1 ∈ ℳ+ there is a compatible inducing scheme with respect to which
�'1 has polynomial tails;

(d) the map t 7→ P ('t) is analytic on (t1, 1).

We refer to this situation as the summable case. Note that for t = 1 the measure
�'1 ∈ℳ+ is an absolutely continuous invariant measure (acip). Therefore this result
improves on the polynomial case of [BLS, Proposition 4.1], since in that theorem
the polynomial decay of the tails was given under the above conditions, but also
assuming that the critical points must all have the same order. Results of [BRSS]
enable us to drop this assumption. As was shown in [BLS], this tail decay rate
implies that the decay of correlations is at least polynomial.

As in the theorem, for t = 1 equilibrium states with zero Lyapunov exponent are
possible, see Section 7 for details. Conversely the following easy lemma shows that
for t < 1 this is not the case.

Lemma 1. For f ∈ ℋ satisfying (1) and for t < 1, any equilibrium state � for 't
must have �(�) > 0.

Proof. The pressure function t 7→ P ('t) is convex, continuous and non-increasing.
As in [BRSS], condition (1) implies the existence of an acip �1 with �(�1) > 0, which
is also an equilibrium state for the potential '1 = − log ∣Df ∣. It follows that

(2) P ('t) ⩾ (1− t)�(�1) for all t ∈ ℝ,
so if t < 1 we have P ('t) > 0. By [Pr], we have �(�) ⩾ 0 for any invariant measure,
so Ruelle’s inequality [Ru1] implies that ℎ�(f) ⩽ �(�). Thus (for t < 1) equilibrium
states have positive Lyapunov exponent because �(�) = 0 implies P ('t) = 0. □

Notice that for t ⩽ 0, the potential −t log ∣Df ∣ is upper semicontinuous, and the
entropy function � 7→ ℎ�(f) is upper semicontinuous, as explained in [K2]. This
guarantees the existence of equilibrium states for (I, f) when t ⩽ 0, regardless of
whether (1) holds or not.

A stronger condition than (1) is the Collet-Eckmann condition which states that
there exist C,� > 0 such that

(3) ∣Dfn(f(c))∣ ⩾ Ce�n for all c ∈ Crit and n ∈ ℕ.
This condition implies that �(�) > 0 for every � ∈ ℳerg, see e.g. [NS] (and [BS]
for the proof in the multimodal case). In the unimodal case, the difference between
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Collet-Eckmann and non-Collet-Eckmann maps can be seen from the behaviour of
the pressure function at t = 1, as follows from [NS]. Indeed, if (1) holds but not (3),
then there are periodic orbits with Lyapunov exponents arbitrarily close to 0, and
hence P ('t) = 0 for t ⩾ 1. This is regardless of the existence of equilibrium states,
which, for t > 1, can only be measures for which �(�) = ℎ�(f) = 0. This means
that the function t 7→ P ('t) is not differentiable at t = 1: we say that there is a
phase transition at 1. See Section 7 for more details on the phase transition, and on
maps without equilibrium states.

For unimodal Collet-Eckmann maps, the map t 7→ P ('t) is analytic in a neigh-
bourhood of 1, as was shown in [BK]. The following theorem (the proof of which
introduces many of the ideas used for Theorem 1) generalises this result to all f ∈ ℋ
satisfying (3), and gives results on equilibrium states also.

Theorem 2. Suppose f ∈ ℋ is transitive with negative Schwarzian derivative and
't = −t log ∣Df ∣. If f is Collet-Eckmann, then there exist t1 < 1 < t2 such that for
t ∈ (t1, t2)

(a) (I, f, 't) has a unique equilibrium state �'t;
(b) for �'t ∈ ℳ+, there is a compatible inducing scheme with respect to which

�'t has exponential tails;
(c) the map t 7→ P ('t) is analytic.

A key component of the proof of the analyticity of t 7→ P ('t) is to ensure that
we have inducing schemes which are compatible with the corresponding equilibrium
states. As mentioned above, for strongly regular unimodal maps [PSe3] produces an
inducing scheme compatible with all equilibrium states for 't for all t in a neigh-
bourhood of [0, 1]. Therefore our proof in Section 6 of analyticity of t 7→ P ('t) also
holds for strongly regular unimodal maps for all t in a neighbourhood of [0, 1].

1.3. Inducing schemes and lifting measures. We say that (X,F, �) is an in-
ducing scheme over (I, f) if

∙ X is an interval containing a (countable) collection of disjoint intervals Xi such
that F maps each Xi diffeomorphically onto X, with bounded distortion.
∙ F ∣Xi = f �i for some �i ∈ ℕ := {1, 2, 3 . . . }.

The function � : ∪iXi → ℕ defined by �(x) = �i if x ∈ Xi is called the inducing
time. It may happen that �(x) is the first return time of x to X, but that is certainly
not the general case. For ease of notation, we will often suppress the return time � :
(X,F, �) = (X,F ).

Let (X,F )∞ := ∩nF−n(∪iXi) be the set of points on which all iterates of F are
defined. We reiterate that we call a measure � compatible to the inducing scheme if

∙ �(X) > 0 and �(X ∖ (X,F )∞) = 0, and
∙ there exists a measure �F which projects to � by (4) below, and in particular∫

X � d�F <∞.
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Our main theorems deal with equilibrium states inℳ+. Although measures inℳ+

may not always be compatible to a specific inducing scheme, they are all compatible
to some inducing scheme. Given an inducing scheme (X,F, �), we say that a measure
�F is a lift of � if for all �-measurable subsets A ⊂ I,

(4) �(A) =
1∫

X � d�F

∑
i

�i−1∑
k=0

�F (Xi ∩ f−k(A)).

Conversely, given a measure �F for (X,F ), we say that �F projects to � if (4) holds.

The following theorem gives us a method for finding inducing schemes, which are
naturally related to measures of positive Lyapunov exponent.

Theorem 3. If � ∈ℳ+, then there is an inducing scheme (X,F, �) and a measure
�F on X such that

∫
X � d�F < ∞. Here �F is the lifted measure of � (i.e., � and

�F are related by (4)). Moreover, if Ω is the transitive component supporting � then

(X,F )∞ = X ∩ Ω.

Conversely, if (X,F, �) is an inducing scheme and �F an ergodic F -invariant mea-
sure such that

∫
X �d�F <∞, then �F projects to a measure � ∈ℳerg with positive

Lyapunov exponent.

We would like to highlight another important set of results in this paper, which will
be explained more fully later: We will also show that all ‘relevant measures’ in this
paper lift to a fixed inducing scheme, see Propositions 1 and 3 and Lemmas 9.

The potential 't (or −t log ∣Jf ∣ in a wider setting, where Jf is the Jacobian of the
map) has geometric importance if t is the dimension of the phase space, because then
the equilibrium state can often be shown to be absolutely continuous with respect
to t-dimensional Hausdorff measure. One can also consider other potentials: e.g.
the seminal paper by Bowen [Bo] applies to the class of Hölder potentials. In the
setting of interval maps, interesting results and examples were given by Hofbauer
and Keller [HK2] for potentials with bounded variation. Our methods extend to
such potentials as well. We develop this theory in [BT2].

The paper is organised as follows. Section 2 gives preliminaries on (Gurevich) pres-
sure, recurrence, and gives an important result on symbolic systems, due to Sarig.
Also we review basic results for interval maps. Section 3 explains how to find induc-
ing schemes using the Hofbauer tower, which have the important property of being
first return map on this tower, even if the inducing scheme is not the first return
on the original system (I, f). Theorem 3 is proved here as well. In Section 4 we
prove Proposition 2, which gives the basic framework of the existence and unique-
ness proofs. Section 5 is devoted to the main part of the proofs of Theorems 1
and 2 (using estimates from [BLS]). In Section 6, we show that most equilibrium
states in this paper can be obtained from a Young tower with exponential tails
(see [Y] for definitions), and discuss several consequences of this remarkable fact,
including the concluding part of Theorems 1 and 2: the analyticity of the pressure
function. Finally in Section 7, we discuss the hypotheses of our main theorems and
give counter-examples that show that these hypotheses cannot be easily relaxed.
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2. Preliminaries

2.1. Measures and pressure. If (X,T ) is a dynamical system with potential Φ :
X → ℝ, then the measure m is Φ-conformal if

m(T (A)) =

∫
A
e−Φ(x) dm(x)

whenever T : A → T (A) is one-to-one. In other words, dm ∘ T (x) = e−Φ(x)dm(x).
We define the transfer operator for the potential Φ as

ℒΦg(y) :=
∑

T (y)=x

eΦ(y)g(y).

We want to show that whatever inducing scheme we start with, the invariant measure
we get on I is unique. One of the key tools is the following theorem which is the
main result of [Sa3]. Assume that S1 = {Xi} is a Markov partition of X such that
T : Xi → X is injective for each Xi ∈ S1. We say that (X,T ) has the big images
and preimages (BIP) property if, there exist X1, . . . , XN ∈ S1 such that for every
Xk ∈ S1 there are i, j ∈ {1, . . . , N} and x ∈ Xi such that T (x) ∈ Xk and T 2(x) ∈ Xj .

Suppose that (X,T ) is topologically mixing. For every Xi ∈ S1 and n ⩾ 1 let

Zn(Φ, Xi) :=
∑

Tnx=x

eΦn(x)1Xi(x),

where Φn(x) =
∑n−1

j=0 Φ ∘ T j(x). Let

Z∗n(Φ, Xi) :=
∑

Tnx=x,

Tkx/∈Xi for 0<k<n

eΦn(x)1Xi(x).

We define the Gurevich pressure of Φ as

(5) PG(Φ) := lim sup
n→∞

1

n
logZn(Φ, Xi).

This limit exists, is independent of the choice of Xi and it is > −∞, see [Sa1].
To simplify the notation, we will often suppress the dependence of Zn(Φ, Xi) and
Z∗n(Φ, Xi) on Xi. Furthermore, if ∥ℒΦ1∥∞ < ∞ then PG(Φ) < ∞, see Proposition
1 of [Sa1].

The potential Φ is said to be recurrent if

(6)
∑
n

�−nZn(Φ) =∞ for � = expPG(Φ).
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Moreover, Φ is called positive recurrent if it is recurrent and
∑

n n�
−nZ∗n(Φ) = ∞.

The n-th variation of Φ is

(7) Vn(Φ) := sup
Cn∈Sn

sup
x,y∈Cn

∣Φ(x)− Φ(y)∣,

where Sn =
⋁n−1
j=0 T

−j(S1) is the n-joint of the Markov partition S1.

Theorem 4 ([Sa3]). If (X,T ) is topologically mixing and
∑

n⩾1 Vn(Φ) < ∞, then
Φ has an invariant Gibbs measure (with Gibbs constant PG(Φ)) if and only if A has
the BIP property and PG(Φ) <∞. Moreover the Gibbs measure �Φ has the following
properties:

(a) If ℎ�Φ(T ) < ∞ or −
∫

Φd�Φ < ∞ then �Φ is the unique equilibrium state
(in particular, P (Φ) = ℎ�Φ(T ) +

∫
X Φ d�Φ);

(b) If ∥ℒΦ1∥∞ < ∞ then the Variational Principle holds, i.e., PG(Φ) = P (Φ)
(= ℎ�Φ(T ) +

∫
X Φ d�Φ);

(c) �Φ is finite and �Φ = �Φ dmΦ where ℒΦ�Φ = ��Φ and ℒ∗ΦmΦ = �mΦ for

� = ePG(Φ), i.e., mΦ(TA) =
∫
A e

Φ−log � dmΦ;
(d) This �Φ is unique and mΦ is the unique (Φ − log �)-conformal probability

measure.

Note that because �Φ is a Gibbs measure, �Φ(Cn) > 0 for every cylinder set Cn ∈ Sn,
n ∈ ℕ.

In the paper of Mauldin & Urbański [MU] several similar results can be found,
although they use a different approach to pressure, taking the supremum of Φn on
cylinder sets rather than the value of Φn at periodic points.

2.2. Interval maps. An interval map (I, f) is called piecewise monotone if there is
a finite partition P1 into maximal intervals on which f is diffeomorphic. We call this
partition the branch partition. We will assume that f is C2; negative Schwarzian
derivative in this C2 context means that 1/

√
∣Df ∣ is a convex function on each

C ∈ P1.

Remark 1. The negative Schwarzian derivative condition allows us to use the Koebe
Lemma for distortion control of the branches of the induced maps we obtain later.
However if f ∈ ℋ is C3 and there are no neutral periodic cycles, then it is unnec-
essary to assume negative Schwarzian derivative. This was proved in the unimodal
setting by Kozlovski [Ko], and later for f ∈ C2+� in [T]. In the multimodal setting
for f ∈ C3 this was proved by van Strien and Vargas [SV].

Let Pn =
⋁n−1
k=0 f

−kP1. Elements Cn ∈ Pn are called n-cylinders. Similarly to (7),
the n-th variation of a potential ' : I → ℝ is defined as

Vn(') = sup
Cn∈Pn

sup
x,y∈Cn

∣'(x)− '(y)∣.

The non-wandering set Ω of f is the set of points x having arbitrarily small neigh-
bourhoods U such that fn(U)∩U ∕= ∅ for some n ⩾ 1. Piecewise monotone C2 maps
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have non-wandering sets that split into a finite or countable number of transitive
components Ωk such that each Ωk contains a dense orbit, see [HR] and references
therein. A transitive component is one of the following:

(Ω1) A finite union of intervals, cyclically permuted by f . This is the most in-
teresting case, and Lemma 2(a) in Section 3 gives its description on the
Hofbauer tower.

(Ω2) A Cantor set if f is infinitely renormalisable, i.e., there is an infinite sequence
of periodic intervals Jn of increasing periods, and Ω = ∩norb(Jn). Measures
on such components have �(�) = 0, see [MSt] and [SV, Theorem D] for the
multimodal case. For maps that are only piecewise C2, this is no longer true,
see Section 7.

(Ω3) If f is (finitely) renormalisable, say it has a periodic interval J ∕= I, then
the set of points that avoid orb(J) contains a transitive component as well.
This is usually a Cantor set, but it could be a finite set (e.g. if f is the
Feigenbaum map). For infinitely renormalisable maps, there are countably
many transitive components of this type. Lemma 2(b) in Section 3 gives its
description on the Hofbauer tower.

We will state our results for transitive interval maps, but they can be applied equally
well to (Ωk, f) for any component Ωk of the non-wandering set. In all our main
theorems we assume that (Ω, f) is topologically mixing (i.e., every iterate of f is
topologically transitive). This can be achieved by taking a transitive component of
an appropriate iterate of f .

