DISTORTION BOUNDS FOR C*" UNIMODAL MAPS

MIKE TODD

ABSTRACT. We obtain estimates for derivative and cross—ratio distor-
tion for C?*" (any n > 0) unimodal maps with non—flat critical points.
We do not require any ‘Schwarzian—like’ condition.

For two intervals J C T, the cross—ratio is defined as the value

T1]7|
B(T,J) = +——

[L||R|
where L, R are the left and right connected components of T'\ J respec-
tively. For an interval map g such that g7 : T'— R is a diffeomorphism,
we consider the cross—ratio distortion to be
B(g(T),9(J))

B(T,J)

We prove that for all 0 < K < 1 there exists some interval Iy around
the critical point such that for any intervals J C T, if f"|r is a diffeo-
morphism and f™(T") C Iy then

B(f*,T,J) > K.
Then the distortion of derivatives of f™|; can be estimated with the
Koebe Lemma in terms of K and B(f™(T), f*(J)). This tool is com-

monly used to study topological, geometric and ergodic properties of f.
This extends a result of Kozlovski.

B(g,T,J) :=

1. INTRODUCTION

In order to understand the long term behaviour of smooth dynamical system
f X — X we must consider iterates of the map. It is useful to know how
differently high iterates of the map f™ act on nearby points. For example
we can try to estimate how wild the derivative of iterates of the map is: we
can consider the distortion g;:gg for z,y in some small interval J where
/™ is a diffeomorphism. For one dimensional maps, the Koebe Lemma is
a tool we use to estimate this. Notice that this distortion can be rather wild
when f has critical points.

An important condition we must assume in order to apply the Koebe Lemma
is that the map f™ must increase cross-ratios. The type of cross-ratio we
use most is defined as follows. For two intervals J C T, the cross—ratio is
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defined as the value 7]
T||J
B(T,J) = ——
|L|| ]
where L, R are the left and right connected components of 7'\ J respectively.
For an interval map ¢ such that gy : T'— R is a diffeomorphism, the main
measure of cross—ratio distortion we use is given by

B(y(T),9(J))

B(T,J)
If we know that B(f",T*,J*) > K > 0 for any J* C T* C T then we have
uniform bounds on gfczgi for z,y € J depending on K and B(f™(T), f"(J)).
So we are able to estimate the distortion of the derivative of f™ using infor-
mation on the distortion of the cross-ratios.

B(g,T,J) :=

A classical way of gaining information about the dynamics of an interval
map [ :[0,1] — [0, 1] with a critical point, is to take a first return map to
some well chosen interval I. If this map has some diffeomorphic branches,
we can estimate how well or how badly the derivatives behave on branches
using the Koebe Lemma as above. This method is often used to give in-
formation on the geometry and topology of the map and its iterates, see
[MS]. This type of approach is also applied when considering the ergodic
properties of one dimensional maps. Often instead of first return maps,
certain inducing schemes are applied in these cases, see [MS]. The Koebe
Lemma allows us to show that the inducing schemes are expansive, and the
Folklore Theorem can then be used to derive ergodic absolutely continuous
f—invariant measures.

In order to apply the Koebe Lemma to f™|r we need a lower bound on cross
ratio distortion of f™|r. In fact, a lower bound K = 1 is obtained whenever
f is C® and has negative Schwarzian derivative: that is
g Df 3 (D ?
=57 -3 (57)

is negative wherever it is well defined. For applications it is not so important
that f have negative Schwarzian, just that some iterate of f has negative
Schwarzian on some small intervals. Kozlovski showed [K2| that for any
C?® unimodal map with non-flat critical point (see the next section), if I
is a small enough neighbourhood of the critical point and f"(x) € I then
Sfrtl(x) < 0. Therefore, for most practical purposes, for example where
first return maps or inducing schemes are used to gain information about the
dynamics, it is unnecessary to find the sign of the Schwarzian derivative as
long as the critical point is non—flat. Moreover, this result allowed Kozlovski
to prove the following.

Theorem 1.1. Suppose that f is a C?® unimodal map with non—flat critical
point whose iterates do not converge to a periodic attractor. Then for any
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0 < K < 1, there is an interval V' around the critical point such that if, for
an interval T and somen > 0,

e f"|r is monotone; and
e cach interval from the orbit {T, f(T),..., f"(T)} is contained in the
domain of the first entry map to V,

then
B(f*,T,J) > K

where J is any subinterval of T.

This means that the Koebe Lemma can be applied to f™ to get estimates
on the distortion of derivatives which only depend on B(f"(T), f*(.J)) (for
first return maps or induced maps this quantity is bounded whenever the
branches have a ‘uniform extension’). These results were extended to C®
multimodal maps with non—flat critical points in [SV]. Also, for C* uni-
modal maps with non—flat critical point, it is shown in [GSS2| that an
analytic coordinate change can create a map which has first return maps
with negative Schwarzian.

So how necessary is the negative Schwarzian condition to prove dynamical
results in ‘reasonable’ cases? Certainly it is useful in determining the type
of parabolic periodic points or bounding the number of attracting cycles, see
[Si, MS]. A natural question to ask, and the one we consider in this paper,
is: what happens for unimodal maps with non—flat critical points which are
not C3? Certainly the usual negative Schwarzian condition is no use since
it is not even defined. (Note that there is a ‘Schwarzian—like’ condition for
C' maps -equivalent to the negative Schwarzian condition when the map is
C3- see [P, MS], but that need not hold in our case either.) We show that
Theorem 1.1 extends to the case of C?*" for any 7 > 0. So many results
on the geometric and statistical properties of unimodal maps with non—flat
critical point extend to maps which are only C?*7.

Since we cannot use the negative Schwarzian property at all here, we must
look rather closely at the behaviour of the map on small scales. We use
a result in [MS] to estimate the cross ratio distortion in terms of sums of
lengths of intervals. We split up this sum into blocks using the domains of
first return maps to small intervals around the critical point. The precise
behaviour of the branch containing the critical point, the central branch,
determines how we choose our blocks. Since we have no negative Schwarzian
property, there are particular difficulties when a block of our sum contains
points which spend a very long time in the central branch (when there is a so
called ‘saddle node cascade’ or an ‘Ulam-Neumann cascade’). The main tool
we use here is the real bounds proved by [V, Sh1l, SV]. Roughly speaking,
these results give us a sequence of first return maps where the diffeomorphic
branches have a uniformly large extension. This gives bounded distortion
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of the derivative on these branches which allows us to estimate the sums of
lengths of intervals.

1.1. Statement of the main result. We explain the terminology in the
following definitions. Given an interval 7', and a subinterval J C T, we
defined the cross-ratio B(7,.J) above. Note that if we again denote the
left—-hand and right—hand components of 7'\ J by L and R respectively, we
have another measure of cross-ratio
_
AT = TG ITORD

(however, we focus mainly on B(T, J)).

Suppose that g : T — R is a diffeomorphism. We define B(g, T, J) as above,

but we also have
A(y(T),9(J))
AT, J) 7
another estimate of how the map distorts cross-ratios. Observe that for
diffeomorphisms g : T'— ¢(T') and h : g(T) — ho g(T) we have

B(hog,T,J) = B(h,g(T).9(J))B(g,T, J).
Similarly for A(g, T, J).

Alg, T, J) =

We say that T is a d—scaled neighbourhood of J if %, % > 0. We suppose

throughout that our functions map from I := [0, 1] into itself, and 9I into

ol.

We say that a unimodal C* map ¢ has non-flat critical point c if there
exists some neighbourhood U of ¢ and a C* diffeomorphism ¢ : U — I with
¢(c) = 0 such that g(x) = £|p(x)|* + g(c) for some o > 1. The value « is
known as the critical order for g. We denote the set of such maps by NF*
and this neighbourhood by Us.

Such maps have many good properties. For example, they have no wander-
ing intervals, see for example Chapter IV of [MS]. More importantly for
us here is how such maps distort cross—ratios. In particular, how iterates of
such maps distort cross—ratios. Our main result is as follows.

Theorem 1.2. For anyn > 0, let f € NF?>™ be a unimodal map with a
critical point whose iterates do not converge to a periodic attractor. Then
for any 0 < K < 1, there is an interval V around the critical point such
that if, for an interval T and some n > 0,

e f"|r is monotone; and

o fM(T)CV,

then
B(f",T,J) > K,
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A(f",T,J)> K

where J is any subinterval of T.

This theorem is proved for C® maps in [K2]. Note that in fact we prove that
if 0 < n < 1 then for any 0 < n’ < n, there exists C' > 0 such that if J, T,V
are as in the theorem then A(f",T,J), B(f",T,J) > exp{—C(sup; Vi)'

1.2. Strategy of the proof. Our setup will involve first return maps to a
neighbourhood of ¢, as outlined below. For the case where ¢ is non—recurrent
see [St]. So we suppose throughout that ¢ is recurrent.

An open interval V' is nice for f if f7(0V)NV =0 for n > 1. (When it is
clear what f is, we just refer to such interval as nice.) It is easy to see that
we can find arbitrarily small nice intervals around c.

Let Iy > ¢ be a nice interval. For every x € I whose orbit intersects Iy,
let n(z) := min{k > 0 : f¥(x) € I,}. If additionally = € Iy, let I} > =
be the maximal neighbourhood such that f™®)(I}) c I,. We obtain the
first return map Fy : U; [g — Iy. We label the interval which contains
¢ by I§; this interval is called the central domain. Observe that Fj is a
diffeomorphism on all domains Ig except when j = 0. Fj is unimodal on I{.
Note also that I{ is again a nice interval. We will call it I; for the next step
in the inducing process; i.e. we define F} : U; I{ — I to be the first return
map to I; = IJ. Tt has central domain I{ = I,. Continuing inductively,
we obtain maps F; : U; Il-j — I;. The sequence Iy D I; D --- is called the
principal nest, and Fi‘zg : Iij — I; is a branch of F;.

If x ¢ I; but n(xr) is defined then there is a maximal interval U/ 5 z such
that f”(x). : U} — I; is a diffeomorphism. So we may extend [, letting
Fi|;i + U} — I;. Then letting J; U] consist of all such intervals added to

U; Iz-j, we call F; : {UJ; Uij — I; the first entry map to I;. We will often switch
between these two very similar types of map.

For simplicity, except in the appendix, we will assume that Fj;(c) is a max-
imum for Fj|;,,,. We say that F; is low if F;(c) lies to the left of ¢ and F; is
high if F;(c) lies to the right of c. F; is central if F;(c) is inside I; ;1 (if this is
not the case, then Fj is non—central). Figure 1 shows F; which is high and
central return.

