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Abstract. We obtain estimates for derivative and cross–ratio distor-
tion for C2+η (any η > 0) unimodal maps with non–flat critical points.
We do not require any ‘Schwarzian–like’ condition.

For two intervals J ⊂ T , the cross–ratio is defined as the value

B(T, J) :=
|T ||J |
|L||R|

where L, R are the left and right connected components of T \J respec-
tively. For an interval map g such that gT : T → R is a diffeomorphism,
we consider the cross–ratio distortion to be

B(g, T, J) :=
B(g(T ), g(J))

B(T, J)
.

We prove that for all 0 < K < 1 there exists some interval I0 around
the critical point such that for any intervals J ⊂ T , if fn|T is a diffeo-
morphism and fn(T ) ⊂ I0 then

B(fn, T, J) > K.

Then the distortion of derivatives of fn|J can be estimated with the
Koebe Lemma in terms of K and B(fn(T ), fn(J)). This tool is com-
monly used to study topological, geometric and ergodic properties of f .
This extends a result of Kozlovski.

1. Introduction

In order to understand the long term behaviour of smooth dynamical system
f : X → X we must consider iterates of the map. It is useful to know how
differently high iterates of the map fn act on nearby points. For example
we can try to estimate how wild the derivative of iterates of the map is: we
can consider the distortion Dfn(x)

Dfn(y)
for x, y in some small interval J where

fn|J is a diffeomorphism. For one dimensional maps, the Koebe Lemma is
a tool we use to estimate this. Notice that this distortion can be rather wild
when f has critical points.

An important condition we must assume in order to apply the Koebe Lemma
is that the map fn must increase cross–ratios. The type of cross–ratio we
use most is defined as follows. For two intervals J ⊂ T , the cross–ratio is
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defined as the value

B(T, J) :=
|T ||J |
|L||R|

where L,R are the left and right connected components of T \J respectively.
For an interval map g such that gT : T → R is a diffeomorphism, the main
measure of cross–ratio distortion we use is given by

B(g, T, J) :=
B(g(T ), g(J))

B(T, J)
.

If we know that B(fn, T ∗, J∗) > K > 0 for any J∗ ⊂ T ∗ ⊂ T then we have

uniform bounds on Dfn(x)
Dfn(y)

for x, y ∈ J depending onK and B(fn(T ), fn(J)).

So we are able to estimate the distortion of the derivative of f n using infor-
mation on the distortion of the cross–ratios.

A classical way of gaining information about the dynamics of an interval
map f : [0, 1] → [0, 1] with a critical point, is to take a first return map to
some well chosen interval I. If this map has some diffeomorphic branches,
we can estimate how well or how badly the derivatives behave on branches
using the Koebe Lemma as above. This method is often used to give in-
formation on the geometry and topology of the map and its iterates, see
[MS]. This type of approach is also applied when considering the ergodic
properties of one dimensional maps. Often instead of first return maps,
certain inducing schemes are applied in these cases, see [MS]. The Koebe
Lemma allows us to show that the inducing schemes are expansive, and the
Folklore Theorem can then be used to derive ergodic absolutely continuous
f–invariant measures.

In order to apply the Koebe Lemma to fn|T we need a lower bound on cross
ratio distortion of fn|T . In fact, a lower bound K = 1 is obtained whenever
f is C3 and has negative Schwarzian derivative: that is

Sf :=
D3f

Df
− 3

2

(

D2f

Df

)2

is negative wherever it is well defined. For applications it is not so important
that f have negative Schwarzian, just that some iterate of f has negative
Schwarzian on some small intervals. Kozlovski showed [K2] that for any
C3 unimodal map with non–flat critical point (see the next section), if I
is a small enough neighbourhood of the critical point and fn(x) ∈ I then
Sfn+1(x) < 0. Therefore, for most practical purposes, for example where
first return maps or inducing schemes are used to gain information about the
dynamics, it is unnecessary to find the sign of the Schwarzian derivative as
long as the critical point is non–flat. Moreover, this result allowed Kozlovski
to prove the following.

Theorem 1.1. Suppose that f is a C3 unimodal map with non–flat critical
point whose iterates do not converge to a periodic attractor. Then for any
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0 < K < 1, there is an interval V around the critical point such that if, for
an interval T and some n > 0,

• fn|T is monotone; and
• each interval from the orbit {T, f(T ), . . . , fn(T )} is contained in the

domain of the first entry map to V ,

then
B(fn, T, J) > K

where J is any subinterval of T .

This means that the Koebe Lemma can be applied to fn to get estimates
on the distortion of derivatives which only depend on B(fn(T ), fn(J)) (for
first return maps or induced maps this quantity is bounded whenever the
branches have a ‘uniform extension’). These results were extended to C3

multimodal maps with non–flat critical points in [SV]. Also, for C3 uni-
modal maps with non–flat critical point, it is shown in [GSS2] that an
analytic coordinate change can create a map which has first return maps
with negative Schwarzian.