Inducing schemes (X,F ) will perform the role of (X,T ) of the previous section, with
S1 = {Xi}. Since F maps Xi onto X, the BIP property is automatically satisfied
provided F is transitive (if not, we can always select a transitive component). Let
us denote the collection of n-cylinders of the inducing scheme by Sn. A priori, Sn is
not connected to ∪m⩾0Pm, i.e., the cylinder sets of the branch partition P1. In this
paper, however, we will always take X to be a subset of ∪kPk, and in that case the
∪n⩾1Sn ⊂ ∪k⩾1Pk.

Given a potential ' : I → ℝ, let the lifted potential Φ be defined by Φ(y) =
∑�i−1

j=0 '∘
f j(y) for y ∈ Xi. We say that Φ has summable variations if

∑
n⩾1 Vn(Φ) <∞, and

that Φ is weakly Hölder continuous if there exist CΦ > 0 and 0 < �Φ < 0 such that
Vn(Φ) ⩽ CΦ�

n
Φ for all n ⩾ 1. Clearly if Φ is weakly Hölder continuous then Φ has

summable variations.

We use summability of variations to control distortion of Φn(x) = Φ(x) + ⋅ ⋅ ⋅ +
Φ ∘ Fn−1(x), but for the potential 't = −t log ∣Df ∣, we can also use the Koebe
Lemma provided f has negative Schwarzian derivative: If X ′ ⊃ X such that X ′ is
a �-scaled neighbourhood of X, i.e., both components of X ′ ∖X have length ⩾ �∣X∣,
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and fk : Xi → X extends diffeomorphically to fk : X ′i → X ′, then

(8)
∣Dfk(y)∣
∣Dfk(x)∣

<
1 + 2�

�2
+ 1

for all x, y ∈ Xi.

Notation. In this paper we say An ≍ Bn if limn→∞
An
Bn

= 1. We will also say that
A ≍dis B if A is equal to B up to some distortion constant. Similarly we write
A ⩽dis B if A is less than or equal to B up to some distortion constant.

3. Finding Inducing Schemes

In this section we will prove Theorem 3. The idea relies on the construction of the
canonical Markov extension (Î , f̂) of the interval map. A measure � ∈ ℳ+ can be

lifted to (Î , f̂), see [K1], and in this space a first return map to a specific subset

X̂ ⊂ Î gives rise to the inducing scheme.

3.1. Hofbauer towers. The canonical Markov extension (commonly called Hof-
bauer tower), was introduced by Hofbauer and Keller, see e.g. [H, K1]; it is a dis-
joint union of subintervals D = fn(Cn), Cn ∈ Pn, called domains, where P1 is the
branch partition. Let D be the collection of all such domains. For completeness, let
P0 denote the partition of I consisting of the single set I, and call D0 = f0(I) the
base of the Hofbauer tower. Then

Î = ⊔n⩾0 ⊔Cn∈Pn fn(Cn)/ ∼,
where fn(Cn) ∼ fm(Cm) as members of the disjoint union if fn(Cn) = fm(Cm) as

subsets of I. Let � : Î → I be the inclusion map. Points x̂ ∈ Î can be written as
(x,D) if D is the domain that x̂ belongs to and x = �(x̂). The map f̂ : Î → Î is
defined as

f̂(x̂) = f̂(x,D) = (f(x), D′)

if there are cylinder sets Cn ⊃ Cn+1 such that x ∈ fn(Cn+1) ⊂ fn(Cn) = D and
D′ = fn+1(Cn+1). In this case, we write D → D′, giving (D,→) the structure of
a directed graph. Every n-cylinder Cn defines an n-path D0 → ⋅ ⋅ ⋅ → Dn starting
at the base of the Hofbauer tower so that if x ∈ Cn, then x̂ := �−1(x) ∩D0 follows

this path and fn(Cn) = Dn. Notice that (Î , f̂) is a Markov map in the sense that

the image of any domain D is the union of domains of Î. Obviously, � ∘ f̂ = f ∘ �.

For each R ∈ ℕ, let ÎR be the compact part of the Hofbauer tower defined by

ÎR :=
∪
{D ∈ D : there exists a path D0 → ⋅ ⋅ ⋅ → D of length r ⩽ R}

A subgraph (ℰ ,→) is called closed if D ∈ ℰ and D → D′ implies that D′ ∈ ℰ . It is
primitive if for every pair D,D′ ∈ ℰ , there is a path from D to D′ within ℰ . Clearly
any two distinct maximal primitive subgraphs are disjoint.

There are several key differences between the Hofbauer tower and the Rokhlin-
Kakutani or Young tower (for details of these towers see Section 6). For example,
in contrast to the Hofbauer tower, there are usually points which the latter kind of
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tower does not ‘see’. On the other hand they usually have some bounded distortion,
which Hofbauer towers do not.

Lemma 2. Let f : I → I be a multimodal map and Ω is a transitive component.
(a) If Ω consists of a finite union of intervals, then there is a closed primitive

subgraph (ℰ ,→) of (D,→) containing a dense f̂ -orbit and such that Ω = �(∪D∈ℰD).
(b) If Ω is a Cantor (or finite) set avoiding a periodic interval of J , then there is
a (non-closed) primitive subgraph (ℰ ,→) of (D,→) such that Ω ⊂ �(∪D∈ℰD), and

there is a dense f̂ -orbit in (∪D∈ℰD) ∩ �−1(Ω).

The arguments for this lemma are implicit in [H, HR] combined. We will give a
self-contained proof in the appendix.

3.2. Types of inducing schemes. We will use first return maps to various well-
chosen subsets X̂ ⊂ Î to produce inducing scheme for the original system (I, f),
in accordance with the main message of [B1] that ‘good’ inducing schemes (X,F )

always correspond to first return maps of (Î , f̂). Here we need the branches of F
to have uniform distortion bounds, for which we use (a C2 version of) the Koebe
lemma. So fix relative Koebe space � > 0 and let X ⊂ I be an interval (we will
choose X to be an n-cylinder for some n), and take the interval Y concentric with
X such that ∣Y ∣ = (1 + 2�)∣X∣. The construction of F will be such that whenever
Xi is a branch domain of F , say F ∣Xi = f �i , then there is a neighbourhood Yi ⊃ Xi

such that f �i maps Yi monotonically onto Y . Inducing schemes with this property
are called �-extendible or just extendible. The Koebe Lemma then ensures that the

distortion supx,y∈Xi
∣DF (x)∣
∣DF (x)∣ ⩽ K = K(�) as in (8), and this bound is uniform over

all branches of Fn and n ⩾ 1.

There are different choices of sets X̂ with first return map producing an extendible
inducing scheme. Theorem 3 deals with the simplest construction, namely where X̂
is an interval within a single domain D ∈ ℰ with �(X̂) = X and �(D) ⊃ Y . A more

involved construction, where X̂ ⊂ �−1(X) is a ‘column’ consisting intervals in (pos-
sibly infinitely) many intervals domains, is useful too, as it is shown to correspond
to a ‘first �-extendible return map’, see [B1] and Lemma 3. We call an inducing
scheme (X,F, �) a first �-extendible return time to X if for each x ∈ Xi, �(x) is the
smallest positive iterate such that f j(x) ∈ X and there is a neighbourhood Yi ⊃ Xi

such that f j maps Yi monotonically onto Y .

We call these two constructions Type A and Type B and the details are as follows:

Type A inducing scheme (single domain): Take a domain D in the transitive

part ℰ of the Hofbauer tower such that �(D) ⊃ Y , and let X̂ := �−1(X) ∩D. As
X = Cn is a cylinder set, the boundary points of X are precritical and will not revisit
X before they reach Crit. This means X̂ is nice in the sense that f̂k(∂X)∩X̂ = ∅ for
all k ∈ ℕ because points in �−1(Crit) map to the boundary of domains, and hence

never into the interior of any domain. Let F̂ : X̂ → X̂ be the first return map;
let �̂(x) ∈ ℕ be such that F̂ (x) = f̂ �̂(x̂)(x̂) for each x̂ ∈ X̂ on which F̂ is defined.

By the Markov property of f̂ , x̂ has a neighbourhood U such that f̂ �̂(x̂) maps U
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monotonically onto D. Therefore there is a neighbourhood V ⊂ U such that f̂ �̂(x̂)

maps V monotonically onto X̂. Since �(X̂) = X is a cylinder set, orb(∂X̂)∩ X̂ = ∅.
It follows that �̂(ŷ) = �̂(x̂) for all ŷ ∈ V .

The inducing scheme (X,F, �) is defined by X = �(X̂), F = � ∘ F̂ ∘ �−1∣X̂ and

�(x) = �̂(�−1(x)∩ X̂). This means that each branch F : Xi → X extends to Y , and
hence by the Koebe Lemma has bounded distortion as in (8).

Type B inducing scheme (column of domains): Choose

(9) X̂ = ⊔{D ∩ �−1(X) : D ∈ D, �(D) ⊃ Y }, .

The same argument as under Type A shows that f̂k(∂X) ∩ X̂ = ∅ for all k ⩾ 1.

Let rX̂ denote the first return time to X̂. In [B1] it is shown that given x ∈ X, for

any x̂, ŷ ∈ X̂ such that �(x̂) = �(ŷ), rX̂(x̂) = rX̂(ŷ). So we can define (X,F ) by

F (x) = f rX̂(x̂) for any x̂ such that �(x̂) = x. Again the Koebe Lemma implies that
(X,F ) has bounded distortion as in (8). In [B1] it is shown that if (X,F, �) is a first
�-extendible return scheme it is also a Type B inducing scheme.

3.3. Lifing measures to the Hofbauer tower. Recall that D0 = I = f0(C0)
is the base of the Hofbauer tower. Let i : I → D0 be the trivial bijection map
(inclusion) such that i−1 = �∣D0 . Given a measure � ∈ℳerg, let �̂0 = � ∘ i−1, and

(10) �̂n :=
1

n

n−1∑
k=0

�̂0 ∘ f̂−k.

We say that � is liftable to (Î , f̂) if there exists a weak accumulation point �̂ of the
sequence {�̂n}n with �̂ ∕≡ 0.

Remark 2. If � is liftable and ergodic, then �̂ is an ergodic f̂ -invariant probability
measure on Î, see [K1]

Proof of Theorem 3. First assume that � ∈ℳ+. Keller [K1] showed that if � is not

atomic then it is liftable, �̂(Î) = �(I) = 1 and �̂ ∘ �−1 = �. If � ∈ℳ+ is atomic, it
must be supported on a hyperbolic repelling periodic cycle. It is easy to show that
such measures are liftable. In both cases, [K1] shows that �̂ is also ergodic.

We suppose that X ∈ Pn is a cylinder, D ∈ D is a domain and X̂ ⊂ D is a set with
�̂(X̂) > 0. We let (X,F, �) be the corresponding Type A inducing scheme.

Let Ω be the transitive component supporting �. If Ω is an interval as in case (Ω1),
then we take D inside the closed transitive subgraph of (D,→) as guaranteed by
Lemma 2(a). Take any open interval U ⊂ X. Since P1 generates the Borel �-

algebra there is an n-cylinder Cn ⊂ U ; we let Ĉn = �−1(Cn) ∩D. It follows that

f̂n(Ĉn) = D′ for some domain D′ in the same transitive component of the Hofbauer

tower as D. Hence there is an m-path D′ → ⋅ ⋅ ⋅ → D and a subcylinder Ĉn+m ⊂ Ĉn

such that f̂n+m(Ĉn+m) = D. Therefore �(Ĉn+m) ⊂ U contains a domain Xi. It
follows that ∪iXi is dense in X. Repeating the argument for U ⊂ Xi we find that
F−1(∪iXi) is dense in X, and by induction, (X,F )∞ is dense in X as well. (Notice
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that this construction may produce many branches Xi such that �(Xi) = 0, but this
does not affect the result.)

If Ω is as in case (Ω2) then ℳ+ = ∅ so there is nothing to show. This is proved
for the unimodal case in [MSt]; the multimodal case is similar, the required ‘real
bounds’ follow from [SV]. If Ω is Cantor (or finite) set of points avoiding a periodic
interval of f as in case (Ω3), then Lemma 2(b) still provides us with a primitive
subgraph, and the same argument as above shows that (X,F )∞ is dense in X ∩ Ω.

Let �̂X̂ := 1
�̂(X̂)

�̂∣X̂ be the conditional measure on X̂. The measure �F := �̂X̂∘�
−1∣X̂

is clearly F -invariant, and by Kac’s Lemma,∫
X
� d�F =

∫
X̂
�̂ d�̂X̂ =

1

�̂(X̂)
<∞.

Finally, by the Poincaré Recurrence Theorem, �̂X̂ -a.e. point x̂ ∈ X̂ returns infinitely

often to X̂, and because �F ≪ � we also get �((X,F )∞) = �(X) by ergodicity.

Now for the other direction, notice that by assumption, each branch of any iterate
Fn of the induced map has negative Schwarzian derivative. Therefore distortion is
bounded uniformly over n and the branches of Fn. Hence, by taking an iterate of
the induced map F if necessary, we can assume that F is uniformly expanding. It
follows by F -invariance of �F that

0 <
1

n

∫
(X,F )∞

log ∣DFn∣ d�F

=

∫
(X,F )∞

1

n

n−1∑
j=0

log ∣DF ∘ F j ∣ d�F =

∫
(X,F )∞

log ∣DF ∣ d�F = �(�F ).

Let � be the projected measure of �F ; both �F and � are ergodic. Since
∫
� d�F <

∞, we can take a point x ∈ (X,F )∞ which is typical for both �F and �. Let

�k =
∑k−1

j=0 � ∘ F j(x). Then applying the Ergodic Theorem several times, we get

limk→∞
�k
k =

∫
�d�F <∞ and

�(�) =

∫
I

log ∣Df ∣ d� = lim
n→∞

1

n

n−1∑
j=0

log ∣Df ∘ f j(x)∣

= lim
k→∞

1

�k

�k−1∑
j=0

log ∣Df ∘ f j(x)∣

= lim
k→∞

k

�k

1

k

k−1∑
j=0

log ∣DF ∘ F j(x)∣ = 1∫
�d�F

�(�F ) > 0.

This concludes the proof. □

Remark 3. If �(�) > 0 but supp(�) ⊂ orb(Crit) and � is the equidistribution
on a repelling periodic orbit, say supp(�) = orb(p) where fn(p) = p, then we can
still find an inducing scheme compatible to �. Let X ∋ p be an open interval such
that the component of f−n(X) containing p is compactly contained in X. Call this
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component X1. Then (X,F, �) with F ∣X1 = f �1 ∣X1 = fn∣X1 is an inducing scheme
compatible to �.