Suppose that f*: T — f*(T) is a diffeomorphism and f"(T) C I,. It can
be shown (see Lemma 2.1) that we get a lower bound on B(f™, T, J) if we
can find some bound on Y77 | f*(T)|. In fact, we consider S35 | f*(T)|**+¢
for some 0 < £ < n. We will split up this sum into blocks determined by

the principal nest explained above. Note that our proofs extend easily to
A(f™,T,J), see [St].
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+1

FIGURE 1. F; is high and central.

We fix n and T as in Theorem 1.2, let ng = n. For i > 0, suppose that some
iterate f7(T') enters [; for 0 < j < n. Now we let n; be the last time that
fAT) C Liyie. fr(T) C Land f"(T) L I;, 0<j<n—n;. If fI(T)is
never contained in I; for 0 < j < n then we let n; = n;,_;. For each i, we
will be interested in estimating

Ni—Ni+1

Z |f/’€+m'+1(T)|1Jr§ we call this the the sum for F;.
k=1

As we will see later, if F; is non—central infinitely often then Theorem 2.3
implies that as ¢ — oo the intervals I; shrink down to ¢. Thus we are able
to bound 725 | £*(T)[**¢ by bounding the sums for all F;. We will use a
slightly different method when there exists a nice [y such that F; is always
central.

In order to prove the main theorem, we will consider the following cases.
Note that we only assume that f € NF? in the following three propositions.

e F, 5 is non-central. We consider the sum for F; whenever f7(T) N
Ol 1 =0 for all 0 < j < ny, as follows.

Proposition 1.3. Suppose that F;_5 is non—central and f7(T) N
Ol;p1 =0 for all 0 < j < n;. Then there exists Cyy > 0 such that

i§+1 ‘fk+ni+1(T)’ < Cyy0; ‘f"z (T)|’
k=1 |1

where o; 1= SUPy¢ 1y ZZ(:‘? |f5(V)| (and n(V) is defined as k where
Filv = f*).
We call this a well bounded case. It is dealt with in Section 3.



DISTORTION BOUNDS FOR C?*7 UNIMODAL MAPS 7

i_o 1s non—central and Fj, ..., Fj,,, 1 are central. We consider the
sums for Fy, Fii1,..., Fiym whenever f9(T) N 0Ly = O for all
0 < j < ny, as follows.

Proposition 14 Suppose that F;_s is non—central, F;, ..., Fii,_1
are central and f7(T)NOL; 11 =0 for all0 < j < n;. Forall§ >0
there exists Couse > 0 such that

Ni—Nj4+m+1

Z |fk+ni+rr~r1(T)|1+é < Ccascai,m max |fk(T>|£

=1 Nitmi1<k<n;

where 0;, is defined as follows. Let 07 := supy,¢(py ZZ(:‘? |FE(V)].

Let V C I;\ Iy be an interval such that f*(V) is one of the con-
nected components of I; \ I;y1 for some n >0 and f7(V) is disjoint

A

from both I; \ I+, and I, for 0 < j < n(V). Then 0;,, is the
supremum of all such sums zji‘{) |F1(V)] and o;.
We call this the cascade case. It is dealt with in Section 4.

F;_5 is central and F;_; is high and non—central. We consider the
sum for F; whenever f/(T)N 0L, = 0 for all 0 < j < n;, as follows.

Proposition 1.5. Suppose that F;_o is central, F;_1 is high and
non—central and f7(T) NI my1 =0 for all 0 < j < n;. Then there
ezist Cey > 0 andniy1 < niz < mio < ny; such that f2(T), f3(T') C
I; and

ni—Mnit1 _— - C.oo |fnz(T)| |fnz2(T)| ‘f”zs(T”)
> e < o (Ut Vi

(In some cases, the last two terms in the sum are not required.)
We call this the exceptional branches case. 1t is dealt with in Sec-
tion 5. We also note there that if F;_5 is central and F;_; is low and
non—central then we are in another well bounded case, and so the
conclusion of Proposition 1.3 holds.

We have an interval I such that F; are all central for ¢ = 0,1,.. ..
We call this the infinite cascade case. We prove Theorem 1.2 for this
case in Section 7.

The proof of Theorem 1.2 for the non-infinite cascade case is given in Sec-
tion 6.

With these propositions, for 0 < n' < n, we can decompose the sum

" fE(T) T into blocks of sums Yl fRFe (T). We then
show that each of these is uniformly bounded. We will then show that
SR M| fREr e (T [ decays in a uniform way with .

The first two cases use real bounds of Theorem 2.3. These bounds imply that
B(I7, I;) are bounded above. This will also be true for all except possibly
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two domains of F; in the third case. The main tool here is Lemma 3.3, which
gives us some decay of cross—ratios when we have these real bounds. Note
that the conditions f7(T) NI = 0 for all 0 < j < n; in well bounded and
exceptional cases, and f7(T)NO; 1 = 0 for all 0 < j < n; in the cascade
case, make the propositions simpler to prove. However, as we remark in
Section 6, it is easy to see how to split up the intervals in the other cases
in order to prove Theorem 1.2.

The final case, which arises in the infinitely renormalisable case, is differ-
ent from the other three. We use a lemma of [K2] to find some uniform
expanding property which helps bound the sums.

In all cases except the infinite cascade case we must ensure that we have
some initial interval which has a first return map which is well bounded.
To do this we can simply pick some nice interval to begin with and then
induce until we find a map which is well-bounded. This is always possible
when there is not an infinite cascade.

Note that we need extra smoothness to bound cross—ratios in the cascade
case. This ensures that we can deal with the case when we have many
consecutive low central returns, a ‘saddle node cascade’.

In Kozlovski’s proof for C?® maps he was able to use the fact that there exists
some C' > 0 depending only on f such that for interval J C T we have
B(f,T,J) > exp{—C|T|?} and A(f,T,J) > exp{C|L||R|}. See Chapter
IV.2 of [MS]. In particular this means that there exist such real bounds
as in Theorem 2.3 for all ¢, not just those for which F;_; is a non—central
return. So the long central cascades we encounter in Section 4 present much
less of a problem in the C? case. Indeed, the work done in Section 5 is also
unnecessary in the C? case.

We will deal with the well bounded case first. It is the simplest and gives
us a good idea about how we may proceed in general. We will use J to
refer to a general interval from here until Section 6. This allows us to use
less notation. When we use the constant C' > 0, we mean some constant
depending only on f.
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2. INTRODUCTORY RESULTS

Without loss of generality, we suppose throughout that our maps have a
maximum at the critical point. We also suppose that f is symmetric about c.
That is, f(c—e€) = f(c+e) for all e. This assumption is useful for simplifying
proofs (particularly in Section 5, which is already quite technical), but is
not crucial since on small scales our maps will be essentially symmetric (in
particular, |Df(c—¢€)| and | D f(c+€)| are arbitrarily close for small enough
€). We let C < |gly < C" mean sup,y |g(x)| < C" and inf,cp |g(x)| > C.

The following theorem is proved for a more general case in Chapter IV of
[MS]. Here we will let w, be the modulus of continuity of a continuous map

g, i.e. wy(e) :=supy,_, . |g(x) — g(y)|-
Theorem 2.1. For a unimodal map g : I — I, g € NF?, if T is an interval

such that g"|7 is a diffeomorphism and J C T is a subinterval, then there
exists some C' > 0 such that

B(g",T,J) > exp {—c”z tzgugi(T)r)rgi(T)r} .

=0

This bound also holds for A(f",T,J).

In Sections 6 and 7 we will use the fact that when g € NEF*™ for some
n > 0, we can replace Cwpz,4(€) by Ce".

The following lemma, a consequence of the absence of wandering intervals,
is Lemma 5.2 in [K2].

Lemma 2.2. Suppose that g € NF?, g: I — I. Then there exists a func-
tion T : [0, |I|] — [0, 00) such thatlim._o7(¢) = 0 and for any interval V' for
which g"|y is a diffeomorphism and g"(V') is disjoint from the immediate
basins of periodic attractors, we have

max |g"(V)| < 7(|g"(V)]).

0<i<n

We may use this lemma and Theorem 2.1 to get

1) B(g"T,J) > exp {—a/ug“(T)r) x> rgim\}

whenever f"(7') is disjoint from the immediate basins of periodic attractors,
where

(2) o'(lg™(T)]) = Cwg o 7(lg™(T)]).

We will use the following result of [SV] throughout. (In fact it is stated
there in greater generality, as Theorem A.)
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Theorem 2.3. If g € NF? is a unimodal map with recurrent critical point,
then the following hold.

(a) For all k > 0 there exists (k) > 0 such that if Gi_1 : U; I — I
is non-central, then Iy is a £(k)—scaled neighbourhood of I;y 1.
(b) For each & > 0 there is some & > 0 such that if I; is a —scaled

netghbourhood of I;11 then I;11 is a éfscaled neighbourhood of any
domain of Gii1.

This result gives us real bounds for some of our first return maps. We let
X :=&(1) > 0 from the above theorem for our map f.

The following theorem is an improvement of the classical Koebe Lemma. It
is presented in more generality in [SV] as Proposition 2: ‘a Koebe principle
requiring less disjointness’. Note that actually for our purposes, the classical
Koebe Lemma is enough.

Theorem 2.4. Suppose that ¢ € NF?. Then there exists a function v :
0, 1]] — [0,00) such that v(e) — 0 as € — 0 with the following properties.
Suppose that for some intervals J C T and a positive integer n we know
that g"|r is a diffeomorphism. Suppose further that g"(T) is a d0—scaled
neighbourhood of g™ (J) for some § > 0. Then,

(a) for every x,y € J,

[Dg" (x) { S LR
——— < expsv(S(n,T)) g'(J — | =C(
Dg" ()] ) ;! (DIt =5 (%)

where S(n, T) := maxocren—1 | fE(T)].

(b) T is a §—scaled neighbourhood of J whenever

5 %exp{—@} l1;51 <-294;i£15— 29))

is positive, where 0 = v(S(n,T)) X1 |¢'(J)].

Again we may use Lemma 2.2 to substitute v(S(n,T")) with v/(|f™(T)])
where we define /(| f™(V)|) := v o 7(|f™(V)]). We will use the result of
Theorem 2.3(b) extensively, but we use § when § = /(|Iy|). Usually & will
be related to the x we obtained following Theorem 2.3.

We will sometimes be in a situation where we wish to estimate the derivative
of a function in between two points at which we know something about the
derivative. The following two well known results allow us to do this. The
following is known as the Minimum Principle; see, for example, Theorem

IV.1.1 of [MS].
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Theorem 2.5. Let T = [a,b] C I and g : T — g(T) C I be a C diffeo-
morphism. Let x € (a,b). If for any J* C T* C T,
B(g, T, J*) > pg >0
then
|Dg(x)| > pgmin(|Dg(a)l, Dg(b)]).