So how necessary is the negative Schwarzian condition to prove dynamical
results in ‘reasonable’ cases? Certainly it is useful in determining the type
of parabolic periodic points or bounding the number of attracting cycles, see
[Si, MS]. A natural question to ask, and the one we consider in this paper,
is: what happens for unimodal maps with non–flat critical points which are
not C3? Certainly the usual negative Schwarzian condition is no use since
it is not even defined. (Note that there is a ‘Schwarzian–like’ condition for
C1 maps -equivalent to the negative Schwarzian condition when the map is
C3- see [P, MS], but that need not hold in our case either.) We show that
Theorem 1.1 extends to the case of C2+η for any η > 0. So many results
on the geometric and statistical properties of unimodal maps with non–flat
critical point extend to maps which are only C2+η.

Since we cannot use the negative Schwarzian property at all here, we must
look rather closely at the behaviour of the map on small scales. We use
a result in [MS] to estimate the cross ratio distortion in terms of sums of
lengths of intervals. We split up this sum into blocks using the domains of
first return maps to small intervals around the critical point. The precise
behaviour of the branch containing the critical point, the central branch,
determines how we choose our blocks. Since we have no negative Schwarzian
property, there are particular difficulties when a block of our sum contains
points which spend a very long time in the central branch (when there is a so
called ‘saddle node cascade’ or an ‘Ulam-Neumann cascade’). The main tool
we use here is the real bounds proved by [V, Sh1, SV]. Roughly speaking,
these results give us a sequence of first return maps where the diffeomorphic
branches have a uniformly large extension. This gives bounded distortion
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of the derivative on these branches which allows us to estimate the sums of
lengths of intervals.

1.1. Statement of the main result. We explain the terminology in the
following definitions. Given an interval T , and a subinterval J ⊂ T , we
defined the cross–ratio B(T, J) above. Note that if we again denote the
left–hand and right–hand components of T \ J by L and R respectively, we
have another measure of cross–ratio

A(T, J) :=
|T ||J |

|L ∪ J ||J ∪R| ,

(however, we focus mainly on B(T, J)).

Suppose that g : T → R is a diffeomorphism. We define B(g, T, J) as above,
but we also have

A(g, T, J) :=
A(g(T ), g(J))

A(T, J)
,

another estimate of how the map distorts cross–ratios. Observe that for
diffeomorphisms g : T → g(T ) and h : g(T ) → h ◦ g(T ) we have

B(h ◦ g, T, J) = B(h, g(T ), g(J))B(g, T, J).

Similarly for A(g, T, J).

We say that T is a δ–scaled neighbourhood of J if |L|
|J | ,

|R|
|J | > δ. We suppose

throughout that our functions map from I := [0, 1] into itself, and ∂I into
∂I.

We say that a unimodal Ck map g has non–flat critical point c if there
exists some neighbourhood U of c and a Ck diffeomorphism φ : U → I with
φ(c) = 0 such that g(x) = ±|φ(x)|α + g(c) for some α > 1. The value α is
known as the critical order for g. We denote the set of such maps by NF k

and this neighbourhood by Uφ.

Such maps have many good properties. For example, they have no wander-
ing intervals, see for example Chapter IV of [MS]. More importantly for
us here is how such maps distort cross–ratios. In particular, how iterates of
such maps distort cross–ratios. Our main result is as follows.

Theorem 1.2. For any η > 0, let f ∈ NF 2+η be a unimodal map with a
critical point whose iterates do not converge to a periodic attractor. Then
for any 0 < K < 1, there is an interval V around the critical point such
that if, for an interval T and some n > 0,

• fn|T is monotone; and
• fn(T ) ⊂ V ,

then
B(fn, T, J) > K,
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A(fn, T, J) > K

where J is any subinterval of T .

This theorem is proved for C3 maps in [K2]. Note that in fact we prove that
if 0 < η 6 1 then for any 0 < η′ < η, there exists C > 0 such that if J, T, V
are as in the theorem then A(fn, T, J), B(fn, T, J) > exp{−C(supj |Vj|)η′}.

1.2. Strategy of the proof. Our setup will involve first return maps to a
neighbourhood of c, as outlined below. For the case where c is non–recurrent
see [St]. So we suppose throughout that c is recurrent.

An open interval V is nice for f if fn(∂V ) ∩ V = ∅ for n > 1. (When it is
clear what f is, we just refer to such interval as nice.) It is easy to see that
we can find arbitrarily small nice intervals around c.

Let I0 3 c be a nice interval. For every x ∈ I whose orbit intersects I0,
let n(x) := min{k > 0 : f k(x) ∈ I0}. If additionally x ∈ I0, let Ij

0 3 x
be the maximal neighbourhood such that fn(x)(Ij

0) ⊂ I0. We obtain the
first return map F0 :

⋃

j I
j
0 → I0. We label the interval which contains

c by I0
0 ; this interval is called the central domain. Observe that F0 is a

diffeomorphism on all domains I j
0 except when j = 0. F0 is unimodal on I0

0 .
Note also that I0

0 is again a nice interval. We will call it I1 for the next step
in the inducing process; i.e. we define F1 :

⋃

j I
j
1 → I1 to be the first return

map to I1 = I0
0 . It has central domain I0

1 = I2. Continuing inductively,
we obtain maps Fi :

⋃

j I
j
i → Ii. The sequence I0 ⊃ I1 ⊃ · · · is called the

principal nest, and Fi|Ij
i

: Ij
i → Ii is a branch of Fi.