Remark 4. If � ∈ ℳ+ then Remark 2 implies that �̂ is ergodic. If Ω is as in
Lemma 2(a) we also have that �̂ is supported on ℰ. That lemma implies that for

any x̂ ∈ Î ∖ ∂D there is ŷ ∈ ℰ so that �(x̂) = �(ŷ). Thus there exists n ⩾ 0 so that

f̂n(x̂) = f̂n(ŷ). So �̂(ℰ) = 1 follows by ergodicity.

Remark 5. (a) (X,F )∞ = X implies that given a measure �F obtained from
Theorem 4, the measure �, the projection of �F , has �(U) > 0 for any open
set U in ∪nfn(X).

(b) If (X,F, �) comes from Theorem 3, then � is compatible to it if and only
if �((X,F )∞) > 0; for more general inducing schemes, this equivalence is
false.

(c) Note that
∫
� d� <∞ does not always imply that

∫
� d�F <∞, see [Z].

The following lemma shows that Theorem 3 also holds for Type B inducing schemes.

Lemma 3. If � ∈ ℳ+ then there exists � > 0 and an interval X ⊂ I such that �
is compatible to the corresponding Type B inducing scheme (X,F, �). Moreover, if

Ω is the transitive component supporting � then (X,F )∞ = X ∩ Ω.

Proof. As we noted in the proof of Theorem 3, since � ∈ℳ+, �̂(Î) > 0. We choose

X and � > 0 so that the set X̂ as in (9) has �̂(X̂) > 0. As in [B1], this can be used
to prove that � is compatible to (X,F, �).

The proof that (X,F )∞ = X ∩ Ω follows as in the proof of Theorem 3. □

3.4. Lifting measures of large free energy. Theorem 3 exploits the fact that
measures with positive Lyapunov exponents are liftable; but their lifts do not, in
general, give similar mass to the same parts in the Hofbauer tower. The next result
shows that measures with entropy uniformly bounded away from 0 lift, and give
mass uniformly to specific compact subsets of the Hofbauer tower. The proof is
postponed to the appendix.

Lemma 4. For every " > 0, there are R ∈ ℕ and � > 0 such that if � ∈ ℳerg

has entropy ℎ�(f) ⩾ ", then � is liftable to the Hofbauer tower and �̂(ÎR) ⩾ �.

Furthermore, there is a set Ê, depending only on ", such that �̂(Ê) > �/2 and

minD∈D∩ÎR d(Ê ∩D, ∂D) > 0.

Remark 6. One consequence of this lemma is that the choice of � in defining Type
B inducing schemes depends only on the entropy of �. Another consequence is that
given " > 0, we can choose � > 0 and set of N = N(") < ∞ inducing schemes
(X1, F 1), . . . , (XN , FN ) so that any measure � ∈ ℳ+ with ℎ� > " is compatible to

some (Xk, Fk). The details of this are as follows.

Lemma 4 says that given " > 0 there exists � = �(") and Ê = Ê("), a compact

set bounded away from ∂D, so that ℎ�(f) > " for � ∈ ℳ implies �̂(Ê) > �. So
there is a finite collection of cylinder sets X1, . . . , XN , so that if we create the
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sets X̂k ⊂ �−1(Xk) in the same way (i.e., as for Type A or as for Type B), then

Ê ⊂
(
∪1⩽k⩽NX̂

k
)

. In this case we say that {X̂k}1⩽k⩽N satisfies property Cover(").

Since minD∈D∩ÎR d(Ê ∩ D, ∂D) > 0, we can choose these cylinder sets so that the

corresponding inducing schemes are all �-extendible for some � > 0.

Notice that by Remark 4, we can suppose that Ê ⊂ ℰ . We will use this lemma in
connection with Case 4 of Proposition 2 in the next section to carry out the proofs
of Theorems 2 and 1. In principle, these results deal with measures in ℳ+ that
possibly have zero entropy. However, the next lemma shows that our equilibrium
states need to have both positive Lyapunov exponent and entropy.

Lemma 5. Suppose that f ∈ ℋ satisfies (1). Then there exists �1 < 0 so that
for t ∈ (�1, 1), there exist "0, " > 0 so that any measure � with ℎ�(f) +

∫
't d� >

P ('t) − "0 satisfies ℎ�(f) ⩾ ". Similarly, if f ∈ ℋ satisfies (3) then there exist
�1 < 0 < �2 so that for t ∈ (�1, 1 + �2), there exist "0, " > 0 so that any measure �
with ℎ�(f) +

∫
't d� > P ('t)− "0 satisfies ℎ�(f) ⩾ ".

Proof. Any transitive map satisfying (1) has an acip � with ℎ�(f) = �(�) > 0.
Applying (2) and Ruelle’s inequality [Ru1], we obtain that P ('t) > 0 for t < 1.
We let "0 = "0(t) := P ('t)/2. Therefore, it is easy to see that for all t ∈ [0, 1)
there exists " = "(t) > 0 such that ℎ�(f) +

∫
't d� > P ('t)/2 implies ℎ�(f) > ".

For the case t < 0, let �1 := − ℎtop(f)
4 sup{�(�):�∈ℳerg} . Then ℎ�(f) +

∫
't d� > P ('t)/2

implies ℎ�(f) > P ('t)/2 − t�(�). Since P ('t) > ℎtop(f), for t ∈ (�1, 0) we obtain
ℎ�(f) > ℎtop(f)/4.

Next assume that the Collet-Eckmann condition (3) holds. We can choose �1 as
above. Define � := inf{�(�) : � ∈ ℳerg}, and let  := �/�(�) ⩽ 1. By [BS,
Theorem 1.2] we know that � > 0. Take " = �/2. If � is any measure with
ℎ�(f) < " then

P ('t)−
(
ℎ�(f) +

∫
'td�

)
⩾

[
(1− t)−

(
1

2
− t
)


]
�(�) =

[
1− 

2
+ t( − 1)

]
�(�),

which is bounded away from 0 for all fixed 1 ⩽ t < 1−/2
1− (or all t ⩾ 1 if  = 1).

Hence, if ℎ�(f) < ", then the free energy of � cannot be close to P ('t). □

We are now able to state the following which will show that part (c) of Proposition 2
below is true in the settings of Theorems 1 and 2.

Corollary 1. In the setting of Theorems 1 and 2, there exists �′ > 0, a sequence
{�n}n such that ℎ�n(f) +

∫
't d�n → P ('t) and Type A and Type B inducing

schemes (X,F ) such that �n is compatible to (X,F ) for all n.

Proof. From the definition of pressure, there exists {�n}n ⊂ℳerg so that ℎ�n(f) +∫
't d�n → P ('t). By Lemma 5, there exists " > 0 so that ℎ�n(f) ⩾ " for all

large n. By Remark 6 there must exist X̂ and �′ > 0 as in the construction of
Type A, or as in Type B, schemes, and a subsequence {�nk}k such that all �nk have

�̂nk(X̂) > �′, as required. □
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The following proposition, which will be particularly useful in Section 6, implies that
we can fix an inducing scheme so that any measure with large free energy, for some
't, must be compatible to this inducing scheme. We prove it in Section 5.

Proposition 1. For any point x ∈ I ∖ orb(f(Crit)) there exists a Type B inducing
scheme (X,F ) with x ∈ X and so that the following hold.

∙ In the case of, and with t1 < 1 as in Theorem 1 (polynomial growth rate):
for any t1 < t2 < 1 there exists "0 > 0 so that for all t ∈ (t1, t2), if ℎ�(f) +∫
 t d� > P+( t)− "0 then � is compatible to (X,F ).

∙ In the case of, and with t1 < 1 < t2 as in Theorem 2 (Collet-Eckmann): there
exists "0 > 0 so that for all t ∈ (t1, t2), if ℎ�(f) +

∫
 t d� > P+( t) − "0

then � is compatible to (X,F ).

4. Preliminary Results for Existence and Uniqueness

The proof of Theorem 1 is divided into several steps. We use the Hofbauer tower
construction given in Section 3 to fix an inducing scheme F :

∪
j Xj → X over

X ∈ Pn. Let Φ be the induced potential. In this section we prove some preliminary
results relating potentials ' and measures for the system (X,F ) to the corresponding
potentials Φ and corresponding measures for appropriate inducing schemes (X,F ).

The following lemma, the ideas for which go back to Abramov [Ab], relates the free
energies of the original and the induced system. See [PSe1] for the proof.

Lemma 6. If �F is an ergodic measure on (X,F ) with
∫
�d�F < ∞, and � is the

projected measure on (X, f), then

ℎ�F (F ) =

(∫
X
� d�F

)
ℎ�(f) and

∫
X

Φ d�F =

(∫
X
� d�F

)∫
I
' d�.

where Φ is the lifted potential of '.

It is easy to show that putting ' := log ∣Df ∣ into the above lemma proves that
for any full-branched inducing scheme with ergodic invariant measure �F such that∫
� d�F <∞, the measure �F projects to a measure � with �(�) > 0.

Suppose that ' : I → ℝ is the potential for the original system. We will deal with
the shifted potential  S := ' − S. Given an inducing scheme (X,F ) with F = f � ,
let ΨS be the induced potential, i.e., ΨS := Φ− �S. The following lemma resembles
the argument of [Sa1, Proposition 10]. An important difference here is that we do
not require that the original potential has summable variations.

Lemma 7. Suppose that PG(ΨS∗) < ∞ and Φ has summable variations. Then
PG(ΨS) is decreasing and continuous in [S∗,∞).

Proof. We first recall some facts. By definition, PG(ΨS) := limn→∞
1
n logZn(ΨS , Xi)

where Zn(ΨS , Xi) :=
∑

Fnx=x e
(ΨS)n(x)1Xi =

∑
Fnx=x e

Φn(x)−S�n(x)1Xi . As in [Sa1],
topological mixing implies that PG(ΨS) is independent of Xi, and we suppress Xi

in the notation accordingly. Clearly, PG(ΨS) is decreasing in S. We also know
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that since we have summable variations for Φ, i.e., there exists B < ∞ such that∑∞
k=1 Vn(Φ) < B, we have for any S,

(11) logZm1(ΨS) + logZm2(ΨS) ⩽ logZm1+m2(ΨS) + logB,

see the proof of [Sa1, Proposition 1].

Since PG(ΨS) is decreasing in S, it is sufficient to show that for any S0 ⩾ S∗ and
any " > 0, there exists S > S0 such that PG(ΨS) > PG(ΨS0)− ". Fix " > 0 and n0

so large that logB
n0

< "
3 . By definition of PG(ΨS0), for a large enough n ⩾ n0,

1

n
logZn(ΨS0) ⩾ PG(ΨS0)− "

3
.

Since Zn(ΨS) is continuous in S, there exists S > S0 such that

1

n
logZn(ΨS) > PG(ΨS0)− 2

3
".

Then by (11) and writing m = kn+ r where 0 ⩽ r ⩽ n− 1,

logZm(ΨS)

m
⩾
k logZn(ΨS) + logZr(ΨS)− (k + 1) logB

kn+ r

m→∞−→ logZn(ΨS)

n
− logB

n
⩾ PG(ΨS0)− "

as required. □

4.1. Inducing schemes producing a unique equilibrium state. The following
result is a key tool in proving Theorems 1 and 2. It gives necessary conditions,
comparable to the abstract conditions presented in [PSe1], to push equilibrium states
through inducing procedures. Notice that Case 4 is reminiscent of the ideas involved
in the Discriminant Theorem, [Sa2, Theorem 2]. However, our approach seems more
natural in this context.

Proposition 2. Suppose that  is a potential with P ( ) = 0. Let X̂ be the set used
the construction of either a Type A or Type B inducing scheme (X,F, �). Suppose
that the lifted potential Ψ has ∥ℒΨ1∥∞ <∞ and

∑
n⩾1 Vn(Ψ) <∞.

Consider the assumptions:

(a)
∑

i �ie
Ψi <∞ for Ψi = supx∈Xi Ψ(x);

(b) there exists an equilibrium state � ∈ℳ+ compatible to (X,F, �);
(c) there exist a sequence {"n}n ⊂ ℝ− with "n → 0 and measures {�n}n ⊂ℳ+

such that every �n is compatible to (X,F, �), ℎ�n(f) +
∫
 d�n = "n and

PG(Ψ"n) <∞ for all n;
(d) PG(Ψ) = 0.

If any of the following combinations of assumptions holds:⎧⎨⎩
1. (b) and (d);
2. (a) and (d);
3. (a) and (b);
4. (a) and (c);
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then there is a unique equilibrium state � for (I, f,  ) among all measures � ∈ℳ+

with �̂(X̂) > 0. Moreover, � is obtained by projecting the equilibrium state �Ψ of
the inducing scheme and in all cases we have PG(Ψ) = 0.

Remark 7. As noted in the proof, if �Ψ is the equilibrium state for (X,F,Ψ) given
by Theorem 4 then the condition

∑
i �ie

Ψi < ∞ implies that
∫
X �d�Ψ < ∞ by the

Gibbs property of �Ψ.

Proof of Proposition 2. As in Section 2, Proposition 1 of [Sa1] implies that Zn(Ψ) =
O(∥ℒΨ1∥n∞). Therefore ∥ℒΨ1∥∞ < ∞ implies PG(Ψ) < ∞. So in any case we can
immediately apply Theorem 4 to obtain a measure �Ψ, and moreover the Variational
Principle holds.

Case 1. (b) and (d) hold: By definition of compatibility, we can lift � to �F
where

∫
� d�F <∞. By Lemma 6

0 = P ( ) =

(∫
� d�F

)(
ℎ�(f) +

∫
 d�

)
= ℎ�F (F ) +

∫
Ψ d�F .

Since also PG(Ψ) = 0, the Variational Principle (Theorem 4 part (b)) implies that
�F is an equilibrium state for the inducing scheme. From the uniqueness of the
measure given by Theorem 4, we have �F = �Ψ. So � is the same as the projection
of �Ψ given by Theorem 3, as required. Note that by Lemma 6, ℎ�Ψ(F ) < ∞ and
−
∫

Ψ d�Ψ <∞.

Case 2: (a) and (d) hold: By the Gibbs property of �Ψ we have∫
� d�Ψ ≍dis

∑
i

�ie
Ψi−PG(Ψ).

Adding the fact that PG(Ψ) > −∞ to (a) gives
∫
� d�Ψ < ∞. This implies that

we can use Theorem 3 to project �Ψ to an f -invariant measure � ∈ ℳ+. By
Lemma 6, ℎ�Ψ(F ) < ∞ and −

∫
Ψ d�Ψ < ∞. So by Theorem 4 part (a), �Ψ is

an equilibrium state, and the Variational Principle (i.e., Theorem 4 part (b)) gives
PG(Ψ) = P (Ψ) = ℎ�Ψ(F ) +

∫
Ψ d�Ψ.