To see a proof of the following well known result see [MS].

Theorem 2.6. For g € NF? there exist ng € N and p, > 1 such that if p
is a periodic point of period n = ng then |Dg"(p)| > pg-

We are now ready to begin the proof of Theorem 1.2.

3. WELL BOUNDED CASE

Here we deal with the case where F;_, is non-central and f/(T)N0I; 1 =0
for all 0 < 7 < n;. In our estimates, we are principally interested in iterates
of T landing in I} for j # 0. By Theorem 2.3, the fact that F;_ 5 is non-
central implies that the first return domains I7 are all well inside J;. This

enables us to estimate the sum for Fj, and is the reason we call this case
well bounded.

Let n} > n;;1 be minimal such that f%(T) C I;. We will initially assume
that we have some x > 0 such that for the ‘return sum’,

Ji
(3) YIEF(f(T)] < wlf(T)]

k=0

where j; is such that F7 We prove Proposition 1.3

— nifng ,
' ' ) f ‘f"i(T)' ' .
before bounding this return sum in order to give an idea why we need
bounds on return sums. Except for the proof of (3), this is similar to the
proof of Lemma 5.3.4 of [K1]. There, it is assumed that f € C* in order to

bound the sum Y>7°" | F¥(f™(T))|. Those methods fail in the C? case.

Proof of Proposition 1.3 assuming (3). Let ngy1 = mog < my < -+ <
m;, = n; be all the integers between n; and n; such that f(7) C I;\ I;+1
for 7 = 1,...,5; — 1 and let my = n;41. Now let F; : UjUZ-j — I;
be the first entry map to I;. We will decompose Y i """ | fFmi+1(T)| as

S ST | (T,

For1 <j<ji—1land 1<k < mjy —mj, let U be the domain of first
entry to I; such that f™+*(T) C U!. Suppose that Fj|;n = f%. Then there

exists an extension to V! D U} so that f : V! — I, is a diffeomorphism.
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55 ()] <

Then by the Koebe Lemma we have the distortion bound: o]

C(x) ‘fﬁi Whence

mjr1—m; . mjy1—mj;—1
J J . fm]+1 T J J )
> k)< o (LTINS
k=1 i k=0
mit1 (T
< ()o@
|1
Therefore
Mg —MN541 . . 0; Ji—1 N
S )] € 0T S ) = C 2 S kD
k=1 | ‘ | z| _

where T := f(T). This is bounded above by x| f™(T)| due to (3), so we
are finished. O

3.1. Bounding return sums. In this subsection we will introduce some
tools which we use extensively in the remainder of this paper. We then use
these tools to prove that (3) holds.

The proof of the following simple lemma is left to the reader.

Lemma 3.1. For all 6 > 0 there exists A = A(6) > 0 such that A(6) —
as 6 — oo with the following property. Suppose that U is an interval, J C U
is a subinterval and that the left and right components of U \ J are denoted
by L and R respectively. Suppose further that |L|,|R| > §|J|. Then

B(U,J) < A.

Let D; denote the set of non—central domains F; '(I;), i.e. Dy = U, I
Let D, denote the set of domains F; *(D;) which are disjoint from the
central domain. Inductively, we let D, denote the set of domains F; (Dj_,)
which are disjoint from the central domain. Then for any element J;, € Dy,
FF : J, — I; is a diffeomorphism. We will bound 352} [F/(J,,)| for any
Ji € Dy by showing that there exists some A < 1 independent of ¢ such that
for k > 1 we have B(I;, J) < AB(1;, F;(Jy)). We let

(4) p = exp{=a'(|Lo])}

where o’ is given by (2). By (1), if J', f(J),..., f™(J') is a disjoint set of
intervals and J O J', we have B(f™, J’ J) > ,u Therefore, if n(j) is the
return time of I to I; and J C I/ then B(f”(ﬂ 70J) > .

The following lemma is Lemma 2.3 of [GK].
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Lemma 3.2. For every § > 0 there exists N = N () < 1 such that if
J CV CU are intervals and U is a d—scaled neighbourhood of V' then
B(U,J) < NB(V,J).

Furthermore, ' — 1 as § — 0.

We add this lemma to (1) as follows.

Lemma 3.3. Given 0 > 0, there exist 0 < A = A\(§) < 1 and € > 0 such that
if |Io| < € and I,_y is a 6-scaled neighbourhood of I;, then for any J C I
with j # 0,

B(I,..J) < \B(L, F{(J)).

Proof. From the previous lemma there exists some X' = X (§) < 1 such that
B(I;,J) < NB(I},J).

Now from (1) we obtain

B(I;, (7))

B(L;, J) < X
(Li; J) .
where p is defined in (4). Since p — 1 as |Iy| — 0, if € is chosen small
enough then & < 1. We let A := <. Thus B(I;, J) < AB(I;, F(J)). O

We will consider A = A(x) where \ comes from Theorem 2.4(b) applied to x
and x comes from Theorem 2.3(a), i.e. x takes the role of ¢ in Lemma 3.3.
In fact we shall adjust A again in Section 5, but it will remain independent
of 7 and strictly less than 1.

Proof of (3). For k > 2, B(I;, Ji) < Ne=1B(I;, FF~*(J;)). Suppose that
FF"'(Jy) € I]. Then by Lemma 3.1, using Theorems 2.3 and 2.4 (b),
B(I;,I]) < A where A = A(x). Thus, it is easy to see B(IZ,Fk_l(J )) <

A'Fk|1]|‘]’“)|. Now by the Koebe Lemma, |FF~!(J,)| < C(x )|Fk(Jk)

(3

we know that B(I;, FF(J,)) < C(x )A‘F“f‘]’“ We apply these estimates

|1
1 2| L]
MNe=1C()A|FE(Jy)

Then |Ji| < CA*=LFF(J,)|. So Y23 |F7 ()] < CEYL Whence

SO

to the sizes of Jj:

BARS

S IR 1 < IR (14 775)

This holds for any sum of returns which never lands in the central domain.
It is independent of 7. Letting x = (1 + %) we prove (3). O
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4. CASCADE CASE

This section is devoted to the proof of Proposition 1.4. Note that if there is a
uniform upper bound on the length of sequences F;, F; 11, ..., F;,, all having
central returns then Theorem 2.3 implies that we may prove Proposition 1.4
as a well bounded case. However, there may be arbitrarily long sequences
of consecutive central returns.

Proof of Proposition 1.4. We suppose that there ¢ is such that f"(7T) C I;
where F;_5 has a non-central return and Fj; all have central returns for
J=20,...,m—1 and that F},,, has a non-central return. For £ > 0 we will

bound the sum
Mg —Nj+m+1

o | ()

k=1
For our intial estimates, we may omit &, but later it will be necessary to

include it. Recall that we always assume here that f7(T) NI,y = 0 for

Let mg = n;1ma1 and let my < my < n; be the smallest integer such that
f™(T) C I; \ Liz1. Let my < mg < n; be the next integer for which
f™(T) C I; \ Iy if such my exists. Proceeding in this manner, we obtain

a sequence, Nipm+1 <My < Mg < -+ < My = n,.
So
N —Mi4m+1 N—1mjp1—my
o |ffeEen(@ =30 Y (D)
k=1 =0 k=1

Define my_; < m’ < n; to be minimal such that f™(T) C I; \ Iitmi1-
Assuming that Fj|;0 = f*, there exists 0 < p < m such that m’ + sp =
my = n,;. We can rewrite the sum

=Nt m+1 N—-2MmMjt1—m; m'—mpy_1
Yoo |fEreEee(T) = Y Z [+ S (D)
k=1 7=0 k=1 k=1

£S5 ),

r=0 k=1

Using the method from the proof of Proposition 1.3,

Z ’karmN 1 ’ =+ Z Z ‘karrerm ’ <
k=1

r=0 k=1

We will deal with the sum on the right hand side later. We will first show

that Y2 SE2 ™ [f4(T)] < Co L
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We denote the left and right components of I; \ 1,41 by L; and R; respec-
tively. We know from Theorem 2.3(a) and (b) that =L &L~ ¢

[Li1]? [Tital

We define F; : U, I - \ Z;11 to be the first return map to I; \ I;41, such
that Fy(I}) e {LZ, R }. As in the well bounded case, for each 1 < j < N —2
and 1 < k< M1 =My, there exists a first entry domain U to I;\ I;11 such
that f5+7i(T) € U. We may assume that f™+ ~™~*({) = L,. Indeed, for

1 < j < N — 3 there exists I! such that f™+(T) c I! ¢ L;. We show that
A k+m;

It is well inside L;, which will allow us to estimate %

Suppose that F;|; = f%. Then there exists an extension to V! D ff such

that fi : V! — I, ;. Clearly V! C L;, otherwise niceness is contradicted. By
Theorems 2.3(a) and 2.4(b), V! (and thus L;) is a y—scaled neighbourhood
of Il.

For 1 < j < N — 2, we have B(L;, f"+(T)) > pB(U, f*+™i(T)) where p
is defined in (4). Therefore,

U]

| F5m(T)| < :
L+ gy

As in the well bounded case, using a small adaptation of Lemma 3.3, replac-
ing F, by F}, we can show that B(L;, f™ (T)) < AN"""9 B(L;, f™-1(T)) for
0 < j < N—2. (Note that A is still the A(x) discussed following Lemma 3.3.)
Therefore, it can be shown that

N—-2mMj+1—m;
Coim

2. 2 D) < TS B(L ™ T)).

But since f™-1(T) C I?' for some j' # 0, we have

B(Ly, f™(T)) < B(Ls, ”W

7

Notice that Fy(f™~-1(T)) = f™(T). So the Koebe Lemma and Lemma 3.1
give B(L;, f™-1(T)) < C’(X)A‘f"‘}ﬂm, whence

—2Mj+1—mMy ’fm/(T)’

Z Z \fk+mj(T)\<CUz‘,mT
7=0 k=1 )

It remains to bound Y-F_, |f7*+™ (T)|**¢ (as can be seen below, we only
really need ¢ > 0 for our estimates in the low case). We assume that
f™(T)YNOL,; # 0 for 1 < j < m: otherwise we have S20_ | 7™ (T)|*+¢ <
|I;]1+¢, and we are finished.
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Let T = f™(J). There exists some M > 0 such that FM(T) = f™(T). We
will bound S0 | FF(T)| .

pay
F(T) A
/\ 1 T
1
f I I T T [ I 1
a, a, Ay, a,, Ayrry Aygigy a, c

FIGURE 2. When 7 intersects the boundary points 81 ;-

If M was uniformly bounded then we would be able to find some bound
on S"M |FF(T)| easily. But M may be very large. We consider this sum
in two cases: either F; is high, or F; is low (the high case is the most
straightforward). For some background on this dichotomy see [Ly]|. In both
cases, we relabel Fj|;,,, as F' and I; as Iy. Now let I}, = (ay,a;). We are
assuming that F'(c) is a maximum for F', see Figure 2.