If x /∈ Ii but n(x) is defined then there is a maximal interval U j
i 3 x such

that fn(x) : U j
i → Ii is a diffeomorphism. So we may extend Fi, letting

Fi|Uj
i

: U j
i → Ii. Then letting

⋃

j U
j
i consist of all such intervals added to

⋃

j I
j
i , we call Fi :

⋃

j U
j
i → Ii the first entry map to Ii. We will often switch

between these two very similar types of map.

For simplicity, except in the appendix, we will assume that Fi(c) is a max-
imum for Fi|Ii+1

. We say that Fi is low if Fi(c) lies to the left of c and Fi is
high if Fi(c) lies to the right of c. Fi is central if Fi(c) is inside Ii+1 (if this is
not the case, then Fi is non–central). Figure 1 shows Fi which is high and
central return.

Suppose that fn : T → fn(T ) is a diffeomorphism and fn(T ) ⊂ I0. It can
be shown (see Lemma 2.1) that we get a lower bound on B(f n, T, J) if we
can find some bound on

∑n−1
k=0 |fk(T )|. In fact, we consider

∑n−1
k=0 |fk(T )|1+ξ

for some 0 < ξ < η. We will split up this sum into blocks determined by
the principal nest explained above. Note that our proofs extend easily to
A(fn, T, J), see [St].
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I
i+1

I
i

Figure 1. Fi is high and central.

We fix n and T as in Theorem 1.2, let n0 = n. For i > 0, suppose that some
iterate f j(T ) enters Ii for 0 6 j 6 n. Now we let ni be the last time that
f j(T ) ⊂ Ii, i.e. fni(T ) ⊂ Ii and fni+j(T ) * Ii, 0 < j 6 n− ni. If f j(T ) is
never contained in Ii for 0 6 j 6 n then we let ni = ni−1. For each i, we
will be interested in estimating

ni−ni+1
∑

k=1

|fk+ni+1(T )|1+ξ we call this the the sum for Fi.

As we will see later, if Fi is non–central infinitely often then Theorem 2.3
implies that as i → ∞ the intervals Ii shrink down to c. Thus we are able
to bound

∑n−1
k=0 |fk(T )|1+ξ by bounding the sums for all Fi. We will use a

slightly different method when there exists a nice I0 such that Fi is always
central.

In order to prove the main theorem, we will consider the following cases.
Note that we only assume that f ∈ NF 2 in the following three propositions.

• Fi−2 is non–central. We consider the sum for Fi whenever f j(T ) ∩
∂Ii+1 = ∅ for all 0 6 j < ni, as follows.

Proposition 1.3. Suppose that Fi−2 is non–central and f j(T ) ∩
∂Ii+1 = ∅ for all 0 6 j < ni. Then there exists Cwb > 0 such that

ni−ni+1
∑

k=1

|fk+ni+1(T )| < Cwbσi

|fni(T )|
|Ii|

,

where σi := sup
V ∈{Ij

i
}j

∑n(V )
k=1 |fk(V )| (and n(V ) is defined as k where

Fi|V = f k).

We call this a well bounded case. It is dealt with in Section 3.
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• Fi−2 is non–central and Fi, . . . , Fi+m−1 are central. We consider the
sums for Fi, Fi+1, . . . , Fi+m whenever f j(T ) ∩ ∂Ii+m+1 = ∅ for all
0 6 j < ni, as follows.

Proposition 1.4. Suppose that Fi−2 is non–central, Fi, . . . , Fi+m−1

are central and f j(T )∩∂Ii+m+1 = ∅ for all 0 6 j < ni. For all ξ > 0
there exists Ccasc > 0 such that

ni−ni+m+1
∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m max
ni+m+1<k6ni

|fk(T )|ξ

where σi,m is defined as follows. Let σi := sup
V ∈{Ij

i
}j

∑n(V )
k=1 |fk(V )|.

Let V̂ ⊂ Ii \ Ii+1 be an interval such that f n̂(V̂ ) is one of the con-

nected components of Ii \ Ii+1 for some n̂ > 0 and f j(V̂ ) is disjoint

from both Ii \ Ii+1 and Im for 0 < j < n̂(V̂ ). Then σi,m is the

supremum of all such sums
∑n̂(V̂ )

j=1 |f j(V̂ )| and σi.

We call this the cascade case. It is dealt with in Section 4.
• Fi−2 is central and Fi−1 is high and non–central. We consider the

sum for Fi whenever f j(T )∩ ∂Ii+1 = ∅ for all 0 6 j < ni, as follows.

Proposition 1.5. Suppose that Fi−2 is central, Fi−1 is high and
non–central and f j(T )∩ ∂Ii+m+1 = ∅ for all 0 6 j < ni. Then there
exist Cex > 0 and ni+1 < ni,3 < ni,2 < ni such that fni,2(T ), fni,3(T ) ⊂
Ii and
ni−ni+1
∑

k=1

|fk+ni+1(T )| < Cexσi

(

|fni(T )|
|Ii|

+
|fni,2(T )|

|Ii|
+

|fni,3(T )|
|Ii|

)

.

(In some cases, the last two terms in the sum are not required.)
We call this the exceptional branches case. It is dealt with in Sec-
tion 5. We also note there that if Fi−2 is central and Fi−1 is low and
non–central then we are in another well bounded case, and so the
conclusion of Proposition 1.3 holds.