Now condition (d) gives that PG(Ψ) = P (Ψ) = 0. Thus Lemma 6 implies that
ℎ� (f) +

∫
 d� = 0, so � is an equilibrium state for (I, f,  ). We can then use

the argument of Case 1 to show that this is the unique such equilibrium state in
ℳ+ with �̂(X̂) = (

∫
� d�̂)−1 > 0.

Case 3: (a) and (b) hold: Assumption (b) gives an equilibrium state � ∈ ℳ+

which can be lifted, using Theorem 3, to �F on (X,F, �). We wish to show that
� is the unique equilibrium state for (I, f,  ) which lifts to our inducing scheme.
As in Case 2, this will follow if we can show PG(Ψ) = 0. Since we also have
0 = ℎ�(f) +

∫
 d�, Lemma 6 implies that ℎ�F (F ) +

∫
Ψ d�F = 0. The Variational

Principle thus implies that PG(Ψ) ⩾ 0 as well.

Now as in Case 2, condition (a) gives a measure �Ψ having ℎ�Ψ(F ) +
∫

Ψ d�Ψ =
P (Ψ) = PG(Ψ). Again by condition (a), this projects to a measure � . By Lemma 6,
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we have

ℎ� (f) +

∫
 d� = PG(Ψ)

(∫
� d�Ψ

)−1

⩾ 0.

Since P ( ) = 0, we must have PG(Ψ) = 0 (this also implies that � is an equilibrium
state for (I, f,  )). This means that we have ℎ�F (F )+

∫
Ψ d�F = ℎ�Ψ(F )+

∫
Ψ d�Ψ

and so, by uniqueness of equilibrium states for (X,F,Ψ), �F = �Ψ and hence � = � .

Case 4: (a) and (c) hold: By (c), ℎ�n(f) +
∫

( − "n) d�n = 0. Let �n,F be the
corresponding lifted measure obtained from Theorem 3. Then by Lemma 6, and the
Variational Principle, 0 = ℎ�n,F (F ) +

∫
X Ψ"n d�n,F ⩽ PG(Ψ"n). Lemma 7 implies

that we can take the limit to get PG(Ψ) = limn→∞ PG(Ψ"n) ⩾ 0.

By the argument of Case 2, (a) implies that we have an equilibrium state �Ψ which
projects to a measure � . The second part of the proof of Case 3 showed that this
must imply that PG(Ψ) = 0. Hence the argument of Case 2 completes the proof. □

4.2. A single inducing scheme suffices. We next present a technical result,
which when applied to the settings of Theorems 1 and 2, shows that any measure
with free energy close to our equilibrium states is compatible to a single inducing
scheme, see Proposition 1.

As in Remark 6, Lemma 4 implies that given " > 0 there exists � = �(") and Ê =

Ê("), a compact set bounded away from ∂D, so that ℎ�(f) > " for � ∈ ℳ implies

�̂(Ê) > �. This implies that for a measure � ∈ ℳ+, in particular an equilibrium

state � , we can choose X0 ∈ Pn so that for the set X̂0 as in the construction of
a Type A (or Type B if a first extendible return map is preferred) inducing scheme

�̂ (X̂0 ∩ Ê) > 0. Next we add a finite collection of cylinder sets Xk ∈ ∪j⩾nPj ,
k = 1, . . . , N , so that {X̂k}0⩽k⩽N satisfy property Cover(") in Remark 6. We

assume that X̂0, . . . , X̂N are all created in the same way, i.e., either all as in the
Type A or all as in the Type B construction. The next proposition shows that there
is a single inducing scheme that is compatible to every measure in ℳ+ whose free
energy is sufficiently close to the pressure.

Proposition 3. Suppose that  : I → [−∞,∞) is a potential with P ( ) = 0 so
that  (x) > −∞ on I ∖ Crit. Suppose also that there exist "0, " > 0 such that

ℎ�′(f) +
∫
 d�′ > −"0 implies ℎ�′(f) > ". Let {X̂k}0⩽k⩽N satisfy Cover(") where

� is compatible to (X0, F0). Suppose that the induced potentials Ψk and inducing

times �k corresponding to the inducing schemes (Xk, Fk) satisfy:

(a)
∑

n Vn(Ψk) <∞ for all 0 ⩽ k ⩽ N ;

(b)
∑

i �
k
i e

sup{Ψk(x) :x∈Xk
i } < ∞ (i.e., condition (a) of Proposition 2 holds for

Ψk) for all 0 ⩽ k ⩽ N .

Then there exists � = �(", {X̂k}0⩽k⩽N ) > 0 so that ℎ�(f) +
∫
 d� > −� implies

�̂(X̂0) > 0.
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The idea here is that information on the equilibrium state for (X0, F0,Ψ
0) allows

us to show that measures with enough free energy must cover a large portion of the
Hofbauer tower, in particular they are compatible to (X0, F0).

Proof. Let k ∈ {1, . . . , N} be arbitrary and assume that �′ ∈ℳ+ is a measure such

that �̂′(X̂k) > 0, but with �̂′(X̂0) = 0.

Here we will refer to the components of �−1(Xk
i ) ∩ X̂k as 1-cylinders of (X̂k, RX̂k),

the first return map to X̂k.

Claim 1. (i) There is at least one 1-cylinder mapping into X̂0 before returning

to X̂k;
(ii) There is at least one 1-cylinder which does not map to X̂0 before returning

to X̂k.

Moreover, whether (i) or (ii) holds depends only on �(X̂k
i ), and not on the domain

that X̂k
i belongs to.

Proof. Property (i) follows by transitivity. (A priori, sets X̂k
i satisfying (i) may have

�̂′(X̂k
i ) = 0 or not; we will show that �̂′(X̂k

i ) > 0 for at least one such X̂k
i .)

For property (ii), suppose that for any first return domain X̂k
i ⊂ D ∈ D there is

0 ⩽ s < rX̂k(X̂k
i ) such that f̂s(X̂k

i )∩X̂0 ∕= ∅. By the properties of cylinders we must

in fact have f̂s(X̂k
i ) ⊂ X̂0. This means that �̂′-a.e. point enters X̂0 with positive

frequency. Ergodicity implies that �̂′(X̂0) > 0 which is a contradiction. Hence (ii)
holds.

Since X̂k ∈ ∪j⩾nPj , if (i) holds for some 1-cylinder X̂k
i of (X̂k, RX̂k), say, then

this whole cylinder maps into X̂0. Moreover, by the proof of Lemma 3, see [B1], if

ŷ1, ŷ2 ∈ X̂k have �(ŷ1) = �(ŷ2) and f̂k(ŷ1) ∈ X̂0 then f̂k(ŷ2) ∈ X̂0. Consequently,

for a 1-cylinder Xk
i of (Xk, Fk) either every component of �−1(Xk

i )∩X̂k has property

(i), or every component of �−1(Xk
i )∩X̂k has property (ii). This concludes the proof

of the first claim. □

Note that condition (b) implies that ∥ℒΨ1∥∞ <∞ and hence we may apply the ideas
of Case 3 of Proposition 2 to get PG(Ψ0) = 0. Since, by the Gibbs property from
Theorem 4, �Ψ gives all cylinders of (X0, F0) positive mass, the same must be true
of the �̂ ∘ �∣−1

X̂0
-measure of these cylinders. Thus part (i) of the claim implies that

�̂ (X̂k) > 0 and hence � is compatible to (Xk, Fk). By Case 3 of Proposition 2,

this also implies that PG(Ψk) = 0.

Let (Xk
♭ , Fk) denote the system minus the cylinders satisfying (i). Let P ♭G(Ψk)

denote the Gurevich pressure of (Xk
♭ , Fk,Ψ

k), computed from Z♭n(Ψk), which is
defined in the natural way. (Note that one consequence of part (ii) of the claim is

that P ♭G(Ψk) > −∞.)

Claim 2. P ♭G(Ψk) < PG(Ψk) = 0.
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Proof. Let Yk be the union of 1-cylinders of (Xk, Fk) whose representatives in X̂k

satisfy property (i). We fix a 1-cylinder Y k so that Y k ∩Yk = ∅, i.e., its representa-

tives in X̂k satisfy (ii). In each Ck
j ⊂ Y k there exists a unique periodic point which

contributes to Zj(Ψ
k, Y k). Thus noting that mΨk(Ck

j ) =
∫
Ckj
e−Ψk(x)d�Ψk and using

the variation properties of Ψk
j , we derive

e−Vj(Ψ
k)
∑

mΨk(Ck
j ) ⩽ Zj(Ψ

k, Y k) ⩽ eVj(Ψ
k)
∑

mΨk(Ck
j )

where the sum is taken over all j-cylinders Ck
j in Y k. Similarly

e−Vj(Ψ
k)
∑

♭mΨk(Ck
j ) ⩽ Z

♭
j(Ψ

k, Y k) ⩽ eVj(Ψ
k)
∑

♭mΨk(Ck
j )

where the sum
∑♭ is taken over all j-cylinders Ck

j in Y k so that F sk (Ck
j ) ∩ Yk = ∅

for 0 ⩽ s ⩽ j − 1.

For every Ck
j in the sum

∑♭mΨ′(C
k
j ) there exist collection of j + 1-cylinders Ck

j+1

so that F jk (∪Ck
j+1) = Yk. Since mΨk is conformal and Ψk has summable variations,

we have
mΨk(∪Ck

j+1)

mΨk(Ck
j )

⩾
1

K

(
mΨk(Yk)
mΨk(Xk)

)
where K = e

∑
j Vj(Ψ

k). Hence, since mΨk(Xk) = 1,∑
♭mΨk(∪Ck

j+1) =
∑

♭(mΨk(Ck
j )−mΨk(∪Ck

j+1))

⩽

(
1− mΨk(Yk)

K

) ∑♭
mΨk(Ck

j ).

Letting � :=
�

Ψk
(Yk)

K we have

Z♭j+1(Ψk, Y k) ⩽ eVj+1(Ψk)
∑

♭ �Ψk(Ck
j ) ⩽ e

Vj+1(Ψk)+Vj(Ψ
k)(1− �)Z♭j(Ψk, Y k).

Therefore Z♭n(Ψk, Y k) ⩽ e2
∑
j Vj(Ψ

k)(1 − �)nZ♭1(Ψk, Y k). Since Lemma 8 implies∑
j Vj(Ψ

k) <∞, we have P ♭G(Ψk) < log(1− �) < 0, as required. This completes the
proof of the second claim. □

Now take �k > 0 so that P ♭G(Ψk + �k�
k) ⩽ 0. If the measure �′ from the beginning

of the proof satisfies ℎ�′(f) +
∫
 d�′ > −�k, then ℎ�′(f) +

∫
( + �k)d�

′ > 0, so

Lemma 6 implies that the corresponding induced measure �′Fk has ℎ�′Fk
(Fk)+

∫
(Ψk+

�k�
k) d�′Fk > 0. From the Variational Principle for the system (Xk

♭ , Fk,Ψ
k + �k�

k)

we see that �′Fk cannot be supported on type (ii) 1-cylinders of (Xk, Fk) only. Hence

�̂′(X̂0) > 0.

Finally take � := min{"0, �1, . . . , �N} and let � be such that ℎ�(f) +
∫
 d� > −�.

Since � ⩽ "0, we have ℎ�(f) > " by assumption, and therefore � is compatible to

(Xk, Fk) for some k ∈ {0, 1, . . . , N}. By the choice of � and the argument of the

previous paragraph, it follows that �̂(X̂0) > 0 as required. □
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5. Proofs of Theorem 1 and 2; Existence, Uniqueness and Tail
Estimates

Let ' = 't = −t log ∣Df ∣, and Φ be the corresponding induced potential. Przytycki
[Pr] proves that a measure � ∈ℳ is either supported on an attracting periodic orbit
or 0 ⩽

∫
log ∣Df ∣ d� < ∞. So when we apply Lemma 6 to this potential, we will

get finite integrals for both the measure on I and for the measure on the inducing
scheme with the induced potential.

Lemma 8. Assume that f ∈ ℋ has negative Schwarzian derivative. For inducing
schemes obtained in Section 3, the induced potential has summable variations.

Proof. In general, ' has unbounded variations. However, we note that Type A and
Type B inducing schemes are maps F :

∪
j Xj → X with uniform Koebe space �.

Since ' is in general unbounded, it will not have bounded variations, but we only
need to check that the induced potential Φ has bounded variations. By the Koebe

Lemma, ∣DF (y)∣
∣DF (x)∣ <

1+2�
�2 + 1. Therefore

∣Φ(x)− Φ(y)∣ = ∣t∣
∣∣∣∣− log ∣DF (x)∣+ log ∣DF (y)∣

∣∣∣∣ = ∣t∣
∣∣∣∣log

(
∣DF (y)∣
∣DF (x)∣

)∣∣∣∣
⩽ ∣t∣ log

(
1 +

1 + 2�

�2

)
< ∣t∣

(
1 + 2�

�2

)
.

By standard arguments, for any  > 1 there exists N = N() such that we have
infx∈X ∣DFN (x)∣ >  (here we use the negative Schwarzian assumption; alter-
natively a C3 assumption and the absence of neutral periodic cycles would suf-
fice). Moreover, FN satisfies the above distortion estimates. Let  > 1

� and let

G :
∪
j Yj → X be given by G := FN for N = N(). Clearly, proving the lemma for

ΦN is sufficient.

We have that X is a �-scaled neighbourhood of Yj for any j. Using the Koebe
Lemma again for x, y in the same connected component of G−1(Yj), we have

∣ΦN (x)− ΦN (y)∣ < ∣t∣
(

1 + 2�

(�)2

)
.

Repeating this argument for x, y in the same connected component of G−n(Yj) that

∣ΦN (x)− ΦN (y)∣ < ∣t∣
(

1 + 2n�

(n�)2

)
= ∣t∣O(−n).

Thus ΦN , and hence Φ, has summable variations. □

5.1. Estimates for Collet-Eckmann maps. The proofs of Theorems 1 and 2
have roughly the same structure. We start with the Collet-Eckmann case, leaving
the additional details for the summable case to the end of the section. For use in
both proofs, we define

Z0(Φ) :=
∑

F (x)=x

eΦ(x).
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As stated in the proof of Proposition 2, we have Zn(Φ) = O(∥ℒΦ1∥n∞). Since our
inducing schemes are essentially isomorphic to the full shift on countably many
symbols, in our case, bounded distortion gives ∥ℒΦ1∥∞ ≍dis Z0(Φ). Thus Zn(Φ) =
O([Z0(Φ)]n).

We are now ready to prove Theorem 2, although we postpone the proof that t 7→
P ('t) is analytic to the end of Section 6.