The high case

We have two cases to consider. We first assume that F; are high and central
for j =0,...,m. This is known as an Ulam—Neumann cascade.

Lemma 4.1. In the high case, SM.|F*(T)| < C|I,|.

Proof. We know that I is a y—scaled neighbourhood of I;. We will use the
Minimum Principle (Theorem 2.5) and Theorem 2.6 to estimate derivatives.
The idea here is that either we have derivative uniformly greater than one
in (a1, a,,) and we can bound Y2 |F*(T)| as a geometric sum; or we have
a small derivative in some region, in which case we find a bound on the
number of a; that are in this region.

Let v > 1 satisfy 7—5 > i Then we may fix some integer r > 1 such that

2YYI_o7 " > 1. Note that 7 only depends on x. Observe that there is a
fixed point p € (ay,c). We can choose Iy to be so small that the return
time to it is greater than mg given in Theorem 2.6. Therefore, by that
theorem, |DF(p)| > ps. If |DF(ay)| > v then from the Minimum Principle,
|DF| (4, p) > 7 where 7/ = p? min(vy, py) where p is defined in terms of |l
in (4). We fix Iy to be small enough so that v/ > 1. Therefore, we have
S [FHT)] < 555 [ FM(T)].

,y/

Suppose now that there is some u € (ay,c) such that [DF|,, . < 7. We
will show that this must mean that u € (ay, a,) and thus we can uniformly

bound the sum of times that 7' lies in this region.
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Suppose that (a1, as) C (a1,w). Then we have |a;41 — a;| > W for all
i < s — 1. Therefore, if (a1, as) C U then
s—1

S
e —aol > > laiy — ai| > far —aol Yy~
i=0 =0

We know that |a; — ag| > 2X|c — ap|. By the definition of v we must have
s < r. Moreover, we have [DF |, > 7.

This helps us bound X2, |F*¥(T')| where F¥(T') C Iy\ I,,. We suppose that
FM(T) = (ag, a;) for t < m. See Figure 2. Then

M
SOUFRT)| = |ay — a| + min(2, M — 1)|ay — ay| + - -

+min(i, M — (i — 1))|a; — ar—i| + - + |apret — aprse—1]-

This is bounded above by

min(is, M — (7 — 1
rla, — ao| +|aN—aN+1\Z G, 0 ( )>
=0

The first summand is bounded by r|Jo| and the second summand is bounded
above by Clay — ay1| for some C' > 0. So we get SM | FF(T)| < C|I,| as
required. [l

The low case

We assume that we are in the same setting as above, but with F, central
and low. This is known as a saddle node cascade. Again we would like to
bound "M | F¥(T')| defined as above. However, as we shall see, we are only
able to bound "M | F*(T)[H¢.

Lemma 4.2. In the low case, YM. |FF(T)[M¢ < C|Io|* .

Proof. We will apply the following result, a form of the Yoccoz Lemma, see
for example [FM].

Lemma 4.3. Suppose that f € NEF?. Then for all §,6' > 0 there exists
C > 0 such that if Iy is a nice interval such that

(1) Iy is a 0—scaled neighbourhood of Iy;
(2) Fy is Zow and central for k = O ,m;

(3) ‘<1+5'

then for 1 < k <m,
1 1 _ |Te—1 \ It _ C
C min(k,m — k)? | 1| min(k,m — k)%’
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This lemma was suggested by Weixiao Shen. For the proof, see the appen-
dix. (For comparison with other statements of the Yoccoz Lemma, note
that we will prove that one consequence of our conditions for the lemma is

that we have a lower bound on %)

Suppose that [ satisfies all the conditions of Lemma 4.3. In particular

we assume that for some fixed 9’ > 0, we have | I‘}ih < 1+ ¢ for some
0 < k <m. Then for any £ > 0,
M A
D _IFHT)| e
k=0
m |1 C|1, e
<3 (= ol ot — ol
= \min(k +t,m — (k +1))> min(k +1,m — (k+ 1))?
ol e m 1 1 1+€
< - @
ol ,;) (k; +1 ko t)

The sum above is bounded above for any £ > 0.

Next we suppose that the hypotheses of Lemma 4.3 do not hold. In particu-
lar, this means el > 146 for k = 0,...,m. Note that |Iy| = (1+0")|[1]| >

Ukl =
(148 = - = (1+8)M|I)|. Therefore
Y OIACAIEE S S TARSSCLE S ILICTTY
3 S 5 20 7w rn ol-
= 2= 2 = (L)
So the lemma is proved. [l

We have shown that in both low and high cases we have M |FF(T)|'+¢ <
C|Ip|**¢. We may apply the usual method to show that this means that

nimm’ | et (Y14 < Oy MaXy <pen, | fE(T)]E. So there is some Cigse
such that

N —Ni+m+1

Z ‘fk—i—m+m+1(T)|1+5 < Ocascai,m max |fk(T>|£

=1 Nitm<k<n;

as required. [l

5. EXCEPTIONAL CASE

In the last section we dealt completely with the saddle node cascade. It is
easily shown, for example applying Lemma 5.1 below to all branches, that
following a saddle node cascade we have a well bounded case, and so the
conclusions of Proposition 1.3 hold. An Ulam—Neumann cascade, however,
is not always followed by a well bounded case. We estimate the sum for
F; in this alternative case here. Most of the sum is dealt with using the



DISTORTION BOUNDS FOR C?*7 UNIMODAL MAPS 19

methods for the well bounded case, but we need some new techniques to
deal with two of the branches of Fj.

We consider the sum for F; where F;_s has a central return and F,_; has a
high non—central return. The situation here is only slightly different from
the case considered in Section 3, since we can prove that all domains of
F; are well inside I;, except possibly two. Both of these domains I have
Fj|;; = F;_1|;5. We denote the left-hand such interval by I} and the right—

hand one by I see Figure 3. These are the exceptional domains. If [;_; is

F1GURE 3. The exceptional case.

a x-scaled neighbourhood of I; then by Theorem 2.3 we know that I; is a
—scaled neighbourhood of both I and I, and we may proceed as in the
well bounded case. But this will not always be so if I;_; is at the end of a
long Ulam—Neumann cascade. So we will assume that I;,_; is not a )%—scaled
neighbourhood of I;. Without loss of generality, we suppose that F;_;(c) is
a maximum for F;,_;: I, — I,_;.

We are now ready to begin the proof of Proposition 1.5. The strategy for
the proof is as follows.

e Show there is some upper bound on B([;, I7) for j # L, R.

e State our main result in the proof: Proposition 5.3. We suppose that
we have some interval J C I} for j # L, R,0; F;(J),...,E™(J) C
IF U IR, and F"'(J) € I for j/ # L,R,0. Then there ex-
ists some A < 1 such that B([;,J) < AB(I;, F;"*'(J)). Further-
more, S, |FF(J)| < B(L;, E/"(J))|I;]. We are then able to prove
Proposition 1.5. In the rest of this section we prove Proposition 5.3:
essentially we need an upper bound on 37, |FF(J)|.
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e In Lemma 5.4 we show that there exist an interval V' C [; and v > 1

such that
|DE| oy > 7-

This allows us to bound parts of the sum >7"; |F}(J)| which lie in
(IFU I\ V.

e We next focus on V. We take first return maps to V' and use decay of
cross-ratios again to estimate sums of intervals in V', see Lemma 5.6.
We can then complete the proof of Proposition 5.3

We first show in the following simple lemma that we have uniform bounds
on how deep the domains of F; are in I; for all domains except I, I},

Lemma 5.1. In the exceptional case outlined above, if j # L,0, R then I;
is a x—scaled neighbourhood of I .

In fact, a similar result holds for the central domain too by Theorem 2.3,
but this is not important for us here. This lemma proves that we can treat
the case where Fj_5 is central and F;_; is low and non-—central as a well
bounded case.

As we shall see, the proof of this lemma is reminiscent of the cascade case
since we follow iterates of intervals along the central branch of some Fj.

Proof. There exists some maximal i < i such that Fj_, is non—central.
Then by Theorem 2.3, I;; is a xy—scaled neighbourhood of I;/,.

For j # L, R we will find F}| ;7 as a composition of some branches of Iy in
order to find some extensions. Fj| I, maps Iij out of I; along the cascade,
through the sets I;_1\ I;, I;_\ I;_1 and so on, until it maps to some interval
in ;41\ Lir42. Then this interval is mapped into some [}, . This then maps

back into I; 1. The process may be repeated many times before [Z-j is finally
mapped back to ;.

So know that Fj| b is a composition of maps as follows. Let j; # 0 be such
that (F} |1, (1) € L' Let ky =i =i 1 Fy|p = (Fol o ) (FS 1, )|
then we stop here; we say r = 1. Otherwise, let ky > 0 be minimal such
that F %217y € I\ Iy, Let jo # 0 be such that Fi (1) < 122,
If Fi|; = F*t' 41 then we stop here; we say r = 2. Otherwise, we
continue this process until we finally return to I; and obtain k.

.

Suppose that » = 1. That is,
Fi‘[i = Fz‘('i_i/)ﬂ‘fi'

Let U denote Fi(,i_i/)(lf) and U’ denote I7}. Then Fy(U) = I; and Fy(U') =
I;;. We know that I is a x—scaled neighbourhood of I;. So if we can show
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that, taking the appropriate branch, (FZ»T(Z'%/)\IZ,/H)(U’) C I;, we know by
Theorem 2.4(b) that I; is a x-scaled neighbourhood of I7 (since all the
intervals we are concerned with are disjoint). It is easy to see that for this
branch, (E,_(i_i,)hi,ﬂ)(U’) C I; by the structure of the saddle node cascade
since we have (Fy (g, )(U') C Liga \ Liga, (Fi?[r,,,)(U') C Liga \ Lirys

and so on. So the lemma is proved when r = 1.

In the more general case, where » > 1 and

Fil = F-/Z;ﬂ(klﬂ)\[j
we may apply the same idea, again using the disjointness of the domains of
the first return map, to prove that I; is a x—scaled neighbourhood of I}. [

If necessary we adjust A so that A(y) < A < 1.

By the above, if I; is a x-scaled neighbourhood of I* and I then we can
proceed with the method in the well bounded case to prove Proposition 1.5.
But this is not generally the case. So for our work here, we may assume
that I; is not a y-scaled neighbourhood of I or IZ-R, and that some iterate
of J enters IF U IE.