• We have an interval I0 such that Fi are all central for i = 0, 1, . . ..
We call this the infinite cascade case. We prove Theorem 1.2 for this
case in Section 7.

The proof of Theorem 1.2 for the non–infinite cascade case is given in Sec-
tion 6.

With these propositions, for 0 < η′ < η, we can decompose the sum
∑n−1

k=0 |fk(T )|1+η′

into blocks of sums
∑ni−ni+1

k=1 |fk+ni+1(T )|1+η′

. We then
show that each of these is uniformly bounded. We will then show that
∑ni−ni+1

k=1 |fk+ni+1(T )|1+η decays in a uniform way with i.

The first two cases use real bounds of Theorem 2.3. These bounds imply that
B(Ij

i , Ii) are bounded above. This will also be true for all except possibly
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two domains of Fi in the third case. The main tool here is Lemma 3.3, which
gives us some decay of cross–ratios when we have these real bounds. Note
that the conditions f j(T )∩∂Ii+1 = ∅ for all 0 6 j < ni in well bounded and
exceptional cases, and f j(T )∩∂Ii+m+1 = ∅ for all 0 6 j < ni in the cascade
case, make the propositions simpler to prove. However, as we remark in
Section 6, it is easy to see how to split up the intervals in the other cases
in order to prove Theorem 1.2.

The final case, which arises in the infinitely renormalisable case, is differ-
ent from the other three. We use a lemma of [K2] to find some uniform
expanding property which helps bound the sums.

In all cases except the infinite cascade case we must ensure that we have
some initial interval which has a first return map which is well bounded.
To do this we can simply pick some nice interval to begin with and then
induce until we find a map which is well–bounded. This is always possible
when there is not an infinite cascade.

Note that we need extra smoothness to bound cross–ratios in the cascade
case. This ensures that we can deal with the case when we have many
consecutive low central returns, a ‘saddle node cascade’.

In Kozlovski’s proof for C3 maps he was able to use the fact that there exists
some C > 0 depending only on f such that for interval J ⊂ T we have
B(f, T, J) > exp{−C|T |2} and A(f, T, J) > exp{C|L||R|}. See Chapter
IV.2 of [MS]. In particular this means that there exist such real bounds
as in Theorem 2.3 for all i, not just those for which Fi−1 is a non–central
return. So the long central cascades we encounter in Section 4 present much
less of a problem in the C3 case. Indeed, the work done in Section 5 is also
unnecessary in the C3 case.

We will deal with the well bounded case first. It is the simplest and gives
us a good idea about how we may proceed in general. We will use J to
refer to a general interval from here until Section 6. This allows us to use
less notation. When we use the constant C > 0, we mean some constant
depending only on f .
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2. Introductory results

Without loss of generality, we suppose throughout that our maps have a
maximum at the critical point. We also suppose that f is symmetric about c.
That is, f(c−ε) = f(c+ε) for all ε. This assumption is useful for simplifying
proofs (particularly in Section 5, which is already quite technical), but is
not crucial since on small scales our maps will be essentially symmetric (in
particular, |Df(c− ε)| and |Df(c+ ε)| are arbitrarily close for small enough
ε). We let C 6 |g|U 6 C ′ mean supx∈U |g(x)| 6 C ′ and infx∈U |g(x)| > C.

The following theorem is proved for a more general case in Chapter IV of
[MS]. Here we will let wg be the modulus of continuity of a continuous map
g, i.e. wg(ε) := sup|x−y|<ε |g(x) − g(y)|.
Theorem 2.1. For a unimodal map g : I → I, g ∈ NF 2, if T is an interval
such that gn|T is a diffeomorphism and J ⊂ T is a subinterval, then there
exists some C > 0 such that

B(gn, T, J) > exp

{

−C
n−1
∑

i=0

wD2g(|gi(T )|)|gi(T )|
}

.

This bound also holds for A(fn, T, J).

In Sections 6 and 7 we will use the fact that when g ∈ NF 2+η for some
η > 0, we can replace CwD2g(ε) by Cεη.

The following lemma, a consequence of the absence of wandering intervals,
is Lemma 5.2 in [K2].

Lemma 2.2. Suppose that g ∈ NF 2, g : I → I. Then there exists a func-
tion τ : [0, |I|] → [0,∞) such that limε→0 τ(ε) = 0 and for any interval V for
which gn|V is a diffeomorphism and gn(V ) is disjoint from the immediate
basins of periodic attractors, we have

max
06i6n

|gi(V )| < τ(|gn(V )|).

We may use this lemma and Theorem 2.1 to get

(1) B(gn, T, J) > exp

{

−σ′(|gn−1(T )|)
n−1
∑

i=0

|gi(T )|
}

whenever fn(T ) is disjoint from the immediate basins of periodic attractors,
where

(2) σ′(|gm(T )|) = Cwg ◦ τ(|gm(T )|).

We will use the following result of [SV] throughout. (In fact it is stated
there in greater generality, as Theorem A.)
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Theorem 2.3. If g ∈ NF 2 is a unimodal map with recurrent critical point,
then the following hold.

(a) For all k > 0 there exists ξ(k) > 0 such that if Gi−1 :
⋃

j I
j
i−1 → Ii−1

is non-central, then Ii+k is a ξ(k)–scaled neighbourhood of Ii+k+1.