Proof of parts (a) and (b) of Theorem 2. We choose X as in Corollary 1 and get a
Type B inducing scheme (X,F ).

Fixing t, we define  S = 't − S, and let ΨS be the induced potential. The natural
candidate for S is P ('t), but we will want to consider a more general value for this
shift in the potential in order for (c) of Proposition 2 to hold.

We continue by showing that the induced system has bounded Gurevich pressure
and (a) and (c) of Proposition 2 hold. As above, Zn(Φ) = O(Zn0 (Φ)). Therefore it
suffices to show that Z0(ΦS) <∞ to conclude that PG(ΨS) <∞.

We wish to count the number of domains Xi with �i = n. The number of laps of
a piecewise continuous function g is the number of maximal intervals on which g is
monotone. We denote this number by laps(g). By [MSz], one characterisation of
the topological entropy is ℎtop(f) := limn→∞

1
n log laps(fn). Therefore, for all " > 0

there exists C" > 0 such that

#{�i = n} ⩽ laps(fn) ⩽ C"e
n(ℎtop(f)+")

for each n, where ℎtop(f) denotes the topological entropy of f . Since f is Collet-
Eckmann, the tail behaviour of the inducing scheme is exponential. This was shown
for certain inducing schemes in [BLS]. We show in the proof of Proposition 4 that
the results on the inducing schemes of [BLS] hold for Type B inducing schemes. We
also show there how [BRSS] allows us to strengthen the results of [BLS] to apply to
maps with different critical orders, see Lemma 10 below.

For t ⩽ 1 we get

Z0(ΨS) :=
∑

F (x)=x

eΨS(x) =
∑

i,x=F (x)∈Xi

eΦt(x)−�i(x)S

≍dis
∑
i

∣Xi∣te−�i(x)S =
∑
n

∑
�i=n

∣Xi∣te−nS by the Koebe Lemma

⩽
∑
n

(∑
�i=n

∣Xi∣

)t
e−nS (#{�i = n})1−t by the Hölder inequality

⩽ C"
∑
n

e−�nte−nSen(ℎtop(f)+")(1−t) <∞ using tail behaviour

provided t is sufficiently close to 1 and S > ℎtop(f)(1− t)− �t. A similar estimate
gives

(12)
∑
i

�ie
ΨS(x) ≍dis

∑
i

�i∣Xi∣te−�iS <∞.
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For t ⩾ 1

Z0(ΨS) ≍dis
∑
n

∑
�i=n

∣Xi∣te−nS ⩽
∑
n

e−nS

(∑
�i=n

∣Xi∣

)t
⩽
∑
n

e−�nte−nS <∞,

provided S > −�t. Similarly we can show∑
i

�ie
ΨS(x) ≍dis

∑
i

�i∣Xi∣te−�iS <∞,

provided S > −�t. When t is sufficiently close to 1, P ('t) is close to 0, and thus if
S is close to P ('t) then the above sums are bounded.

Observe that the above estimates prove that condition (a) of Proposition 2 holds.
For part (c) of that proposition, the estimates above prove that P (ΨP ('t)+") < ∞
for " < 0 close to 0. Therefore, Corollary 1 shows that (c) is satisfied. Therefore
this inducing scheme gives rise to an equilibrium state �' = � . Moreover, from the
proof of Proposition 2, PG(Ψ) = 0.

It remains to show the uniqueness of the equilibrium state in ℳ+, since up to this
point we only know that �' is the unique equilibrium state whose lift to the Hofbauer

tower gives X̂ positive mass. This follows from the next lemma. Recall that (ℰ ,→)
indicates the transitive graph in the Hofbauer tower.

Lemma 9. If �' is an equilibrium state, as above, compatible to an inducing scheme
(X,F ) then it is also is compatible to any other inducing scheme (X ′, F ′) provided

X̂ ′ ∩ ℰ ∕= ∅. Here we assume that the inducing schemes are either both Type A or
both Type B.

Proof. We will assume that the inducing schemes here are all Type B, since this is
the more difficult case. Let (X̂, F̂ ) be the inducing scheme used above. The proof

follows if we can show that �̂'(X̂ ′) > 0.

Transitivity of (ℰ , f̂) implies that there exists n ⩾ 0 so that f̂−n(X̂ ′) ∩ X̂ contains
an open set. As in Proposition 3, since �Ψ gives positive mass to cylinders, this
implies that there exists Û ⊂ X̂ so that �̂'(Û) > 0 and f̂n(Û) ⊂ X̂ ′. Hence,

�̂'(X̂ ′) ⩾ �̂'(f̂n(Û)) ⩾ �̂'(Û) > 0.

Therefore, �' is compatible to (X ′, F ′). □

To continue with the Theorem 2, suppose that � ∈ℳ+ is an equilibrium state. By
the ideas of Lemma 3 there must exist a first extendible inducing scheme (X ′, F ′,Ψ′)

which is compatible to � and which corresponds to a first return map to a set X̂ ′ on
the Hofbauer tower. Lemma 9 implies that �' is compatible to (X ′, F ′) and hence
� = �' by the uniqueness of equilibrium states on an inducing scheme. □
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To do the summable case of Theorem 1, parts (a)-(c), we adapt techniques from
[BLS]. In that paper, the Bounded Backward Contraction is used for arbitrary
neighbourhoods of the critical set, which at the time was only known to hold when
all critical orders ℓc are the same. Using results from [BRSS], and specifying the
neighbourhoods U , we can improve this in the following lemma.

Lemma 10. Let f ∈ ℋ be a multimodal map with negative Schwarzian derivative
such that limn→∞ ∣Dfn(f(c))∣ = ∞ for each c ∈ Crit. Then for any " > 0 and
� > 1, we can find critical neighbourhoods U := f−1(B"(f(Crit))) that are �-nice in
the sense that

∙ fn(∂U) ∩ U = ∅ for all n ⩾ 0;
∙ if V ⊂ U is the domain of the first return map to U , then the interval V ′

concentric to V and of length (1 + 2�)∣V ∣ is contained in U .

Moreover, there exists b > 0 such that

(13) ∣Df r(x)∣ ⩾ b for all x ∈ I and r = min{n ⩾ 0 : fn(x) ∈ U},
where the �-nice critical neighbourhood U can be chosen arbitrarily small.

Proof. The first part follows immediately from [BRSS] which considers C3 non-flat
multimodal maps. Our assumption that f is C2 with negative Schwarzian derivative
actually gives a slightly stronger version of the Koebe distortion theorem, and hence
is sufficient to claim the results from [BRSS]. Lemma 3 in [BRSS] shows the existence
of �-nice neighbourhoods U of Crit. Denote the connected components of U by U c,
c ∈ Crit. If r = r(x) ⩾ 0 is the first entrance time of x to U , then the niceness of
U guarantees that there exists an interval Jx so that f r maps J diffeomorphically
onto U c for some c ∈ Crit. If f r(x) belongs to first return domain V , then there
is JV ⊂ J such that f r : JV → V is monotone with distortion bound depending
only on �. A special case of this is when V := Ũ c is the central return domain in
U c. Let Ũ = ∪c∈CritŨ

c. In this case, the first entrance time r̃ ⩾ 0 of any x into Ũ
corresponds to a diffeomorphic branch f r̃ : J̃ → Ũ c with distortion bound depending
only on �.

Remark 8. Note that U ⊂ f−1(B"(f(Crit))), where " can be taken arbitrarily small.
As a result, the components U c need not have comparable sizes for all c ∈ Crit, but
scale as "1/ℓc. A similar difference in size is true for the components of Ũ , and
this is a major difference with the critical neighbourhoods as used in [BLS]. If all

components of Ũ have the same size, then (13) can fail.

To prove (13), fix a �-nice critical neighbourhood U0, and let U1 := Ũ0 be the union
of its central return domains. This set is �-nice again. There exists b = b(U1) > 0
such that for every x ∈ I, ∣Df r1(x)∣ ⩾ b for r1 = min{n ⩾ 0 : fn(x) ∈ U1}.
Continue to construct �-nice neighbourhoods Ui = Ũi−1 as the union of the central
return domains of the previous stage. These set shrink at least exponentially in i,
so we obtain a �-nice neighbourhood U = Up as small as we want.

Now let r1 ⩽ r2 ⩽ . . . ⩽ rp = r be the return times of x to U1 ⊃ U2 ⊃ ⋅ ⋅ ⋅ ⊃ Up.
There is a neighbourhood J ∋ x such f r maps J diffeomorphically onto a component
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of U . The maps f ri+1−ri ∣fri (J) are composition of monotone branches of the first
return map to Ui. If � is sufficiently large, then these branches are expanding,
uniformly in x. Hence ∣Df r(x)∣ ⩾ ∣Df r1(x)∣ ⩾ b. □

5.2. Estimates for non-Collet-Eckmann maps.

Proposition 4. Suppose that f ∈ ℋ satisfies (1). There there exists t1 < 1, such
that on every sufficiently small cylinder set X there is a first extendible return in-
ducing scheme (X,F, �) such that for all t ∈ (t1, 1] and all potential shifts S ⩾ 0:

Z0(ΨS) :=
∑

F (x)=x

eΨS(x) <∞,

where ΨS is the induced potential of the shifted potential  S := 't−S. Furthermore
for the equilibrium state �ΨP ('t)

, �ΨP ('t)
{� = n} decays exponentially for t ∈ (t1, 1),

and polynomially for t = 1.

Proof. For the case t = 1, if the critical points all have the same order then
[BLS] gives an inducing scheme with polynomial tails (this is also sufficient to show
Z0(ΨS) < ∞ for all S ⩾ 0). Below we show that Type B inducing schemes fit into
the framework of [BLS]. We also show that the machinery of [BLS] can also be
applied to maps with critical points with different critical orders, by Lemma 10.

Fix t0 < 1 such that � = ℓmax(1 + 1
t0

) − 1, and let t0 < t < 1. Fix a single

cylinder set X ∈ Pn and � ∈ (0, 1
2) so small that a �-scaled neighbourhood of X is

contained in �(D) for at least one domain D of the closed primitive subgraph ℰ (cf.
Lemma 2) of the Hofbauer tower. Let (X,F ) be the corresponding first extendible,
i.e., Type B, inducing scheme to X: for each Xi, there is an minimal �i > 0 for which
there is a neighbourhood X ′i such that f �i maps X ′i diffeomorphically onto a �-scaled

neighbourhood X. Let X̂ ⊂ �−1(X) be such that that (X,F ) corresponds to the first

return map to X̂. Since X is a cylinder set, X̂ is nice in the Hofbauer tower, in the
sense that for n ⩾ 1, f̂n(x̂) never intersects the interior of X̂ for each x̂ ∈ ∂X̂. There

is a dense orbit orb(ŷ) in ℰ , and for each ŷ′ ∈ orb(ŷ) ∩ X̂, there is a neighbourhood

X̂i ∋ ŷ′ such that f̂ �i : X̂i → X̂ is extendible to a �-scaled neighbourhood of a
component of X̂. Therefore, the union ∪iXi (and hence (X,F )∞) is dense in X,

and the niceness of X̂ guarantees that the sets Xi are pairwise disjoint.

Note that (1) and our choice of t0 above implies that

(14)
∑
n

(
ℓc−1
n ∣Dfn(c1)∣

)−t/ℓc
<∞,

for every t ∈ (t0, 1] and c ∈ Crit and summable sequence {n}n∈ℕ with n ∈ (0, 1
2).

We use ideas and results of [BLS] extensively. To start with, take a neighbourhood U
of Crit as in Lemma 10 (so that (13) holds) and so that either U ⊃ X or U ∩X = ∅.
We can assign to any x ∈ I a sequence of binding periods along which the orbit of x
shadows a critical orbit, followed by free period during which the orbit of x remains
outside U . During the binding period, the derivative growth of x is comparable to
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derivative growth along the critical orbit that x shadows. The precise definition of
binding period of x ∈ U is:

p(x) = min{k ⩾ 1 : ∣fk(x)− fk(c)∣ ⩾ k∣fk(c)− Crit∣},
where c is the critical point closest to x. At the end of the binding period, derivatives
have recovered from the small derivative incurred close to c. Indeed, Lemma 2.5 of
[BLS] states that there is C0 > 0, independent of U , such that

(15) F ′p(x) := inf{∣Dfp(x)∣ : x ∈ U, p(x) = p} ⩾ C0

(
ℓc−1
p ∣Dfp(f(c))∣

)1/ℓc
.

where c is the critical point closest to x. Let � = 4C
−1/t0
0 Ct06 #Crit (see later in

the proof) be a fixed number involving a Koebe distortion constant and a constant
emerging from the Bounded Backward Contraction Condition (13). If U is a small
neighbourhood, then p(x) is big. Hence we can take U so small that the minimal
binding period pU := min{p(x) : x ∈ U} is so large that for any t ∈ (t0, 1],∑

p⩾pU

�
(
ℓc−1
p ∣Dfp(f(c))∣

)−t/ℓc
= 1− �

for some � = �(t0, {n}n∈ℕ) > 0. Summing the powers of the above sum gives

∑
n⩾0

⎛⎝∑
p⩾pU

�
(
ℓc−1
p ∣Dfp(f(c))∣

)−t/ℓc⎞⎠n

⩽
∑
n⩾0

(1− �)n = �−1

Taking an appropriate subset of the terms in this series, we obtain1 for any n ∈ ℕ:

(16) max
c∈Crit

∑
s⩽n

∑
(p1,...,ps)∑

i pi⩽n
pi⩾pU

∏
pi

�t
(
ℓc−1
pi ∣Dfpi(f(c))∣

)−t/ℓc
⩽ �−1.

During the free period, derivatives grow exponentially (Mañé’s Theorem, see [MSt,
Theorem III.5.1.]), because there exist C1 > 0 and �1 > 1, depending only on f and
U , such that

(17) ∣Dfk(x)∣ ⩾ C1�
k
1 if f i(x) /∈ U for 0 ⩽ i < k.

Now fix a neighbourhood U of Crit as in Lemma 10 with ∂U ⊂ ∪nf−n(Crit) and so
small that estimate (16) holds. In fact, parallel to (17), one can derive that sets A
that avoid U for a long time are exponentially small: there are C2 > 0 and �2 > 1
such that

(18) ∣fn(A)∣ ⩽ C2�
−k
2 if f i(A) ∩ U = ∅ for 0 ⩽ i < k.