Remark 5.2. In the previous sections we had uniform upper bounds on the
cross—ratio B(I;, I}) for all j and so we obtained estimates on the decay of
cross—ratios directly. This was used to estimate the sums of intervals. The
problem we often encounter in this section is that sometimes we only get
good estimates on how cross—ratios decay and sometimes we only get good
estimates for the decay of the sizes of intervals. But these estimates are
difficult to marry together directly, so we will have to split up such cases.
The process is first described in the proof of Proposition 1.5 and again in
the proof of Lemma 5.6. (As we will see later, this splitting scheme deals
with the cases where we enter IF U I from I;; V from I} U IF; and A from
V)

The principal result in this section is the following proposition.

Proposition 5.3. If J,F;(J),..., F"(J) C I} U I then

(1) there exists some 0 < 1 < m such that 37;L, \EF(I)| < C(|[F™(J)|+
[E (D)) |
(2) for some A < 1 independent of i, if F/""'(J) C I, j # L,0, R then
(a) Sio [ ()] < CB(L, F™ ()| L
(b) letting J' be the element of F; *(J) inside some interval 17" for
§'# L,0, R then we have B(I;,J') < AB(I;, F"t(J")).
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See Figure 4 for a schematic representation of the situation of this proposi-
tion. If necessary we will adjust the A < 1 we use throughout this paper so
that we may assume that the proposition above holds for that .

I
A
I I I It
N A
M — 1 T, T 7]
F o FTg e T FO)

FIGURE 4. An illustration of Proposition 5.3.

Proof of Proposition 1.5 assuming Proposition 5.3. As in the proof in the
well bounded case, we first show that we are principally concerned with the
intervals inside ;. Again, the proof of this fact is a slight modified version
of the proof in the well bounded case.

Let njy1 < my < --- < mj, = n; be all the integers between n,, and n;
such that fmi(T) C I; \ Iiyq for j = 1,...,75; — 1 and let mg = n;41. Let
F; : U; U} — I; be the first entry map to ;. As before, we will decompose
the sum 351, o [FA(T)] as S350 Sp ™ |t K (D).

Suppose that f™*(T) c U/ for some U’. Suppose further, that Fly =

fi. Then there exists an extension to V/ O U/ so that f% : V/ — I,_; is
a diffeomorphism, where ¢’ is defined in the proof of Lemma 5.1. Then we
RGN SN ()|
Fap S 00— Thus,

Uy ) < cgel

k=1

have distortion bounds as usual:

Therefore, 372, 1 1f(T)] < C(x) IA g;l |f™(T)|. le. we are prin-

cipally interested in the sum Y%, [f™/(T)|, that is Y57 |F¥(T)| where
T = f™(T). In fact, we focus on bounding 72 |FF(T))|.

We split T, Fy(T),..., F/*"*(T) into two groups: one for those intervals
outside I U I! and one for those inside [/ U I. Suppose that J is an
interval such that for some k > 0, we have F¥(.J) C I7 for some j # L,0, R;
then FJTH(J), FFY2(J), ..., FF(J) € IF U IR for some k' > k; and finally
Ff’/*'l(J) C Iij/ for some j' # L,0, R. From the last part of Proposition 5.3
we have

B(I;, FF(J)) < AB(I;, FF ().
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Therefore, we can bound the sums of intervals which lie in the intervals
I! for all j # L, R in a similar manner to that for the well bounded case,
independently of those intervals inside IF U I?, as follows.

Given k > 0 such that F¥(T) c I7 for some j # L, 0, R we wish to estimate
|FF(T)]. Let 0 < k < j;—2 be maximal such that FF(T") € 17" for some j’ #
L, R. Then we apply Proposition 5.3 repeatedly to obtain B(I;, FF(T)) <

A'B(I;, FF(T") for some I > 0. The [ counts the number of times that
EF(T) lies outside IF U IR for 0 < r < k. Then

| ]

FHT)| <
A B(I;, FF(T))

We have two cases. In the first case we have k = Ji — 2. Then
[F (1)
|17 |17

< AR)CR)F D).

Therefore, |FF(T)| < CON|F; J#=1(T)|. This suffices to prove an upper bound
of the form C|F/*~'(T)| for the F;-iterates of T outside I* U I® in this case.

B(IHF’zJZiQ(T)) < B(ijzj/)

In the second case k < 7: — 2. We have

FHT)| _ AIFKT))
7 1|

|

B(I, FX(T)) < B(I,, I}')

Since [F(T)] < CO)|FF(T) .
of the form C|FF(T)| for the iterates of T outside IL U IE.

Finally we use the above information about sizes of intervals outside XU I
to bound the sums of intervals inside I* U IF too. In the first case above,

we have a bound of the form C|F/~'(T)| for the iterates of T in Iru ]R. In
the second case above, we have a bound of the form C(|FF(T)| + |F™(T)| +
|F7=Y(T)|) for the iterates of T in IF U IF.

So in the worst case we have the bound

G, (LD, WD 7))

_l’_
|Zi| | ] | ]

for the sum 3230, o |[f*(T)], as required. O
5.1. Proof of Proposition 5.3. Denote the smallest interval containing

both Il and I by I!. Recall that we are assuming that the critical point
is a maximum for F;_;[p. (Recall that Fi|;r r = Fi_1[;r.) This means
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that there is some fixed point p of Fj in IF. Clearly, there also exists a point
p' € Il such that Fj(p') =p. Let V := (p/, p).

We outline the proof of Proposition 5.3 as follows. We suppose that some
iterate of J enters V. Let 0 < s; < s < s3 be defined as follows. FF(J) C
I\V for 1 <k < sy EPTNT) c VN (IFUTR); and F2HH(T) C I\ V for

1 < k < 83— sy. Any sum of the form 37 |F*(J)| can be broken up into
blocks consisting of such sums.

The scheme for proving Proposition 5.3 is to firstly to show that |DFj| AN
is uniformly large. This is proved in Lemma 5.4 and helps to deal with the
sums Y51 | FE(J)| and 5% |Ff21%(.J)|. Then we have to prove that we
have bounds on the sums of intervals which return to V. This, proved in
Lemma 5.6, helps to deal with 335271 |55 (.7)).

Note that the proof of Proposition 5.3 is the only time in this paper that
we use the symmetry of the map (and it is only a simplifying assumption).

Lemma 5.4. There ezists some v > 1 independent of i such that

|DEi|mv > 1.

Proof. We start by observing as in the last section that |DF;(p)| > ps. By
symmetry, | DEF;(p')| > p; too. Observe that I also contains a fixed point ¢
of F;. We have |DF;(q)| > p; too. Furthermore, there exists a point ¢’ € I
such that F;(¢') = ¢. From symmetry, |DF;(¢')| > py.

We can estimate |DFj|(,q) using the Minimum Principle as follows. We
use our 4 given in (4) in place of p,. Then |DEj| .0 > p*ps. When Iy is
small enough, p is close to 1. Thus we may ensure that our intervals are so
small that |DF;|p.q) > p for some p > 1. (To fix precisely how small our
intervals must be, we can, for example, choose p = \/p_f) By symmetry,
|DFiltqp) > p-

We deal with the remaining part of the proof of the lemma by showing that
F; has large derivative when x € I] and either x < ¢ or x > ¢’. We use the
following consequence of Theorem 2.3 and the Minimum Principle.

Claim. There exists some v = ~'(x) > 1 such that, denoting I = (1=,1%)
and I = (r=,r"), if Iy is sufficiently small and B(I;, I}F), B(I;, If) are
sufficiently large then

|DFz“(liq)v ‘DFi‘(q’,”) >

Proof. Let 0 := %( Lol 1) > x where i’ is defined in the proof of

‘Ii/+1‘

Lemma 5.1. We suppose that [DFi|r,, \r, < 1+ 20. Then we prove by
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induction that \I‘I'L:i\ > 1426 for 0 < k < i—1. By construction it is true
for £ = 0. We assume that it is true for some 0 < k <7 —4 — 1. Then
DEy|) sk \ Lirsrota|

‘]i’—l—k—f—Q‘ g |Ii’+k+2‘
S 14 < 20 ) | Lir s i
1420 ) |Liyriol

Then it is easy to see that }f'*ﬂ > 1+ 260 as required.

i’+k+2‘ =

In particular, we have proved that ]DF}/’IZ-/H\L' < 1+ 260 implies that I; is a

f-scaled neighbourhood of both IF and IF: a contradiction (since f > )2)
So there must exist some x € Iy \ I; such that |DF;(z)| > 1426 > 142y.
Therefore, by Theorem 2.5 and (1) we have

| DFy(op) > p min(1 + 2%, py)-

Choosing |/y| small we have some " > 1 such that |DF|4,q > 7. In
particular |DF;|q- 4 > . Similarly we can show [DFj| .+ > 7. O
Letting v := min(p,v’), the lemma is proved. O

By the above, we will be able to estimate the sizes of iterates of T inside
(IF U IR)\ V as a geometric sum.

We will need some real bounds for V. The following lemma, which contrasts
with Lemma 5.4, will later be used to obtain these bounds.

Lemma 5.5. There exists some C' = C(x, |I}]) > 0, where C(x, |I!]) tends
to some constant C'(x) as |I/| — 0, such that

“DFZ|I,LLUIZR < é

Proof. We work with Fy : I;,1 — Iy where i’ is defined in the proof of
Lemma 5.1. There exists some m > 1 such that Fi/\fi/ﬂ = fm\fi/H. We can
decompose this map into two maps so that Fyy = L o g where g = f|y o 1€

9(x) = f(c) = |o(x)|*, and L = f™ 1 ¢ f(Iy1) — I
By Theorems 2.4(a) and 2.3(a) we have 222 < C(y) for 2,y € f(I;11). So

DL(y)
DL@)| < oooﬁzcmﬁ
2

| f(Lix1)]
for x € f(I;41). Also

a—1

Dy ()| = a| Do(a)||é(x)* | <o sup [Dé(x) \¢ (%)

$€Ii’+l
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For U C U, a small neighbourhood of ¢, let Dist(¢, U A) SUDP, (7 Big‘”;:

Observe that as I becomes smaller, Dist(¢, I]) tends to 1. For z € I UTE,

|DF;(z)| < aC(x) Clit T < 2aC(x)Dist(o, I]) 1’_ | i
o (45) =

Since we have assumed that | I‘ﬂ
C' > 0 such that for all z € I/,
DF{(x)] < CC(x)Dist(¢, I).

Letting C(x, |I/]) := CC(x)Dist(¢, I!) we have proved the lemma. O

| is bounded below, there is some constant

We denote the first return map to V' by F; U, V7 — V. We first wish to
find some control on the sizes of the domains of F;. Let my; be such that
Filyi = F"|y;. The following lemma is key to proving Proposition 5.3.