(b) For each ξ > 0 there is some ξ̂ > 0 such that if Ii is a ξ–scaled

neighbourhood of Ii+1 then Ii+1 is a ξ̂–scaled neighbourhood of any
domain of Gi+1.

This result gives us real bounds for some of our first return maps. We let
χ := ξ(1) > 0 from the above theorem for our map f .

The following theorem is an improvement of the classical Koebe Lemma. It
is presented in more generality in [SV] as Proposition 2: ‘a Koebe principle
requiring less disjointness’. Note that actually for our purposes, the classical
Koebe Lemma is enough.

Theorem 2.4. Suppose that g ∈ NF 2. Then there exists a function ν :
[0, |I|] → [0,∞) such that ν(ε) → 0 as ε → 0 with the following properties.
Suppose that for some intervals J ⊂ T and a positive integer n we know
that gn|T is a diffeomorphism. Suppose further that gn(T ) is a δ–scaled
neighbourhood of gn(J) for some δ > 0. Then,

(a) for every x, y ∈ J ,

|Dgn(x)|
|Dgn(y)| < exp

{

ν(S(n, T ))
n−1
∑

i=0

|gi(J)|
}[

1 + δ

δ

]2

=: C(δ)

where S(n, T ) := max06k6n−1 |fk(T )|.
(b) T is a δ̃–scaled neighbourhood of J whenever

δ̃ :=
1

2
exp {−θ}

[

1 + δ

δ

]2 (−2θ + δ(1 − 2θ)

2 + δ

)

is positive, where θ := ν(S(n, T ))
∑n−1

i=0 |gi(J)|.

Again we may use Lemma 2.2 to substitute ν(S(n, T )) with ν ′(|fn(T )|)
where we define ν ′(|fm(V )|) := ν ◦ τ(|fm(V )|). We will use the result of

Theorem 2.3(b) extensively, but we use δ̃ when θ = ν ′(|I0|). Usually δ will
be related to the χ we obtained following Theorem 2.3.

We will sometimes be in a situation where we wish to estimate the derivative
of a function in between two points at which we know something about the
derivative. The following two well known results allow us to do this. The
following is known as the Minimum Principle; see, for example, Theorem
IV.1.1 of [MS].
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Theorem 2.5. Let T = [a, b] ⊂ I and g : T → g(T ) ⊂ I be a C1 diffeo-
morphism. Let x ∈ (a, b). If for any J∗ ⊂ T ∗ ⊂ T ,

B(g, T ∗, J∗) > µg > 0

then
|Dg(x)| > µ3

g min(|Dg(a)|, |Dg(b)|).

To see a proof of the following well known result see [MS].

Theorem 2.6. For g ∈ NF 2 there exist n0 ∈ N and ρg > 1 such that if p
is a periodic point of period n > n0 then |Dgn(p)| > ρg.

We are now ready to begin the proof of Theorem 1.2.

3. Well bounded case

Here we deal with the case where Fi−2 is non–central and f j(T )∩∂Ii+1 = ∅
for all 0 6 j < ni. In our estimates, we are principally interested in iterates
of T landing in Ij

i for j 6= 0. By Theorem 2.3, the fact that Fi−2 is non–
central implies that the first return domains I j

i are all well inside Ii. This
enables us to estimate the sum for Fi, and is the reason we call this case
well bounded.

Let n′
i > ni+1 be minimal such that fn′

i(T ) ⊂ Ii. We will initially assume
that we have some κ > 0 such that for the ‘return sum’,

ji
∑

k=0

|F k
i (fn′

i(T ))| < κ|fni(T )|(3)

where ji is such that F ji|
f

n′

i (T )
= fni−n′

i|
f

n′

i (T )
. We prove Proposition 1.3

before bounding this return sum in order to give an idea why we need
bounds on return sums. Except for the proof of (3), this is similar to the
proof of Lemma 5.3.4 of [K1]. There, it is assumed that f ∈ C3 in order to
bound the sum

∑ji−1
k=0 |F k

i (fn′

i(T ))|. Those methods fail in the C2 case.

Proof of Proposition 1.3 assuming (3). Let ni+1 = m0 < m1 < · · · <
mji

= ni be all the integers between ni+1 and ni such that fmj(T ) ⊂ Ii\Ii+1

for j = 1, . . . , ji − 1 and let m0 = ni+1. Now let Fi :
⋃

j U
j
i → Ii

be the first entry map to Ii. We will decompose
∑ni−ni+1

k=1 |fk+ni+1(T )| as
∑ji−1

j=0

∑mj+1−mj

k=1 |fk+mj(T )|.

For 1 6 j 6 ji − 1 and 1 6 k < mj+1 −mj, let U l
i be the domain of first

entry to Ii such that fmj+k(T ) ⊂ U l
i . Suppose that Fi|U l

i
= f il. Then there

exists an extension to V l
i ⊃ U l

i so that f il : V l
i → Ii−1 is a diffeomorphism.



12 MIKE TODD

Then by the Koebe Lemma we have the distortion bound: |fk+mj (T ))|
|U l

i
| 6

C(χ) |f
mj+1 (T )|

|Ii| . Whence

mj+1−mj
∑

k=1

|fmj+k(T )| 6 C(χ)

(

|fmj+1(T )|
|Ii|

)mj+1−mj−1
∑

k=0

|fk(U j
i )|

6 C(χ)σi

|fmj+1(T )|
|Ii|

.