We define �j = �j(Xi) inductively as �j := min{n : n ⩾ �j−1 + pj−1 ⩽ n <
�i, f

n(Xi)∩U ∕= ∅}. The j-th binding period of Xi starts at �j and the j-th binding
period itself is pj = pj(Xi) = min{pj(x) : x ∈ Xi}. Since f �i−n maps fn(Xi) to
X in an extendible way for each n ⩽ �i, the distortion of f �i−n∣fn(Xi) is bounded
uniformly in i and n. In the terminology of [BLS], every return time is a deep return,

1This is an adaptation of Equation (5) in [BLS] taking into account the typo that there the −
in the exponent is missing.
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and there are no shallow returns. Let � ′i be the time that the final binding period
ends, so � ′i = �s + ps ⩽ �i if Xi has s binding periods.

Note that the inducing time �i of Xi cannot be inside a binding period, unless
�i ⩾ �∣X∣. Indeed, during the binding period, Xi shadows some critical value fk(c)
k-closely, so there will not be the required Koebe-space of �∣X∣ unless �i ⩾ �∣X∣.
Take k0 = k0(∣X∣) such that k ⩽ �∣X∣ for all k ⩾ k0. There is C3 = C3(∣X∣) ∈ (0, 1]
such that (15) can be replaced by

F ′p(x) ⩾ C3C0

(
ℓc−1
p ∣Dfp(f(c))∣

)1/ℓc
.

where c is the closest critical point to x. We will use this estimate only for those Xi

for which the final binding period pj(Xi) is cut short the because inducing time �i
falls into the proper final binding period.

To estimate Z0(ΨS), we first group together domains Xi into a ‘cluster’ if they have

the same binding periods p1, . . . , ps up to their common time � ′i and f j(conv Ã) ∩
Crit = ∅ for j ⩽ �i, where conv Ã is the convex hull of the cluster. By the Hölder
inequality

Z0(ΨS) ≍dis
∑
i

∣Xi∣te−�iS =
∑
n

e−nS
∑
n′⩽n

∑
cluster Ã

�(Ã)=n,� ′(Ã)=n′

∑
Xi⊂Ã

∣Xi∣t

⩽
∑
n

e−nS
∑
n′⩽n

∑
cluster Ã

�(Ã)=n,� ′(Ã)=n′

(#{i : Xi belongs to Ã})1−t

⎛⎝∑
Xi⊂Ã

∣Xi∣

⎞⎠t

⩽
∑
n

e−nS
∑
n′⩽n

e(ℎtop(f)+")(n−n′)(1−t)
∑

cluster Ã

�(Ã)=n, � ′(Ã)=n′

∣Ã∣t,

where the cardinality #{i : Xi belongs to Ã} is estimated by e(ℎtop(f)+")(n−n′) for

some small " = "(t) > 0, because the cluster Ã has n−n′ iterates left to the inducing
time.

Z0(ΨS) ⩽dis
∑
n

e−nS
∑
n′⩽n

∑
cluster Ã

�(Ã)=n, � ′(Ã)=n′

∣Ã∣t.

immediately.

To estimate
∑

�(Ã)=n,� ′(Ã)=n′ ∣Ã∣
t, we distinguish two classes of clusters depending

on the amount of free time in the first � ′ iterates. For � > 0 to be fixed later, and
for given n and n′, let

P̂ ′n,n′ =

{
Ã : � ′(Ã) = n′, �(Ã) = n,

s∑
i=1

pi ⩽ �n

}
and

P̂ ′′n,n′ =

{
Ã : � ′(Ã) = n′, �(Ã) = n,

s∑
i=1

pi > �n

}
.
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The estimates for P̂ ′n,n′ and P̂ ′′n,n′ will use Lemmas 3.5 and 3.6 of [BLS] respectively.

Indeed, Lemma 3.5 of [BLS] gives some � (fixing the definition of P̂ ′n,n′) and �3 > 1
depending on �1 and � such that

(19)
∑

Ã∈P̂ ′
n,n′

∣Ã∣t ⩽ �−
1
2
n′t

3 sup
Ã∈P̂ ′

n,n′

∣fn′(Ã)∣t ⩽ C−t1 �
− 1

2
n′t

3 �
−(n−n′)t
1 ,

where the last inequality follows by (17) because fn
′
(Ã) is disjoint from U for the

remaining n− n′ iterates.

Continuing with P̂ ′′n,n′ for this �, define dn(c) := mini<n(i/∣Df i(f(c))∣)1/ℓc ∣f i(c)−
Crit∣ ⩽ 1 (formula (2) in [BLS]) and let (following [BLS, page 635])

d̂n,j(c) := di(c) for i = max

{⌈
�n

2j2

⌉
, 1

}
.

Then we will adapt Lemma 3.6 of [BLS] to get a constant C4 > 0 such that

(20)
∑

Ã∈P̂ ′′
n,n′

∣Ã∣t ⩽ C−t2 �
−(n−n′)t
2 C4

n′∑
j=1

2−j
(

max
c∈Crit

d̂n′,j

)t
.

Indeed, select the longest binding period among (p1, . . . , ps) of the cluster, and call
it pj . Note that pj > �n/(2j2), because otherwise

∑s
k=1 pk < �n, contradicting the

definition of P̂ ′′n,n′ . The interval [x, y] := f�j (conv Ã) satisfies

∣x− y∣ ⩽ C5 max
p⩾�n/2j2

dp(c) ⋅ ∣f�j+pj (conv Ã)∣ = C5 d̂n′,j(c) ⋅ ∣f�j+pj (conv Ã)∣,

where C5 is a uniform distortion constant. Write Ã = Ãp1,...,pj to indicate that pj
is the longest binding period of Ã. By Lemma 3.2 of [BLS], and recalling that all
returns are deep, we can find C6 such that

∣Ãp1,...,pj ∣ ⩽ C3C
j−1
6 ∣f�j−1+pj−1(conv Ãp1,...,pj )∣

j−1∏
k=1

1

F ′pk
,

where the single factor C3 accounts for the possibility that final binding period is
‘cut short’ by inducing time n. Following the proof of Lemma 3.6 of [BLS], we obtain∑

cluster Ã

�(Ã)=n,� ′(Ã)=n′

∣Ã∣t ⩽
n′∑
j=1

∑
(p1,...,pj)

∣Ãp1,...,pj ∣t

⩽
n′∑
j=1

(
C5 max

c∈Crit
d̂n′,j(c)

)t

×
∑

(p1,...,pj)

Ct3 (2#Crit)j

(
Cj−1

6

j−1∏
k=1

1

F ′pk

)t
∣f�j+pj (conv Ãp1,...,pj )∣t,

where the (2#Crit)j accounts for the different sides of critical points that have
intervals with the same binding period.
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The maps f�j+pj ∣
conv Ãp1,...,pj

and fn
′−(�j+pj)∣f�j+pj (conv Ãp1,...,pj ) have bounded dis-

tortion. Each set fn
′
(Ãp1,...,pj ) is disjoint from U for the remaining n− n′ iterates,

so (18) gives

∣fn′( conv Ãp1,...,pj )∣ ⩽ C2�
−(n−n′)
2 .

Using (16) with � = 4C
−1/t0
0 Ct06 #Crit, we can estimate

∑
(p1,...,pj)

(2#Crit)j

(
Cj−1

6

j−1∏
k=1

1

F ′pk

)t
⩽

Ct3
�2j

.

Combining the previous three displayed formulas, we obtain∑
cluster Ã

�(Ã)=n,� ′(Ã)=n′

∣Ã∣t ⩽ Ct2�
−(n−n′)t
2 C4

n′∑
j=1

2−j
(

max
c∈Crit

d̂n′,j(c)

)t
,

for C4 = (C3C5)t/�. This proves (20). Note that the factor
∑n′

j=1 2−j
(

maxc∈Crit d̂n′,j

)t
in (20) decays polynomially, as in the proof of [BLS, Proposition 3.1]. This is why

for t = 1 (and n ≈ n′), where there is no exponentially small factor �−(n−n′)t, we
still obtain polynomial tails.

Now we obtain (using(19) and (20))

Z0(ΨS) ⩽dis
∑
n

e−nS
∑
n′⩽n

e(ℎtop(f)+")(n−n′)(1−t)

⎛⎜⎝ ∑
Ã∈P̂ ′

n,n′

∣Ã∣t +
∑

Ã∈P̂ ′′
n,n′

∣Ã∣t

⎞⎟⎠
⩽
∑
n

e−nS
∑
n′⩽n

e(ℎtop(f)+")(n−n′)(1−t)×⎛⎝C−t1 �
−(n−n′)t
2 �

− 1
2
n′t

3 + Ct2�
−(n−n′)t
2 C4

n′∑
j=1

2−j
(

max
c∈Crit

d̂n′,j(c)

)t⎞⎠ ,

which is finite, provided t is sufficiently close to 1. The proof that
∫
� d�Ψ < ∞

amounts to showing that ne−nS
∑

n′⩽n

∑
�i=n,� ′i=n

′ ∣Xi∣t is summable in n, cf. (12).

If t < 1, then S = P ('t) > 0 by (2), so for t ∈ (t1, 1) where t1 ∈ (t0, 1) is sufficiently
close to 1, the exponential factor e−nS dominates n and summability follows. This
also implies the required exponential tail property for (X,F, �ΨP ('t)

). □

For the case t = 1 we already know by [BRSS] that there is an acip, so the above
proposition shows that the acip must have polynomial tails. Hence the proof of
Theorem 1 for (except for the proof that t 7→ P ('t) is analytic, which is postponed
to the end of Section 6) essentially amounts to an application of Proposition 2
(Case 4.) to the case t ∈ (t1, 1), and is completed in a similar way to the proof of
Theorem 2. The rate of decay of the tails follows from Proposition 4.

Proposition 4 and the proof of Theorem 2 parts (a) and (b) now allow us to prove
Proposition 1.
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Proof of Proposition 1. By Lemma 5, there exist "0, " > 0 such that for any t ∈
(t1, t2), ℎ�(f)+

∫
 t d� > P+( t)−"0 implies ℎ�(f) > ". We can choose {X̂k}0⩽k⩽N

as in Proposition 3: we need only select these sets so small that the corresponding
inducing scheme is uniformly expanding, in order to satisfy (a) of that proposition,

and so that x ∈ �(X̂0). Property (b) of Proposition 3 follows for all t ∈ (t1, t2) by
the computations in the proof of Theorem 2(a) and (b) and in Proposition 4. The
fact that for any t ∈ (t1, t2), �t is compatible to our (X0, F0) follows by Lemma 9.
Therefore, Proposition 3 implies that the measures �must be compatible to (X0, F0).
Finally take (X,F ) = (X0, F0). □

6. Proofs of Theorem 1 and 2; Exponential Tails and Positive
Discriminant

In Theorems 1 and 2 we see that with the exception of non-Collet-Eckmann maps
(i.e., satisfying (1) but not (3)) with potential ' = − log ∣Df ∣, all the equilibrium
states �' obtained are compatible to an inducing scheme with exponential tail be-
haviour: �Ψ({x ∈ X : �(x) = n}) ⩽ Ce−�n for some C,� > 0.

The literature gives many consequences; we mention a few:

∙ The system (I, f, �') has exponential decay of correlations and satisfies the
Central Limit Theorem. This follows directly from Young’s results [Y] relat-
ing the decay of correlations to the tail behaviour of the Young tower.
∙ The system (I, f, �') satisfies the Almost Sure Invariance Principle (ASIP),

see [MN] or [HK1] for earlier ideas in this direction.
∙ In [C], Collet proves Gumbel’s Law (which is related to exponential return

statistics) for the acip provided the Young tower construction has exponential
tail behaviour. It seem likely that this result extends to the equilibrium states
for 't = −t log ∣Df ∣ and t < 1.

Another application of exponential tails pertains to analyticity of the pressure func-
tion t 7→ P ('t) and the absence of phase transitions (which would be expressed by
lack of differentiability of the pressure function). A key result here is phrased by
Sarig [Sa2] in terms of directional derivatives

d

ds
P ( + s�)∣s=0

where  and � are suitable potentials. To prove analyticity of t 7→ P (t') near t = 1,
we take � =  = '. Sarig obtains his results for Gurevich pressure. For appropriate
potentials and inducing scheme, he first introduces the concept of discriminant D,
which is positive if and only if the inducing scheme has exponential tails with respect
to the equilibrium state of the induced potential. Next it is shown that if the
inducing scheme is a first return map, then positive discriminant implies analyticity
of s 7→ PG( + s�) near s = 0. In our case, the inducing scheme is a first return
map on the Hofbauer tower, but also a Rokhlin-Kakutani tower can be constructed
for which the first return map to the base is isomorphic to the inducing scheme.
Currently, in the context of smooth dynamical systems, these towers tend to be
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called a Young towers [Y]. It is the better distortion properties than the Young
tower on elements of its natural partition Δi,j , see below, that makes us prefer the
Young tower over the Hofbauer tower in the section.

The resulting analyticity of the pressure function on the Young tower then needs to
be related to the original system. We will do that using a transition from Gurevich
pressure to the following type of pressure:

P+( ) := sup

{
ℎ�(f) +

∫
 d� : � ∈ℳ+ and −

∫
 d� <∞

}
for which we use a result by Fiebig et al. [FFY].

The set-up of the remainder of this section is as follows. We first introduce the Young
tower associated with the inducing scheme, and then discuss directional derivatives
and discriminants. This gives us the necessary terminology to state the main the-
orem (Theorem 5). Then we show how this can be applied to prove the remaining
analyticity parts of Theorems 1 and 2. Finally, we prove Theorem 5.

Let X ⊂ I and (X,F, �) be an inducing scheme on X where F = f � . As usual we
denote the set of domains of the inducing scheme by {Xi}i∈ℕ. The Young tower, see
[Y], is defined as the disjoint union

Δ =
⊔
i∈ℕ

�i−1⊔
j=0

(Xi, j),

with dynamics

fΔ(x, j) =

{
(x, j + 1) if x ∈ Xi, j < �i − 1;
(F (x), 0) if x ∈ Xi, j = �i − 1.

For i ∈ ℕ and 0 ⩽ j < �i, let Δi,j := {(x, j) : x ∈ Xi} and Δl :=
∪
i∈ℕ Δi,l is called

the l-th floor. Define the natural projection �Δ : Δ → X by �Δ(x, j) = f j(x), and
�X : Δ → X by �X(x, j) = x. Note that (Δ, fΔ) is a Markov system, and the first
return map of fΔ to the base Δ0 is isomorphic to (X,F, �).

Also, given  : I → ℝ, let  Δ : Δ → ℝ be defined by  Δ(x, j) =  (f j(x)). Then
the induced potential of  Δ to the first return map to Δ0 is exactly the same as the
induced potential of  to the inducing scheme (X,F, �).