Lemma 5.6. If F'(J),..., Fi™(J) C VN (IF UIE) are all the iterates of
J up to l,, which lie in V N (IF UIER), and all intermediate iterates FF(J)
fork=0,1,... 1, liein IF* UIE then

Z\Fk )| < CIE(T)].
Furthermore, there exists \y < 1 such that |J| < CNep=™|F™(J)|.

Proof. We split the sum as follows

Im m—1li+1—1;
I +k
Y IEf(T Z > BT
k=0 =0 k=1
where we let {[j = —1. We know from Lemma 5.4 that |DFz‘\Ig\v > 7 SO
Lis1—l; Lig1—lj—1 liva
J J ‘ ‘ J J Flti g
> ET DI < IET D X o=
k=1 k=0 -7

Whence,

l m
AR < 7= 2 IF'()
k=0 =

So we only need bound the sum of returns to V.

Denote the rightmost element of | V7 by V! and the leftmost element by
V2 (observe that Fjly1 = F2|y1 and F|y» = F2|y2). We get an estimate
on how deep each V7 is inside V for j > 2 because V! and V? have some
definite size compared to |V|; since by Lemma 5.5 we know that |[V1|, [V?] >
M Therefore, there exists some §, depending only on f such that V is a
66 —scaled neighbourhood of V7 for all j > 2. So by Lemma 3.2, there
exists some \{, < 1 depending on ¢; such that for any interval J' C V7,
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B(V,J') < X,B(V7,J') for 7 > 2 (in fact this is also shown in the claim
below). As usual we can use Lemma 3.3 to conclude that there exists some
Ay < 1such that B(V,.J') < A\yB(V, Fy(J')). If we remain away from V'
and V2, this fact and the usual argument would be sufficient to obtain the
required bound on sums.

We must deal with the case where iterates enter V!, V2. The idea is to split
the situation into the case where intervals land in a region where |DF}| is
large and the case when the intervals land in a region where we don’t have
good estimates on |DF}|.

We first focus on V2 We know from Theorem 2.6 that |[DF;(p')| > p; and
so |DE;(p)] > p7. There must also exist some fixed point r of F; in V2 with
\DFZ(T)| > ps. Letting Ay := (p/,r) and applying the Minimum Principle
as before, we obtain |DE}|y, > p for some p > 1. Let 7/ be the point in
V! such that Fj(r') = r. Then adjusting p > 1 if necessary, |DF}| ) > p.
We define A; to be the interval in V' which has Fj(A;) = V' \ V2. Clearly
Ay € (', p), so |DFy|s, > p. For convenience later, we let A := Ay U A,.

We are now ready to deal with bounding Y7 ' |F; ( )|.  Observe that
~ m—1

F;" "(J) must be contained in some V7. Suppose first that j > 2; we
deal with the case where j = 1 or 2 later. Suppose further that J ¢ V7' and
j' > 2: here the other case is similar. We will again split up the sum. Let
N} = 0. Let N; be minimal such that FiNl(J) NA =0 and FNIH(J) C A

Let N] > N be minimal such that £ (J) € A and £ (J)NA = 0. In
this way we obtain Nj < Ny < N] < --- < Np—1 < Nj,;_, so that

m-1 M—1 [Nit1—N; Nii1—Njim I
~ ~ Njy1
B0l = X X 1B+ Z |Fi ()l
k=0 Jj=0 k=1
Na—NY,

LY CIENE )

where Ny = m — 1. Observe that the first sum in the brackets concerns
intervals which land inside A and the second sum in the brackets concerns
intervals in V' \ A. Then

NJ,'+1*NJ‘+1 Nj+1*NJ,'+1*1
A Njp1+k . N/ C . N'
Z |E j+1+ (,])‘ < ’F’z ]+1(J)’ Z pfk< 71‘Fi J+1(J)‘
k=1 k=0 L—=p
for some C.

Now we con81der Zkﬁl N \F N (J )|. In fact we learn most from estimat-
—N} k
ing the sum Zk MR, Nt (J)|. If necessary we make Ay < 1 smaller

so that for J C VI\ A for j = 1,2 we have B(V, J) < Ay B(V, F;(J)). Then



28 MIKE TODD

+k

BV, BN )y < AN oy

Recalling that M = m—1 we calculate B(V, E-m* (J)) < B(V,VI )T‘U)‘
Letting By := max {supj>2 B(V, V), B(V,V1\ A), B(V,V?\ Ag)}, we ob-

tain

. N’ k \%
‘FZ wal+ (J)| < ’ 2"/]
1+ Nyr—N/ J |
A M By T )
Letting By = BB‘J’FZ we have
A N4k Ny—N. 1k |V
B < B R )
Hence we have
N N N
Yo E (D) < CIEMHI)
k=1

We now estimate the other sums concerning intervals outside A as follows.
Let p/ := exp {—0’([0) o] } Suppose that F}'"~2(.J) € V7. Then taking

1-p~
the appropriate branch, F Nat—2=Niy 1_I(V) C V7 and
BV, B2 () < N B(ET T ) 50

Ay -1 N,

< “VB(F; (V) EMN()
Ay +1

< —B(V, F Nas J
o ( (/)

Shrinking I, if necessary, as usual, so that % =: Ay < 1, we obtain

BV, B2 () < A BV, BN ),
Clearly then we can proceed in bounding the sum using the usual method

of decaying cross-ratios. So can bound 7! |F ( )| above by C|E™1(.J)|
for this case.

To complete this case, we will bound \Em_l(J)] in terms of [} (J)]. We
do this by constructing an extension. Let the left-hand and right-hand
members of F; '(p') be denoted by b and b’ respectively. Denote (b, ') by
V'. By Lemma 5.5, V' is a dy—scaled neighbourhood of V' where 4y depends
only on f.

Claim. For all domains Vi, j > 2 there exists an exlension to some interval
U’ D VI such that U CV and F,""’ : U7 — V' is a diffeomorphism.
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Proof. For j > 2 the return maps are a composition of F;|y followed by F;|;r

.1
and then some number of iterates of F;|;z. So F; ~ must pull V'’ back into

IE. Observe that this element of F;'(V’) is below p’ (and clearly away from
Fi(c)). Any further pullbacks in Il remain below p’ also. Therefore when
some element F;*(V') is finally pulled back into If, it is mapped above
p and remains away from Fj(c). Therefore we have elements of F, *~2(V")
mapping inside V' which don’t contain c. 0

By the above claim and Theorem 2.4 we have some C' > 0 depending only
on f such that if j > 2,

(Recall that we are assuming that F/""'(V) N A = ().)

Therefore,
NM*NI/wfl , m
SO B < o ET )

k=1

There remains a further case to consider. Above we assumed Fimil((] )y VI
where j > 2. But if j € {1,2} we have two cases. We first note that if
E/™(J) N {r,r"} = 0 then the intervals we are concerned with are either
completely inside Ay, Ay or completely inside V' \ (A3 U A;). Then we may
proceed as above. But if F*(.J) contains r or r’ then we split F*(J) into two
intervals, with this periodic point at their intersection. We may then apply
the procedure above to estimate the size of each interval. We need only
apply this splitting argument once since if we intersect a periodic point of
F, once, we must stay there for all time under iteration by F;. Thus we need

only alter our constants by a factor of 2 to deal with thls case. Note that we

— N ’ ~ Nyr+k

only have one sum where this problem could occur: Zk F; (J)|

where N}, = m. This is because r is a fixed point for F;.

Clearly, we can use the cross-ratio argument as usual to obtain the estimate
[E (D) < APTICLE™ ()], s0 [ J] < AP COE (). O

We may adjust our usual A so that Ay < A < 1.

Proof of Proposition 5.3. Suppose first that F™*'(.J) c I/ for j # L, R.
Then, in particular, we can be sure that F/"(.J) does not contain p or p'.
Then we also know that none of F*(J) contain p or p’ for 0 < k < m — 1.
This means that we can be sure that all the intervals we consider are either
contained in V' or are disjoint from V.
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Recall that 0 < 51 < s3 < s3 = m are defined as follows. (We suppose that
some iterate of J enters V: otherwise the proof is simpler.) FF(J) C I/ \'V
for 1 < k < sy FTN(J) c Vn(IFUIF); and FP(J) c VN (IF U IR,

ES2H () c I\ V for 1 < k < 53— $o.

Then if s3 > s9,

$3—82 s3—so—1

SO EEED < |FEI)] Y vt < CIEE ()],
k=1 k=0
by Lemma 5.4.

From Lemma 5.6,
S9—S1

> ) < CIE> ()]
k=1

and |F"7H(J)| < CIE=(J).
Also

S1

YR < ATHETHIDI AT < CIEP ().

k=0 k=0

Therefore,
52

SIE )| < ClE=(T)].
k=0
If 553 > s9 then

?\Ek(J)I < C(E* D+ [E>())-

Therefore, the first part of the proposition is proved.

Now if E™(J) € I/ for j # L, R,0 then recalling that s5 = m we will
obtain an estimate for |F*2(J)| in terms of B(I;, F""(J)).
1 G ‘

We are allowed to use i here since all intermediate intervals must be disjoint
(otherwise we would have to pass through V again). Therefore

||

2u2
Y+ 500

B(I;, F*(J)) < B(F; (1), F*(J)) <

|F2(J)| < < C|L|B(L;, F"( ).

Similarly we can show that |F/™(J)| < C|L|B(I;, F"**(J)). Therefore
53
Y IEF()| < CLIB(1, E () < Cilly|
k=0

for some C; > 0.
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We now prove the final part of the proposition. Clearly for any run of
intervals Fy(J),..., F*(J) C I} U I, considering the branch of F;™* which
follows the iterates of J, we have B(EFF, F;*(I;),J) > p" where p" :=
exp{—C10’(|Io])|Io|}. We consider the branch of F; ™ % which follows the
backward orbit of F/"*1(.J). Clearly, F;™ %(I;) is strictly inside I7. Thus,
!/

B(I;,J') < NB(L,J) < NBE ™ 2(L),J') < %B(F’il([i)’F;MJrl(J/))

A/

= W

B(I;, F" ("))

For |Iy| small enough, we can alter the usual A slightly so that ﬁ < Aand
still ensure that A < 1. Thus, B([;, J') < AB(I;, F/""(J")) as required.

(2

When we do not escape I U TR then we may have some intersection with p
or p'. In this case, we split our interval in two and estimate the size of each
piece as above. We need only apply this idea once, so we can change our
constants to cater for this case too. In this case, part 2 of the proposition
doesn’t occur. 0

6. PROOF OF THE MAIN THEOREM IN THE NON—INFINITELY
RENORMALISABLE CASE

We recall that B(f™, T, J) > exp{—C 7=y | f*(T)|**"} when f € C?*7. We
will find a bound on the sum S72) | f¥(T)|**" by using the main propositions
above and also finding some decay property for the size of the domains of
F; for some values of i. We assume that f*(T') N dI; # 0 only within a
cascade case (i.e. when there exist i,m such that F; is in a cascade case
and f*(T) C I; \ Liyy). Tt is easy to see how to extend the proof when this
1s not true.