Therefore

ni−ni+1
∑

k=1

|fk+ni+1(T )| 6 C(χ)
σi

|Ii|
ji
∑

j=1

|fmj(T )| = C(χ)
σi

|Ii|
ji−1
∑

k=0

|F k
i (T̂ )|

where T̂ := fn′

i(T ). This is bounded above by κ|fni(T )| due to (3), so we
are finished. �

3.1. Bounding return sums. In this subsection we will introduce some
tools which we use extensively in the remainder of this paper. We then use
these tools to prove that (3) holds.

The proof of the following simple lemma is left to the reader.

Lemma 3.1. For all δ > 0 there exists ∆ = ∆(δ) > 0 such that ∆(δ) → 0
as δ → ∞ with the following property. Suppose that U is an interval, J ⊂ U
is a subinterval and that the left and right components of U \ J are denoted
by L and R respectively. Suppose further that |L|, |R| > δ|J |. Then

B(U, J) < ∆.

Let D1 denote the set of non–central domains F−1
i (Ii), i.e. D1 =

⋃

j 6=0 I
j
i .

Let D2 denote the set of domains F−1
i (D1) which are disjoint from the

central domain. Inductively, we let Dk denote the set of domains F−1
i (Dk−1)

which are disjoint from the central domain. Then for any element Jk ∈ Dk,
F k

i : Jk → Ii is a diffeomorphism. We will bound
∑k−1

j=0 |F j
i (Jk)| for any

Jk ∈ Dk by showing that there exists some λ < 1 independent of i such that
for k > 1 we have B(Ii, Jk) 6 λB(Ii, Fi(Jk)). We let

(4) µ := exp {−σ′(|I0|)}
where σ′ is given by (2). By (1), if J ′, f(J ′), . . . , fm(J ′) is a disjoint set of
intervals and J ⊃ J ′, we have B(fm, J ′, J) > µ. Therefore, if n(j) is the

return time of Ij
i to Ii and J ⊂ Ij

i then B(fn(j), Ij
i , J) > µ.

The following lemma is Lemma 2.3 of [GK].
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Lemma 3.2. For every δ > 0 there exists λ′ = λ′(δ) < 1 such that if
J ⊂ V ⊂ U are intervals and U is a δ–scaled neighbourhood of V then

B(U, J) < λ′B(V, J).

Furthermore, λ′ → 1 as δ → 0.

We add this lemma to (1) as follows.

Lemma 3.3. Given δ > 0, there exist 0 < λ = λ(δ) < 1 and ε > 0 such that
if |I0| < ε and Ii−1 is a δ–scaled neighbourhood of Ii, then for any J ⊂ Ij

i

with j 6= 0,
B(Ii, J) < λB(Ii, Fi(J)).

Proof. From the previous lemma there exists some λ′ = λ′(δ) < 1 such that

B(Ii, J) < λ′B(Ij
i , J).

Now from (1) we obtain

B(Ii, J) < λ′
B(Ii, Fi(J))

µ

where µ is defined in (4). Since µ → 1 as |I0| → 0, if ε is chosen small
enough then λ′

µ
< 1. We let λ := λ′

µ
. Thus B(Ii, J) < λB(Ii, Fi(J)). �

We will consider λ = λ(χ̃) where χ̃ comes from Theorem 2.4(b) applied to χ
and χ comes from Theorem 2.3(a), i.e. χ̃ takes the role of δ in Lemma 3.3.
In fact we shall adjust λ again in Section 5, but it will remain independent
of i and strictly less than 1.

Proof of (3). For k > 2, B(Ii, Jk) < λk−1B(Ii, F
k−1
i (Jk)). Suppose that

F k−1
i (Jk) ⊂ Ij

i . Then by Lemma 3.1, using Theorems 2.3 and 2.4 (b),
B(Ii, I

j
i ) < ∆ where ∆ = ∆(χ̃). Thus, it is easy to see B(Ii, F

k−1
i (Jk)) <

∆
|F k−1

i
(Jk)|

|Ij
i
| . Now by the Koebe Lemma, |F k−1

i (Jk)| < C(χ)|F k
i (Jk)| |I

j
i
|

|Ii| , so

we know that B(Ii, F
k−1
i (Jk)) < C(χ)∆

|F k
i (Jk)|
|Ii| . We apply these estimates

to the sizes of Jk:

|Jk| <
|Ii|

1 + 2|Ii|
λk−1C(χ)∆|F k

i
(Jk)|

.

Then |Jk| < Cλk−1|F k
i (Jk)|. So

∑k−1
j=0 |F j

i (Jk)| < C
|F k

i
(Jk)|

1−λ
. Whence

k
∑

j=0

|F j
i (Jk)| < |F k

i (Jk)|
(

1 +
C

1 − λ

)

.

This holds for any sum of returns which never lands in the central domain.

It is independent of i. Letting κ =
(

1 + C
1−λ

)

we prove (3). �
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4. Cascade case

This section is devoted to the proof of Proposition 1.4. Note that if there is a
uniform upper bound on the length of sequences Fi, Fi+1, . . . , Fi+m all having
central returns then Theorem 2.3 implies that we may prove Proposition 1.4
as a well bounded case. However, there may be arbitrarily long sequences
of consecutive central returns.