The differentiability of the pressure functional can be expressed using directional
derivatives d

dsPG( + s�)
∣∣
s=0

. We will use the method of [Sa2], but will require
less stringent conditions on the potentials. Let (W, f) be a topologically mixing
dynamical system with the set of n-cylinders denoted by Qn. For a potential  :
W → [−∞,∞] we can ask that  satisfies

(21) sup
Cn∈Pn

sup
x,y∈Cn

∣ n(x)−  n(y)∣ = o(n).

As shown in [FFY], this guarantees that  satisfies (11) which means that the
Gurevich pressure is well defined and independent of the initial cylinder set Xi,
where Zn( ) = Zn( ,Xi); also Theorem 7 below is satisfied. Moreover, if the
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induced potential is weakly Hölder continuous, then (21) is a sufficient condition on
the original potential to allow us to use the results of [Sa2, Section 6], see Theorem 6.

For an inducing scheme (X,F, �), let  Δ and �Δ be the lifted potentials to the Young
tower. Suppose that  Δ : Δ→ ℝ satisfies (21). We define the set of directions with
respect to  as the set

DirF ( ) :=

{
� : sup

�∈ℳ+

∣∣∣∣∫ � d�

∣∣∣∣ <∞, �Δ satisfies (21),
∞∑
n=2

Vn(Υ) <∞, and

∃" > 0 s.t. PG( Δ + s�Δ) <∞ ∀ s ∈ (−", ")

}
,

where Υ is the induced potential of �. As in previous sections, let  S :=  −S (and
so ΨS = Ψ − S�). Set p∗F [ ] := inf{S : PG(ΨS) < ∞}.2 If p∗F [ ] > −∞, we define
the X-discriminant of  as

DF [ ] := sup{PG(ΨS) : S > p∗F [ ]} ⩽∞.

Given a dynamical system (X,F ), we say that a potential Ψ : X → ℝ is weakly
Hölder continuous if there exist C,  > 0 such that Vn(Ψ) ⩽ Cn for all n ⩾ 0.

The main result of this section is as follows:

Theorem 5. Let f ∈ ℋ be an interval map with potential ' : I → (−∞,∞].
Suppose that ' satisfies (21) or is of the form ' = −t log ∣Df ∣. Take  = '−P (').
Then DF [ ] > 0 if and only if (X,F, �Ψ) has exponential tails.

Moreover, the inducing scheme can be chosen such that given � ∈ DirF ( ) such
that  Δ +�Δ is continuous and the induced potential Υ is weakly Hölder continuous,
there exists " > 0 such that s 7→ P+( + s�) is real analytic on (−", ").

As noted before, the appropriately shifted potential 't = −t log ∣Df ∣, gives rise to an
equilibrium state with exponential tail for t in a neighbourhood of 1 if (3) holds, and
for t ∈ (t1, 1) if (3) fails but (1) holds. Take � = − log ∣Df ∣. Any induced system
provided in Section 5 is extendible, so by the Koebe lemma the induced potential
Υ has summable variations, and in fact is weakly Hölder. Similarly (− log ∣Df ∣)Δ

satisfies (21). Also, since PG( Δ + s�Δ) ⩽ PG(Ψ + sΥ) which is clearly bounded for
small s, we have that PG( Δ +s�Δ) <∞ for small s. Therefore there is an inducing
scheme with � ∈ DirF ( ). Thus Theorem 5 can be applied to give the analyticity
of t 7→ P ('t) for t ∈ (t1, 0), to complete the proofs of Theorems 1 and 2.

Proof. Suppose that DF [ ] > 0. This is equivalent to the existence of 0 > "0 > p∗F [ ]
such that PG(Ψ"0) <∞. By the Gibbs property, for " > "0 we have �Ψ"({� = n}) ≍∑

�i=n
eΨi−n". Then

�Ψ"({� = n}) ≍ e−n("−"0)
∑
�i=n

eΨi−n"0 .

2Note that we use the opposite sign for p∗F [ ] to Sarig.
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Notice that ∑
�i=n

eΨi−n"0 ≍ �Ψ"0
({� = n}) < �Ψ"0

(X) = 1,

so �Ψ"({� = n}) < Ce−n("−"0). Since "− "0 > 0, (X,F, �Ψ") has exponential tails.

Conversely, suppose that (X,F, �Ψ) has exponential tails with exponent � > 0, that
is ∑

�i=n

eΨi ≍ �Ψ({� = n}) < Ce−n�.

Then, for all −� < "0, and for Z0 defined on page 22,

PG(Ψ"0) ⩽ CZ0(Ψ"0) ⩽ C
∑
n

∑
�i=n

eΨi−n"0 < C
∑
n

e−n(�+"0) <∞.

Therefore p∗F [ ] ⩽ −� < 0 and so DF [ ] > 0.

For the second part of the theorem, we use the following result from [Sa2, Theorem
4].

Theorem 6. Let (W, f) be a topologically mixing dynamical system and  : W →
(−∞,∞] be a potential satisfying (21), such that PG( ) < ∞ and for X ∈ Pn,
DF [ ] > 0 and Ψ is weakly Hölder continuous. Then for all � ∈ DirF ( ) such that
Υ is weakly Hölder continuous, there exists " > 0 such that s 7→ PG( + s�) is real
analytic on (−", ").

We can use this to show that s 7→ PG( + s�) is analytic. However, to go from the
Gurevich pressure to the usual pressure, we need a Variational Principle. Sarig’s
theory provides various conditions on potentials which yield a Variational Principle,
but they are somewhat restrictive, and in particular for our case, are not satisfied by
the potential −t log ∣Df ∣. One aim of [FFY] is to weaken these conditions. There,
the following theorem is proved.

Theorem 7. If (W,S) be a transitive Markov shift and  : W → ℝ is a continuous
function satisfying (21), then PG( ) = P ( ).

We now apply Theorem 6 to the symbolic space induced by (Δ, fΔ). In this space,
the potential (−t log ∣Df ∣ − S′)Δ satisfies (21) and is continuous in the symbolic
metric. Theorem 6 implies that there is "′ > 0 such that s 7→ PG( Δ + s�Δ) is
analytic on (−"′, "′). Thus, by Theorem 7, s 7→ P ( Δ + s�Δ) is also analytic on
(−"′, "′).

All fΔ-invariant probability measures � have positive Lyapunov exponents. This is
because the induced map (X,F ) (which is isomorphic to the first return map to Δ0)
is uniformly expanding and the Ergodic Theorem gives

�(�) :=

∫
log ∣DfΔ∣ d� = �(Δ0)

∫
log ∣DFΔ∣ d� ⩾ �(Δ0) inf

x
log ∣DF (x)∣ > 0.

Therefore P ( Δ + s�Δ) = P+( Δ + s�Δ) for s ∈ (−"′, "′).



EQUILIBRIUM STATES FOR INTERVAL MAPS: THE POTENTIAL −t log ∣Df ∣ 35

Since the inducing scheme (X,F ) is obtained from both (I, f) and (Δ, fΔ) with the
same inducing time � = �Δ, Lemma 6 implies that

ℎ�Δ(fΔ) =

(∫
�d�F

)−1

ℎ�F (F ) = ℎ�(f)

and

�Δ('Δ) =

(∫
�d�F

)−1

�F (Φ) = �('),

whenever �Δ and �F are the induced measures of � to (Δ, fΔ) and (X,F ) respec-
tively, and ' is any potential. Thus the free energy of � and the lifted version
�Δ are the same. This implies that s 7→ PG( + s�) is analytic on (−"′, "′) if
the definition of pressure involved only those measures which lift to Δ. Moreover,
P+( Δ + s�Δ) ⩽ P+( + s�) for s ∈ (−"′, "′).

It remains to prove that there exists " > 0 so that for all s ∈ (−", "), P+( Δ+s�Δ) ⩾
P+( + s�). The issue is that in principle there might be measures which have high
free energy but do not lift to Δ. We show how Proposition 1 implies that this is
impossible, thus completing the theorem. Since by assumption sup�∈ℳ+

∣∣∫ � d�∣∣ <
∞, P+( + "�)→ P+( ) = 0 as "→ 0. Therefore there exists 0 < " < "′ so that for
any s ∈ (−", "), we have P+( + s�) > − "0

2 . Hence for all s ∈ (−", "), if a measure

� has ℎ�(f) +
∫
 + s� d� > P+( + s�)− "0

2 then Proposition 1 implies �̂(X̂) > 0.
Hence P+( Δ + s�Δ) ⩾ P+( + s�). Therefore P+( Δ + s�Δ) = P+( + s�), and
the analyticity of s 7→ P+( + s�) on (−", ") follows. □

It would be a further step to say that t 7→ �'t is analytic (where �'t indicates the
equilibrium state of 't). Using the weak topology we can ask whether t 7→

∫
g d�'t

is analytic for any fixed continuous function g. We do have the following corollary:

Corollary 2. In the setting of Theorems 1 and 2, let (X,F, �) be any inducing
scheme as in Section 3. Fix s ∈ (t1, 1) or s in a small neighbourhood of 1, according
to whether (1) or (3) holds. Take  t = 't−P+('s) for 't = −t log ∣Df ∣, and let Φt

the induced potential. Then the function t 7→
∫
X �d�Ψt is analytic for t sufficiently

close to s, where �Ψt denotes the equilibrium state of Ψt.

Proof. We know that t 7→ P+( t) and t 7→ P (Ψt) are analytic. By Lemma 6,
P (Ψt) =

(∫
�d�Ψt

)
P+('t), so analyticity of t 7→

∫
�d�Ψt follows. □

7. Concerning the Hypotheses of Theorems 1 and 2

In this section, we argue that the hypotheses of Theorems 1 and 2 cannot easily be
relaxed. We also discuss some consequences of our proofs.

The set 퓜+: The question how large the set ℳ+ is in comparison to ℳerg is
answered by Hofbauer and Keller [HK3] in certain contexts. For unimodal maps,
they prove that any measure � ∈ ℳerg ∖ ℳ+ has entropy 0 and belongs to the

convex hull of the set of weak accumulation points of { 1
n

∑n−1
k=0 �fk(c)}n∈ℕ, where

�fk(c) indicates the Dirac measure at the k-th image of the critical point. If we
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restrict to the potential 't = −t log ∣Df ∣ at t = 1, then the following examples can
be given:

∙ If f has a neutral fixed point, then the Dirac measure at this fixed point is
an equilibrium state.
∙ There is a quadratic map without equilibrium measure for '1, see [BK]. In

this case, the summability condition (14) fails.
∙ For maps such as the Fibonacci map (which satisfies (1) for ℓ = 2), there

is only one measure inℳerg ∖ℳ+, namely the unique invariant probability
measure �!(c) supported on the critical omega-limit set !(c). This gives rise
to a phase transition for the pressure function t 7→ P ('t) at t = 1. The
quadratic Fibonacci map has two equilibrium states for '1: an absolutely
continuous probability measure and �!(c).

Moreover, there is a sequence of periodic points pn with Lyapunov ex-
ponents �(pn) ↘ 0 as n → ∞, see [NS]. The equidistributions on orb(pn)
belong to ℳ+, which shows that P+('t) = 0 for t ⩾ 1, but ℳ+ contains
no equilibrium states if t > 1. See [BK] for more information on the phase
transition.
∙ It is also possible that ℳerg ∖ ℳ+ contains several equilibrium states, all

supported on !(c). In [B3] an example is given where !(c) supports at
least two ergodic measures, while there is also an acip, as follows from [B2,
Theorem A (c)].

Differentiability of the map f : A C1+" assumption is necessary in order to use
the result that �(�) > 0 implies liftability. This result, proved in [K1], relies on the
property that �-typical points have nondegenerate unstable manifolds, see [L]. If f
is only piecewise continuous, this property as well as liftability no longer hold; this
is illustrated by an example due to Raith [Ra], see the left-hand graph in Figure 1.
This is piecewise continuous map f with slope 2, having a zero-dimensional set H
on which f is semiconjugate to a circle rotation. The unique f -invariant measure �
of (H, f) has �(�) = log 2 > 0, but cannot be lifted to the Hofbauer tower, described
in Section 3. This follows since it can be shown that for each x ∈ H and x̂ ∈ �−1(x),

f̂n(x̂) belongs to a domain Dn ∈ D and limn→∞ ∣Dn∣ → 0. As shown in the graph
on the right of Figure 1, is easy to adjust this example into a continuous map with
slope ±2, but this map is not differentiable at the turning points. Another part
where C2 differentiability is used is Mañé’s Theorem in the proof of Proposition 4.

Measures with supp(�) ⊂ orb(Crit): Makarov and Smirnov [MSm1, MSm2]
discuss specific polynomials f on the complex plane for which there is a phase
transition for the potential 't = −t log ∣Df ∣ at some t < 0, and consequently these
example would contradict our main theorem. The reason for this is that the Julia
set J(f) has ‘very exposed’ fixed points on which the Dirac measures can become
equilibrium states for t sufficiently small. In the interval setting this applies to
the Chebyshev polynomials f : [0, 1] → [0, 1] of any degree d ⩾ 2. The set {0, 1}
consists of the critically accessible points; each critical point is prefixed, and either
(a) 0 = f(0) = f(1) = f2(Crit); or (b) 0 = f(0), f(1) = 1 and 0 and 1 are both
critical values of critical points. The critical accessibility creates an obstruction in
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Figure 1. Left: Raith’s example. For specific choices of
�, the points whose orbits stay in the domains of branches
1 and 4 (bold lines) for ever form a zero-dimensional Can-
tor set H on which f is semi-conjugate to a circle rota-
tion.
Right: Rescaling the left bottom square and inserting a
new branch gives a continuous example. Again the set of
points whose orbits stay in the domains branches 1 and 3
(bold lines) for ever form a zero-dimensional Cantor set
H on which f is semi-conjugate to a circle rotation.

our strategy of finding an induced scheme in Section 3. Further results on phase
transitions for t > 1 are given in [MSm3].

The Gibbs property: Although the equilibrium states obtained in ℳ+ (i.e., for
the original system) are positive on open sets, we cannot expect them to be Gibbs.
First, if ' = − log ∣Df ∣, then ' is unbounded near critical points, so it is impossible

to have e'n(x)−nP (') ⩽ K�(Cn[x]) uniformly in x. But also if the number K is
allowed to depend on x, measures cannot always satisfy this weaker form of the
Gibbs property. For example, if f(x) = ax(1 − x) has an acip �, and the potential

is ' = − log ∣Df ∣, then the pressure P (') = 0 and it is well known that d�
dx > �0 > 0

on a neighbourhood of c. Suppose by contradiction that for each x /∈ ∪n∈ℤfn(c),
there exists K = K(x) such that

1

K
⩽
�(Cn[x])

e'n(x)
⩽ K for each n ⩾ 0.