Let F; : U, Ul-j — I; be the first entry map to I; (we include the branches
of the first return map in this case too). For ¢ < j and an interval V|
we define S(i, j, V') to be the maximum of |f*(V)],|f2(V)],...,|f(V)].
We will consider S(n;y1,n;,T). Let n(i,j) be such that F; \Ug = f”(w

Now let U™ be the interval for which S (0 n(i,7), U]) is maximal. Let
n(i) = n(i, s(i)). Clearly,

S(nivr,mi, T) < S (0,4(), U7

We would like to show that for certain ¢, this quantity decays with ¢ in a
controlled way.

We start by assuming that F;_; is in a well bounded case. We have two
cases. Firstly, suppose that Uf(” C I;. Then since F;_; is in a well bounded
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case, we have US| < ‘1112;' Since I; is a domain of the first return map to
I,_1 we have
_ s(z 1)
U] < S (0,06 — 1), U:7Y)

1+ 2y

Now assume that U ﬂ[ = (). Then there exists some extension V; D U
such that ") .V, — I, ; is a diffeomorphism. We will show that U; o0 §
uniformly smaller than V;. By (1) we know that B(V;, U™ < B(szl[

i as in (4). Thus, by Lemma 3.1, |U ] < IJVL Since V; is a first return
00

for

domain to I;_; we have

S (0,0(i - 1) Uty

U7 < 1
+ 2

(2

142X 1424 7

Let v := max < 1 ) Clearly v < 1. So
300

S (0,a(0), U;") < 48 (0,6 — 1), U;).

We let Cyyp = max(Clp, Crases 3Cez). Note that by disjointness, all o, 0, <
1. If f € NF?™ and F;_; is well bounded, we have

B(jt’le'—le'-~-17 fni+1+1(T)’ fni+1+1(J>)
= exp {—C (S(”Hl, N, T))n FZ? ‘karnm(T)’}

k=1
> exp {—C (5 (0,2(1), U;"))" Can}
> exp {—C’ (75( n(i —1), US(Z 1))) C’au}.

If we are not in the infinite cascade case then the sums for Fj, Fj,q,...
can be broken into blocks consisting of a cascade; possibly followed by an
exceptional case; followed by one or more well bounded cases. So suppose
that F; is well bounded, Fj, Fi,1, ..., Fi1n—1 have central returns, F;,,, has
a non—central return and Fji,,;1 is an exceptional case. So note that, in
particular, Fj,,+» must be well bounded. Then,

S (0,0 +m+3), U is™) <48 (0,06 +m +2), U152 ..
S (0,40 + 1), UTY) < 428 (0,40), U).
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Therefore, we have

B(f",1T,J) > eXp{—an_:l‘fk(T)‘lJrﬁ}
k=0
> exp {—C’Oau (S (07 ﬁ(())’ UOS(O)))ﬁ i an}

k=0
! T n
> exp {_Coall_(o-l(‘_(;‘/z) }

Hence it is easy to see that for any 0 < K < 1, if [ is the central domain of a

first return map to some I_1, I is sufficiently small and F'; is non—central,
then we may bound B(f", T, J) below by K.

Note that we can always start with a well-bounded case when we don’t
have an infinite cascade. We simply induce on a nice interval finitely many
times until we obtain a non—central return and thus obtain a suitable I_;.
We consider the infinite cascade case in the next section.

The second part of Theorem 1.2, concerning A(f",7,J), is proved in the
same way.

7. INFINITE CASCADE CASE

Here we consider the case where we have some Iy such that F; are central
for i =0,1,.... In this case we will find that % gets very close to 1. See
Figure 5 for an example of such a map. In particular, I; will not shrink down
to a point (the critical point ¢) as i increases so we can’t use the method
above to bound sums of intervals which land very close to ¢. The principal
tool here is an extension given by a result of [K2]. We will not supply all
the details of our proof of Theorem 1.2 in this case since the techniques are
mostly the same as applied in the previous sections. We start by letting I,
be any nice interval about c. We assume that we have some infinite cascade.
This means that for a nice interval Iy 3 ¢, F; is central (and high) for all
1, where Fj is defined in the usual way. The main idea here is that we can
still find good bounds on some interval Iy, and then apply the methods of
Section 4 to it. Then we need to find another interval I; y around ¢ which
is smaller than all Ij;, also has good bounds and is uniformly smaller than
Iyp. In such a way, we obtain a sequence of intervals I; o which can each be
treated as in the high cascade case above, and which shrink uniformly to
the critical point. Clearly F; ; will always be central and high for all 7, 7 > 0.

Proposition 7.1. For f € NF?, and £ > 0 there exists some Cipp > 0
such that for any small 1y defined as above, T' C Iy implies

n—1
DD < Cing.
k=0
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I,
i ]i+3 ['+2

FIGURE 5. An infinite cascade.

Clearly this completes the proof of Theorem 1.2 in this case.

Proof. We will prove this with a series of lemmas.

For all 7 the central branch of F; has two fixed points, ¢y and py to the left
and right of ¢ respectively (as usual, we assume that F;(c) is a maximum for
Fil1,,,)- Welet g be the point in ;11 not equal to ¢o which maps by F; to go.
We define pj, similarly. We define Iy o to be (pg, po). Let Fopo : U; Ig,o — Ino
be the first return map to Iy, (where 1870 is the central domain). We have
the following lemma.

Lemma 7.2. There exists some x > 0 depending only on f such that 1o is
a x—scaled neighbourhood of every domain If o which has 01§, N 0lpo = 0.

Proof. Clearly, I; tends to (qo, q}). So we denote (qo, ¢j) by . We will first
show that I, is uniformly larger than Iy, and then show that all except
two non-central domains of the first entry map to Iy, have an extension
to I, and show what this means for I&O. These two domains are the ones
with either py or pj, in the closure.

In a similar manner to the exceptional case, we will find an upper bound
for |DF;|y,,,. This will allow us to get good bounds for the first return map
to IO,O
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For large 7, the ratio I; has |I|i;‘1| close to 1. The following lemma, an

adaptation of Lemma 7.2 of [K2], allows us to bound |DF;

Iigq-

Lemma 7.3. If f € NF? then there exist constants 0 < 7 < 1 and 73 >
0 with the following property. If T is any sufficiently small nice interval
around the critical point, Ry 1is the first entry map to T and its central
domain J is sufficiently big, i.e. % > Ty, then there is an interval W which
is a T3—scaled neighbourhood of the interval T such that if ¢ € Rr(J) then
the range of any branch of Ry : V — T can be extended to W provided that

V 1s not J.

This lemma is only needed as a C? result in [K2], but it easily extends to
our C? case.

It is straightforward to see that the above lemma is sufficient to prove a
version of Lemma 5.5 in our case. That is, for large ¢, there exists some C’
such that |DF|;,, < C’. This implies that there exists some 0 < § < 1
depending only on f such that |Iyo| < 0|l and, equivalently, some § > 0
such that I, is a d—scaled neighbourhood of Iy .

Now, for the moment we let Fyo also denote the first entry map and (J; I&O
also include the first entry domains. We will show that many of the branches
have an extension to a uniformly larger domain. Suppose that there exists
a domain I, with Too N I§y = 0 such that Fyy : I§, — Ioo does not
have an extension to I,,. That is, supposing FO’O‘IS,O = f”(j)\lg’o, there is

no interval V' D ]8,0 such that f"0) : V — I is a diffeomorphism. Let
0 < k < n(j) — 1 be maximal such that f*9)=% . f*(17 ) — I, has no
extension to I.,. Clearly if Iy is small f : f”(j)*l(lgvo) — Iy always has an
extension, so k < n(j) — 1. Then there exists some interval W D f“l(]g,o)
such that frU)=*F=1: W — I is a diffeomorphism and the element W' of
f7H(V) containing f*(I},) contains c.

Since I is a nice interval, W’ C I,,. We also know that fk(fg,o) C 1o\ Lop-
Therefore W’ contains either py or pj. But then either f"¥)=%=1(py) or
frU)=k=1(p1Y is contained in I, \ Ipo which is not possible.

Consider I&O for some j # 0 where Ig,o C Iy, is a domain of the first return
map. We will show that this domain is uniformly deep inside Ipo. There
exists some V' DO f ([g,o), where %) .V — I is a diffeomorphism and
V is a d-scaled neighbourhood of f (I&O). Let V' be the maximal interval
around I, such that f(V') = V. We show that V' C Ipo. Let V(f(c))
denote the maximal interval around f(c) which pulls back by f~! to . If
V' is not contained in V'(f(c)) then either py or pjf is contained in V'. Thus,
9 (pg) or frU)(py) lies in Iy, \ Ty, a contradiction. So V' C Iy and I
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is a 0’—scaled neighbourhood of I&O where ' = min (S , %) The case of the
central branch follows in the usual manner. 0J

So we are in a type of high cascade case for Fpo. Note that the branches
with py or pj in their closure can be dealt with in the same way as the
domains V!, V2 were dealt with in the exceptional case.

We may assume that Fjo has an infinite cascade and is high too. Let Fp;
be the first return map to Iy and so on, so we obtain Ip,. We sum for
Fo0,Fo1, ... as in the high cascade case. We let ¢, ¢}, p1,p| be defined as
above for the fixed points of Fyp|z,,. We let Iy denote (¢1,¢;). We may
apply the same ideas as above to find some new interval Iy := (p1,p})
which has |11 o] < 6]1po|. We may define I, ; for i > 2, and 0 < j < oo in a
similar way.

Let fYi(T) be the last iterate of T" which lies inside I;5. Let N/ be the
maximal integer N; > N/ > N, such that fi(T) is not in I; ¢\ /; .. Then
these arguments prove the following lemma.

Lemma 7.4. There exists some C > 0 such that

N,—N!
> 1T < Coy
k=1
where 6; is defined as follows. Let 0; = SUPycdomp, , 2 n(v |f7(V)| (and

n(V) is defined as k where Fyoly = f¥). Let V C Lo\ IZJ be an interval
such that f*(V') is one of the connected components of I;o\ I;1 and f7(V)
is disjoint from both Lo\ 1;1 and L1109 for 0 < j < n(V). Then &; is the

supremum of all such sums Zyg) |F(V)] and o;.