Proof of Proposition 1.4. We suppose that there i is such that f ni(T ) ⊂ Ii
where Fi−2 has a non–central return and Fi+j all have central returns for
j = 0, . . . , m− 1 and that Fi+m has a non-central return. For ξ > 0 we will
bound the sum

ni−ni+m+1
∑

k=1

|fk+ni+m+1(T )|1+ξ.

For our intial estimates, we may omit ξ, but later it will be necessary to
include it. Recall that we always assume here that f j(T )∩ ∂Ii+m+1 = ∅ for
all 0 6 j < ni.

Let m0 = ni+m+1 and let m0 < m1 6 ni be the smallest integer such that
fm1(T ) ⊂ Ii \ Ii+1. Let m1 < m2 6 ni be the next integer for which
fm2(T ) ⊂ Ii \ Ii+1 if such m2 exists. Proceeding in this manner, we obtain
a sequence, ni+m+1 < m1 < m2 < · · · < mN = ni.

So
ni−ni+m+1
∑

k=1

|fk+ni+m+1(T )| =
N−1
∑

j=0

mj+1−mj
∑

k=1

|fk+mj(T )|.

Define mN−1 < m′ 6 ni to be minimal such that fm′

(T ) ⊂ Ii \ Ii+m+1.
Assuming that Fi|I0

i
= f s, there exists 0 6 p 6 m such that m′ + sp =

mN = ni. We can rewrite the sum

ni−ni+m+1
∑

k=1

|fk+ni+m+1(T )| =
N−2
∑

j=0

mj+1−mj
∑

k=1

|fk+mj(T )| +
m′−mN−1
∑

k=1

|fk+mN−1(T )|

+
p−1
∑

r=0

s
∑

k=1

|fk+rs+m′

(T )|.

Using the method from the proof of Proposition 1.3,

m′

∑

k=1

|fk+mN−1(T )| +
p−1
∑

r=0

s
∑

k=1

|fk+rs+m′

(T )| 6 C(χ)
σi,m

|Ii|
p
∑

r=0

|f rs+m′

(T )|.

We will deal with the sum on the right hand side later. We will first show

that
∑N−2

j=0

∑mj+1−mj

k=1 |fk+mj(T )| 6 Cσi,m
|fm′

(T )|
|Ii| .
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We denote the left and right components of Ij \ Ij+1 by Lj and Rj respec-

tively. We know from Theorem 2.3(a) and (b) that |Li|
|Ii+1| ,

|Ri|
|Ii+1| > χ̂.

We define F̂i :
⋃

j Î
j
i → Ii \ Ii+1 to be the first return map to Ii \ Ii+1, such

that F̂i(Î
j
i ) ∈ {Li, Ri}. As in the well bounded case, for each 1 6 j 6 N −2

and 1 6 k < mj+1 −mj, there exists a first entry domain Û to Ii \ Ii+1 such

that f k+mj (T ) ⊂ Û . We may assume that fmj+1−mj−k(Û) = Li. Indeed, for

1 6 j 6 N − 3 there exists Î l
i such that fmj+1(T ) ⊂ Î l

i ⊂ Li. We show that

Î l
i is well inside Li, which will allow us to estimate |fk+mj (T )|

|Û | .

Suppose that Fi|Îl
i

= f il. Then there exists an extension to V l
i ⊃ Î l

i such

that f il : V l
i → Ii−1. Clearly V l

i ⊂ Li, otherwise niceness is contradicted. By
Theorems 2.3(a) and 2.4(b), V l

i (and thus Li) is a χ̃–scaled neighbourhood

of Î l
i .

For 1 6 j 6 N − 2, we have B(Li, f
mj+1(T )) > µB(Û , f k+mj(T )) where µ

is defined in (4). Therefore,

|fk+mj(T )| < |Û |
1 + µ

B(Li,f
mj+1 (T ))

.

As in the well bounded case, using a small adaptation of Lemma 3.3, replac-
ing Fi by F̂i, we can show that B(Li, f

mj(T )) < λN−1−jB(Li, f
mN−1(T )) for

0 6 j 6 N−2. (Note that λ is still the λ(χ̃) discussed following Lemma 3.3.)
Therefore, it can be shown that

N−2
∑

j=0

mj+1−mj
∑

k=1

|fk+mj(T )| 6
Cσi,m

1 − λ
B(Li, f

mN−1(T )).

But since fmN−1(T ) ⊂ Ij′

i for some j ′ 6= 0, we have

B(Li, f
mN−1(T )) < B(Li, I

j′

i )
|fmN−1(T )|

|Ij′

i |
.

Notice that Fi(f
mN−1(T )) = fm′

(T ). So the Koebe Lemma and Lemma 3.1

give B(Li, f
mN−1(T )) < C(χ)∆ |fm′

(T )|
|Ii| , whence

N−2
∑

j=0

mj+1−mj
∑

k=1

|fk+mj(T )| 6 Cσi,m

|fm′

(T )|
|Ii|

.