Now �-a.e. x has an orbit accumulating on c, so almost surely there exists n such
∣fn(x)− c∣ < 1

4K2 . But then

�(Cn+1[x]) ⩾
1

K
e'n+1(x) =

1

K
e'n(x) 1

∣Dfn(x)∣
⩾

1

K2
�(Cn[x])

4K2

2
⩾ 2�(Cn[x]),
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which contradicts that Cn+1[x] ⊂ Cn[x]. Thus � cannot be a Gibbs measure.

In some cases, a weak Gibbs property can be proved. For example, it was shown in
[BV] that for unimodal maps with critical order ℓ satisfying a summability condition,
and every " > 0, there exists K = K(x) for Lebesgue a.e. x such that

1

Kn3(ℓ+1)
⩽
�'(Cn[x])

e'n(x)
⩽ Kn2(1+").

Appendix

In this appendix we give the two remaining proofs. The first is a lemma on the
structure of the Hofbauer tower. First let us define a natural partition of Î. We let
P̂1 := D ∨ �−1(P1). We then let Pn :=

⋁n
k=1 f̂

−n(P̂1). One can show that there

is a one-to-one correspondence between n-paths D → . . . → D′ in Î and elements
Ĉn ∈ P̂n.

Proof of Lemma 2. We start with case (a), so Ω is a finite union of intervals. Let
x ∈ Ω be any point with a dense orbit in Ω. Suppose that (ℰ ,→) is a maximal
primitive subgraph that is not closed, then for any x̂ ∈ �−1(x)∩D0 for some D0 ∈ ℰ ,

orb(x̂) leaves ℰ , i.e., f̂k(x̂) /∈ ℰ for k sufficiently large. Indeed, since ℰ is not closed,
there is D ∈ ℰ and D′ /∈ ℰ such that D → D′. There is an n-path D0 → ⋅ ⋅ ⋅ → D for
arbitrarily large n, corresponding to sets Ĉn ∈ P̂n. Each Ĉn has an n+1-subcylinder
Ĉn+1 corresponding to the n+1-path D0 → ⋅ ⋅ ⋅ → D → D′. For n sufficiently large,

Ĉn+1 is compactly contained in D. Since orb(x) is dense in Ω, there is m such that

fm(x) ∈ �(Ĉn+1). Therefore f̂m(x̂) ∈ �−1 ∘�(Ĉn+1) and f̂m+n+1(x̂) ∈ D′′ for some
domain such that �(D′′) ⊂ �(D′). Regardless of whether D′′ = D′ or not, there is
no path from D′′ back into ℰ , because if there was, there would be a path from D′

back into ℰ , contradicting maximality of ℰ .

Consequently, orb(x̂) will leave every maximal primitive subgraph that is not closed.

If there is a closed primitive subgraph (ℰ ,→), then it is unique, f̂k(x̂) ∈ ℰ for all
sufficiently large k and necessarily �(∪D∈ℰD) ⊃ Ω. Let us also show that there is
ŷ with a dense orbit in ℰ . Fix D0 ∈ ℰ and let Un be a countable base of ⊔D∈ℰD.
Each Un intersects some D and Un contains an rn-cylinder Ĉrn ∈ P̂n which itself is
contained in D. Since ℰ is primitive, there is a path D0 → ⋅ ⋅ ⋅ → D of length ln and
another path D → ⋅ ⋅ ⋅ → D0 of length l′n ⩾ rn such that if ẑ ∈ D takes this path,

then ẑ ∈ Ĉrn . Let pn := ln + l′n. Because (ℰ ,→) is a Markov graph, for each n ⩾ 1

we have a cylinder Ĉpn ⊂ D0 such that f̂ ln(Ĉpn) ⊂ Ĉrn ⊂ Un and f̂pn(Ĉpn) = D0.

Let q0 = 0 and qn :=
∑n

k=1 pk. Let Ĉq1 = Ĉp1 . By the Markov structure, we can pull

back inductively to obtain a nested sequence of cylinder sets Ĉqn ⊂ ⋅ ⋅ ⋅ ⊂ Ĉq1 ⊂ D0

with f̂ qn+ln+1(Ĉqn+1) ⊂ Un+1 and f̂ qn(Ĉqn+1) = Ĉpn+1 for all n ⩾ 0. The point

ŷ ∈
∩
n Ĉqn has a dense orbit in ℰ . In this case the lemma is proved.

Alternatively, suppose that no closed primitive subgraph exists. Abbreviate Ω̂R :=
�−1(Ω)∩ ÎR. If #(orb(x̂)∩ Ω̂R) =∞ for some R, then #(orb(x̂)∩D) =∞ for some
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D ⊂ Ω̂R, and f̂k(x̂) is in the non-empty maximal primitive subgraph containing D,
for all sufficiently large k. The above argument shows that this subgraph is closed
as well, so we would be in the previous case after all.

Therefore orb(x̂) has a finite intersection with every compact subset of Î. We will
show that this contradicts orb(x) being dense in I, by showing that orb(x) cannot
accumulate on an orientation reversing fixed point p, leaving the (very similar)
argument where p is orientation preserving and/or where p has a higher period to
the reader.

Assume (for the moment) that all critical points are turning points (and not inflec-
tion points). Call � a precritical point of order k if fk(�) ∈ Crit and f i(�) /∈ Crit

�(Dk)

�(D′′)
�(D) = fn(�(D′′))

�(Dk−l)

D∗ ⊂ Ω̂R

�(D∗)

�0 �2

C∗R

�n �n+2 p Cl C′′l
?

fR

?

6

?
fn

f l

f l

Figure 2. The �-images of domains D = Dk and D′,
their positions with respect to �n and a sketch how this
leads to a path from Dk−l back into Ω̂R.

for i < k. Let p be an orientation reversing fixed point and �0 be a precritical point
such that (�0, p) contains no precritical point of lower order. Then there is a point
�1 ∈ f−1(�0) at the other side of p with no precritical point of lower order in (p, �1).
Continue iterating backwards to find a sequence �0 < �2 < �4 < ⋅ ⋅ ⋅ < p < ⋅ ⋅ ⋅ <
�5 < �3 < �1, such that (�n, p) (or (p, �n+1)) contains no precritical point of lower
order. Let R be such that (�0, �2) compactly contains an R-cylinder C∗R. It follows
that if D is a domain such that �(D) ⊃ (�0, �2), then there is an R-path from D

leading to D∗ ⊂ Ω̂R, see Figure 2. To continue the argument, we need the following
claim which is proved at the end of this proof.

Claim. Take " := min{∣c − c′∣ : c ∕= c′ ∈ Crit}, fix l ⩾ 0 and let J be any interval
such that ∣f i(J)∣ < " for all i ⩽ l. Then for any pair of l-cylinders Cl,C

′
l ⊂ J ,

there is an l-cylinder C′′l in the convex hull of Cl and C′l such that the images

f l(Cl), f
l(C′l) ⊂ f l(C′′l ).

Let Dk be the domain containing f̂k(x̂). Recall that for every maximal primitive
non-closed subgraph ℰ , Dk ∈ ℰ for at most finitely many k. So let k0 be such
that Dk0 does not belong to any maximal primitive subgraph that intersects Ω̂R.

It follows that for each k ⩾ k0, there is no path from Dk leading back into Ω̂R.
Furthermore, if lim supk ∣Dk∣ ⩾ ", where " is as in the claim, then for arbitrarily

large k, there are paths Dk leading back into Ω̂R. Therefore we can take k0 so large
that ∣Dk∣ < " for all k ⩾ k0.
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Assume by contradiction that p ∈ orb(x). Then there are arbitrarily large n such
that if k = k(n) is the first integer such that fk(x) ∈ (�n, �n+1), then k > k0.
Now if �(Dk) ⊃ (�n, �n+2), then there is an n-path from Dk → ⋅ ⋅ ⋅ → D where

�(D) ⊃ (�0, �2), and hence an n + R-path leading back into Ω̂R (as in Figure 2).
This contradicts the definition of k0.

Otherwise, i.e., if �(Dk) ∕⊃ (�n, �n+2), then the claim implies that there exist l
and l-cylinders Cl,C

′′
l ⊂ �(Dk−l) such that f l(Cl) = �(Dk) while D′′ is such that

�(D′′) = f l(C′′l ) ⊃ �(Dk) and �(D′′) ⊃ (�n, �n+2), see Figure 2. Take l minimal

with this property. As before, this gives an l+n+R-path leading from Dk−l to Ω̂R.
If k − l > k0, then we have a contradiction again with the choice of k0. However,
we can repeat the argument for infinitely many n, and hence infinitely many k. If
Dk−l has been used for one value of k, then at least one domain in f̂(Dk−l) is the

starting domain of a path leading into Ω̂R. Minimality of l implies that the same
Dk−l no longer serves for the next value of k. This proves that for n sufficiently
large, k − l > k0, and this contradicts the choice of k0, proving the lemma.

Finally, if there are critical inflection points, then we can repeat the argument with
a branch partition and Hofbauer tower that disregards the inflection points. Indeed,
the above arguments made use only of the topological structure of f , so whether
f ∣C1 is diffeomorphic or only homeomorphic on C1 ∈ P1 makes no difference.

Proof of the Claim. Let J be an interval such that ∣J ∣ < " . We argue by induc-
tion. For l = 1, the claim is true, since J can contain at most one 1-cylinder.
Suppose now the claim holds for all integers < l and ∣f i(J)∣ < " for all i ⩽ l − 1.
Let Cl,C

′
l ⊂ J be l-cylinders, contained in l − 1-cylinders Cl−1,C

′
l−1. By induc-

tion, we can find an l − 1-cylinder C′′l−1 in the convex hull [Cl−1,C
′
l−1] such that

f l−1(Cl−1), f l−1(C′l−1) ⊂ f l−1(C′′l−1). If Crit ∩ f l−1(C′′l−1) = ∅ then C′′l−1 is also

an l-cylinder and f l(Cl), f
l(C′l) ⊂ f l(C′′l−1), proving the induction hypothesis for

l. Otherwise, by definition of ", f l−1(C′′l−1) contains a single critical point, and the

f l-image of one l-subcylinder of C′′l−1 contains the f l-image of the other. It is easy
to see that this l-subcylinder satisfies the claim. □

This completes the proof of the claim and hence of part (a) of Lemma 2. Part (b)
deals with renormalisable maps, so assume that J ∕= I is a p-periodic interval which
is minimal in the sense that no proper subinterval of J has period p. We claim
that J is associated with an absorbing subgraph (ℰabsorb,→) of (D,→). Indeed, by
minimality of J , fp : J → J is onto, and for any x ∈ orb(J) and n ⩾ 0, there is

xn ∈ orb(J) such that fn(xn) = x. Let Ĵ = ∩kf̂k(�−1(orb(J))). This set has the
following properties:

∙ Ĵ ∕= ∅: Since J contains an (interior) p-periodic point, it lifts to a p-periodic

point in Ĵ .
∙ If x̂ ∈ Ĵ and D ∈ D is the domain containing x̂, then D ⊂ Ĵ . This follows

from the Markov property. Let x = �(x̂), take xn ∈ orb(J) as above and
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x̂n ∈ �−1(orb(J)) such that f̂n(x̂n) = x̂. For ŷ ∈ D arbitrary, we can find

ŷn ∈ Ẑn[x̂n] such that f̂n(ŷn) = ŷ. Since this holds for all n ∈ ℕ, ŷ ∈ Ĵ .

∙ Ĵ is f̂ -invariant. This is immediate from the f -invariance of orb(J) and the

definition of Ĵ .

Take ℰabsorb := {D ∈ D : D ∩ Ĵ ∕= ∅}. Then the f̂ -invariance of Ĵ implies that
(ℰabsorb,→) is indeed absorbing. Now apply part (a) to the subgraph (D∖ℰabsorb,→)
to find the required (non-closed) primitive subgraph. □

The next proof shows that measures of positive entropy must lift to cover a large
portion of the Hofbauer tower.

Proof of Lemma 4. Liftability of � was shown by Keller [K1], so it remains to show

that �̂(ÎR) > � uniformly over all measures with ℎ�(f) ⩾ ".

Fix R ∈ ℕ and � > 0 such that (� + 2
R) log(1 + #Crit) < "/2. Let Pun be the

collection of n-cylinders such that 1
n#{k < n : f̂k ∘ i(Cn) ⊂ ÎR} < �, where as

before i−1 = �∣D0 , and let P ln be the remaining n-cylinders.

If �̂(ÎR) is small, then �(∪Cn∈PlnCn) is small as well. Hence, if the lemma was false,

then for any � > 0 we could find a measure � with ℎ�(f) ⩾ " and �(∪Cn∈PlnCn) <
"

2 log(1+#Crit) . So assume by contradiction that there is such a measure �.

If D ∈ D is any domain outside ÎR, then only the two outermost cylinder sets in
PR ∩ D can map under f̂R to domains of level > R. The f̂R-images of the other
cylinder sets J ′ have both endpoints of level ⩽ R, so they have level(f̂R(J ′)) ⩽ R.

Repeating this argument for f̂R(J ′) of those outermost cylinder sets, we can derive
that for infinitely many n:

�nu := #Pun ⩽ (1 + #Crit)�n(1 + #Crit)(1−�)2n/R and �nl := #P ln ⩽ (1 + #Crit)n,

so log �u ⩽ (�+ 2
R) log(1 + #Crit) < "/2 and log �l ⩽ log(1 + #Crit). For any finite

set of nonnegative numbers ak such that
∑

k ak = a ⩽ 1, Jensen’s inequality gives
−
∑

k ak log ak ⩽ a log #{ak}. Since the branch partition P is assumed to generate
the Borel �-algebra, the entropy of � can be computed as

ℎ�(f) = inf
n
− 1

n

∑
Cn∈Pn

�(Cn) log�(Cn)

= inf
n
− 1

n

⎛⎝ ∑
Cn∈Pln

�(Cn) log�(Cn) +
∑

Cn∈Pun

�(Cn) log�(Cn)

⎞⎠
⩽ inf

n

1

n

(
"

2(1 + #Crit)
log �nl + log �nu

)
< ".

This contradiction establishes the required � > 0.

Now to prove the second statement, for each D ⊂ ÎR, we can find �D > 0 such
that if x̂ ∈ D and d(x̂, ∂D) < �D, then f̂k(x̂) /∈ ÎR for R < k ⩽ 3R/�. Obviously
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the set Ê := ∪D⊂ÎR{x̂ ∈ D : d(x̂, D) > �D} is compactly contained in ÎR. If x̂ is

a typical point for �̂, then the relative time of orb(x̂) spent outside ÎR is at least

�̂(ÎR ∖ Ê)( 3
� − 1) ⩽ 1, so �̂(ÎR ∖ Ê) < �/2, whence �̂(Ê) > �/2. □
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