N/-N; _ : :
Now we consider >, * """ | fE+Ni+1(T)|. If none of these intervals contain

Pi, ¢; then we are in I; o \ Ij;1,0. By the Minimum principle, |DFi|r, 1.,
is uniformly greater than 1. So we can easily bound our sum. If none
of our intervals contains pi, but some fHTVi+1(T) contains g, q, we can
split fANee1(T') at qo or g} into two intervals. It is easy to see that there

is some C' > 0 such that Zk 1 Nt | fENi(TY| < Coy. I po,p)y is con-
tained in some |f*™Ni+1(T)| then we must split the interval at p, or pj.
Note that we may have to split the interval | fFHNie1(T)| at arbitrarily
many p;,q; or p, q;. Therefore, Zk_ Nt | fENsy (TS < O (k —
i)S(Ny, n(k), T)%6), where S and 7 are defined analogously to Section 6. As
before there is some constant 0 < 6’ < 1, here depending on € rather than
v such that 6 governs the decay of S(N;,n(i), T). Hence, we can put this
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estimate together with Lemma 7.4 to get
N;—Nj11

Yo (T < CS(N, Zk&”“f

k=1
Similarly to before, we can conclude that there exists some Cj,f > 0 such
that

E:\fk )M+ < Cing-

APPENDIX A. PROOF OF THE Yoccoz LEMMA

We recall the lemma.

Lemma 4.3 Suppose that f € NF%. Then for all §,6' > 0 there exists
C > 0 such that if Iy is a nice interval such that

(1) Iy is a 0—scaled neighbourhood of [1;
(2) F; is Zow and centml for i = O My
/
(3) <140,
then for 1 < k <m,
1 1 | Livi—1 \ Lits]| C
C min(k,m — k)? | L] min(k, m — k)2’

For similar statements see [FM] and [Sh2].

Proof. We first point out the following claim.

Claim 1. For f as in the lemma, there ezists some C(f,0,9") > 0 such that
|2

| > C(f,0,8).

This is proved in Section 5 of [Sh2]. One consequence of this is that %
is uniformly bounded below. This is one of the assumptions in the statement

of the Yoccoz Lemma in [FM].

Our proof now involves using a result of [ST], the bound ¢ and the small size
of Iy, to find a nearby map in the Epstein class. The structure of such maps,
particularly at parabolic fixed points, along with some new coordinates, give
us estimates for W

| 73]

We suppose that s > 0 is such that Fy|;, = f*|;,. We observe that f*!
has uniformly bounded distortion depending on §. We will denote Fy|;, by
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F. Letting ¢ : [am,a1] — [0,1] be an affine diffeomorphism we will work
with the map ¢ o F o4 ~!. For the rest of the appendix we will abuse the
notation and denote this map by F' too.

Previously we assumed that F'|;, had a maximum at ¢. It will be convenient
to suppose now for this section that ¢ is a minimum for F|;,. Also we let
I; = (a,a;). So in particular, F(a;y1) = a;. We firstly define a point which
allows us to partition [a,,,a;| in another way.

Let zg € [am,a1] be defined so that |F(zg) — zo| = min,,, <z<a, |[F(z) — z|.
It is easy to show that DF(zy) = 1. We will suppose throughout that
|F'(z9) — x| shrinks to zero as |Iy| — 0: otherwise the proof is much simpler.
We can estimate the shape of F' near x( using the following definition and
lemma.

Let k > 0. We say that the real analytic map f : [0,1] — [0, 1] is in the
Epstein class €, if f(x) = Qv where Q is the quadratic map Q(z) = 22,
1 is an affine map and ¢ : [0, 1] — [0, 1] is a diffeomorphism whose inverse
has a holomorphic extension which is univalent in the domain C_, 14,) :=

C\ ((—o00,—K] U [l + K,00)). For more details on maps in this class see
[MS]. The following lemma is proved in [ST].

Lemma A.1. Let f € NF?. Suppose that I is a nice interval around ¢ and
J 1s a first entry domain which is disjoint from I and with entry time s.
Suppose that 6 > 0 is some constant such that there exists some J > J such
that f* : J—=1TIisa diffeomorphism where I' is a k—scaled neighbourhood
of I and Y |fi(J)| < 1. Let o : J — [0,1] and 7, : I — [0,1] be affine
diffeomorphisms. Then for all € > 0 there exists § > 0 such that |I| < §
implies that there exists some function G : I — I in the Epstein class 8§

such that ||Ts0 fS o1y — G2 < e.

We use this to prove the following claim.
Claim 2. There exists some 0 < A < B such that for Iy sufficiently small
F(xo) + (x — o) + A(z — 20)? < F() < F(x0) + (x — x0) + B(z — o).

Proof. We know that f® : I, — [ has the following property. The map
f&71 . f(Iy) — I, has an extension to Iy. Furthermore, since Iy is a d—
scaled neighbourhood of I} we use Lemma A.1 to obtain a map G in the
Epstein class which is C?—close to f*.

In fact we can choose different starting intervals [, with the same real
bounds which are smaller and smaller and which are then rescaled to maps
F,, which map from the unit interval to itself. For each such map we obtain
the nearby map G,, in the Epstein class where ||F,, — G,||c2 — 0 as n — 0.
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For F,, we let xjj denote a point which is equivalent to z( for F'. Since we
assume that |F,,(z{) — z{| goes to zero, our limit map G has a parabolic
fixed point z5°. Also D?*G.(z5°) > 0. Thus, there exist 0 < A < B
depending only on f such that for all z € [0, 1] we have

Goo(27)+H(2—25" )+ A(z—25°)* < Goo(2) < Goo(a)+ (22§ )+ B(z—27°)*.

Clearly, for large n, we have the same condition for G,,. Therefore, if we
take Iy small enough, we may assume that it holds for F' too. U

We denote € := F(xy) — xo. Then we have
e+ Al —20)* < F(z) — 2 < e+ Bz — 10)°.

We suppose that N is such that zg € [ay,ans1). Thenfor 0 < i < N—1 we
let z; ;= F'(x0). We will use this equation to find estimates for a; — a;;.
Throughout we will let C, C" denote some constants depending only on 6, ¢’.

Claim 3.
1
N = — .
¢ (f)

Proof. Let N' = max{1 < j < N —1:2; — 29 < /e}. We will first show
that N’ satisfies the claim. For 7 < N’, we have
€ < Tjr1 — Zo é 6(B—|— 1)

Therefore,

N'—1

N'e < Z Tjt1 — Zj < N,C(B + 1)

j=0
Since Z;V:lgl Tjp1 — Tj = TNy — Tp < Ve we have N/ < \% Furthermore,
Tjy1 — xg > (Jeso e(N(B+1)+1) > (/e and N' > — 1. Le.

0L

N'=0 (%)
Next we find estimates for N — N’. For N’ < 7 < N we again consider the
equation

1
(Brive

€+ A(ﬂf] — .1'0)2 < Tjr1 — Ty é €+ B(Z’] — .1’0)2.
But note that here B(x; — ) > € so we can write instead
A(ZEJ‘ - ZL’0)2 < Tjr1 — &y < 2B(ZEJ - I0)2.

We make a change of coordinates. We let y; := #m Then we have

XTj—
Lj+1 — Lj
zj — 20)(Tj11 — To)

Yi — Yj+1 = (

By the above bounds we have

Alx;, — x 2B(x; — x
7.%( J — O) <Y —Yjpt1 < —( ]_ 0) < 2B.
j+1 — To Tjy1 — o
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Furthermore,

A(ZEJ‘ - xo) A(I] - Io) > A
Tj41 —ij)+($j —l’o) ZB(JI] —$0)2+(Ij —l’o) ZB+1
Observe that zn € (a1,a9) and |ag — ai| > §. So since |zy — xy_1| is
approximately |ap—a;| and since we fixed d, we know that yy = O(1). Also
note that yn = O (ﬁ) and so yn' —yny = O (ﬁ) Summing we obtain

Yj — Yj+1 > (

C al

Ve j=N-1

and
!

N A(N — N')
—_— > ) — — — Y > — 7
e YN — YN j:%:lyg Yj+1 9B+ 1

So N - N' = (%) too. Adding this to the estimates for N’ we prove the

claim. O

To prove the lemma, we will use Claims 1 and 3 together, along with
bounded distortion, which means that a; — a;41 is like xy_; — xn_j_1.

Firstly we will use the above coordinate change again. For j > N’ we have

! AN — j)
> ) — — P — Ui > v/
Yi =~ Y — YN ‘7%:_19 Yit+1 9B 11
Ji
A(N—j 2
and so I]ixo > 2(B+1]) and ;41 —x; < 2B (AQ(JBVJZIJ.)) .
We have proved that if 0 < j < N’ then
(5) €< Zjr1 —2; < C'e
and if N/ < 7 < N then
O/
6 <Tig] —Tj < ————.

Similarly we can define x; = F7(z,) for negative j where 0 < |j| < m — N.
Now we will show that Claim 3 follows for this situation too and we get
equivalents to (5) and (6). We define some M’ analogously to the definition
for N and so if |j| < M’ then
E<Tjp —T; < C'e.
And if M’ < |j| < m — N then
C _ _ c’
- x . JE— x . -_
(m—N+j)2 7T (m— N+ )2

(In the step of the proof where estimates on yy_,, are required, we use
Claim 1 to give |a,,_1 — G| uniformly bounded below and the fact that
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| _m_1 — x| is approximately |a,,_1 — a;,|.) Note also that we can show
that m — M" = O (L)

Observe that a; — a;4; is essentially the same as zy_; — on_j—1. So if
N > j> N — N’ we have

Ce < aj — a1 < Ce.

Observe that ﬁ > % > % Since € (ﬁ) and € (m) this implies that
we have
C c’
— < a; — a1 < ]—2

<

Now if N — N' > j > O(1) then clearly we have a; — a;41 < % Also,

N-1 2
2
TN_j — TN—jo1 > Alwn_jo1 —x9) = A Z TN—k — TN—k—1

k=1
N’ 2

> A a— Ik—1) > A(N'V/e)?.
k=1

Now since /e = O (%), we have zy_; — xn_j—1 2 1. Thus
/
<aj; —aj41 < j_2

7

If N <j<m— M then again we have

Ce < a; — a1 < Ce.

Note that we also have m — N > m —j > m— M'. Since m — N,m — M’ =

(ﬁ) we have
C c’
(m =32 =Y TS
Ifm—M <j<m-—1we have
C C’
m—j)2 =TS e

where the lower bound follows as above.

To conclude, if 1 < 57 < N then we have some constant C' such that j <
C(m—j) and a; —aj41 < J% If N < j < m-—1 then we have some constant
ﬁ. So in either case we have
1

(min(j, m — j))?

as required. |

C" such that m — j < C'j and aj — aj41 <

aj — ajH =
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