It remains to bound
∑p

r=0 |f rs+m′

(T )|1+ξ (as can be seen below, we only
really need ξ > 0 for our estimates in the low case). We assume that
fm′

(T )∩∂Ii+j 6= ∅ for 1 6 j < m: otherwise we have
∑p

r=0 |f rs+m′

(T )|1+ξ <
|Ii|1+ξ, and we are finished.
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Let T̂ = fm′

(J). There exists some M > 0 such that FM
i (T̂ ) = fni(T ). We

will bound
∑M

k=0 |F k
i (T̂ )|1+ξ.

a0 a1 aM-1 aM
aM+t aM+1+t

am
c

T
F(T)

F

Figure 2. When T̂ intersects the boundary points ∂Ij.

If M was uniformly bounded then we would be able to find some bound
on

∑M
k=0 |F k

i (T̂ )| easily. But M may be very large. We consider this sum
in two cases: either Fi is high, or Fi is low (the high case is the most
straightforward). For some background on this dichotomy see [Ly]. In both
cases, we relabel Fi|Ii+1

as F and Ii as I0. Now let Ik = (ak, a
′
k). We are

assuming that F (c) is a maximum for F , see Figure 2.

The high case

We have two cases to consider. We first assume that Fj are high and central
for j = 0, . . . , m. This is known as an Ulam–Neumann cascade.

Lemma 4.1. In the high case,
∑M

k=0 |F k(T̂ )| < C|I0|.

Proof. We know that I0 is a χ̂–scaled neighbourhood of I1. We will use the
Minimum Principle (Theorem 2.5) and Theorem 2.6 to estimate derivatives.
The idea here is that either we have derivative uniformly greater than one
in (a1, am) and we can bound

∑M
k=0 |F k(T̂ )| as a geometric sum; or we have

a small derivative in some region, in which case we find a bound on the
number of ai that are in this region.

Let γ > 1 satisfy γ
γ−1

> 1
2χ̂

. Then we may fix some integer r > 1 such that

2χ̂
∑r

i=0 γ
−i > 1. Note that r only depends on χ̂. Observe that there is a

fixed point p ∈ (a1, c). We can choose I0 to be so small that the return
time to it is greater than n0 given in Theorem 2.6. Therefore, by that
theorem, |DF (p)| > ρf . If |DF (a1)| > γ then from the Minimum Principle,
|DF |(a1,p) > γ′ where γ′ = µ3 min(γ, ρf ) where µ is defined in terms of |I0|
in (4). We fix I0 to be small enough so that γ ′ > 1. Therefore, we have
∑M

k=0 |F k(T̂ )| < γ′

γ′−1
|FM

i (T̂ )|.

Suppose now that there is some u ∈ (a1, c) such that |DF |(a1,u) < γ. We
will show that this must mean that u ∈ (a1, ar) and thus we can uniformly

bound the sum of times that T̂ lies in this region.
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Suppose that (a1, as) ⊂ (a1, u). Then we have |ai+1 − ai| > |ai−ai−1|
γ

for all

i 6 s− 1. Therefore, if (a1, as) ⊂ U then

|c− a0| >
s−1
∑

i=0

|ai+1 − ai| > |a1 − a0|
s
∑

i=0

γ−i.

We know that |a1 − a0| > 2χ̂|c− a0|. By the definition of γ we must have
s 6 r. Moreover, we have |DF |(as,p) > γ′.

This helps us bound
∑M

k=0 |F k(T̂ )| where F k(T̂ ) ⊂ I0 \ Im. We suppose that

FM(T̂ ) = (a0, at) for t 6 m. See Figure 2. Then

M
∑

k=0

|F k(T̂ )| = |a1 − a0| + min(2,M − 1)|a2 − a1| + · · ·

+ min(i,M − (i− 1))|ai − at−i| + · · ·+ |aM+t − aM+t−1|.
This is bounded above by

r|ar − a0| + |aN − aN+1|
∞
∑

i=0

min(i,M − (i− 1))

γ′i
.

The first summand is bounded by r|I0| and the second summand is bounded

above by C|aN − aN+1| for some C > 0. So we get
∑M

k=0 |F k
i (T̂ )| < C|I0| as

required. �

The low case

We assume that we are in the same setting as above, but with F0 central
and low. This is known as a saddle node cascade. Again we would like to
bound

∑M
k=0 |F k(T̂ )| defined as above. However, as we shall see, we are only

able to bound
∑M

k=0 |F k(T̂ )|1+ξ.

Lemma 4.2. In the low case,
∑M

k=0 |F k(T̂ )|1+ξ < C|I0|1+ξ.

Proof. We will apply the following result, a form of the Yoccoz Lemma, see
for example [FM].

Lemma 4.3. Suppose that f ∈ NF 2. Then for all δ, δ′ > 0 there exists
C > 0 such that if I0 is a nice interval such that

(1) I0 is a δ–scaled neighbourhood of I1;
(2) Fk is low and central for k = 0, . . . , m;

(3) there is some 0 < k < m with |Ik|
|Ik+1| < 1 + δ′,

then for 1 6 k < m,

1

C

1

min(k,m− k)2
<

|Ik−1 \ Ik|
|I0|

<
C

min(k,m− k)2
.
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This lemma was suggested by Weixiao Shen. For the proof, see the appen-
dix. (For comparison with other statements of the Yoccoz Lemma, note
that we will prove that one consequence of our conditions for the lemma is
that we have a lower bound on |Im\Im+1|

|I0| .)

Suppose that I0 satisfies all the conditions of Lemma 4.3. In particular
we assume that for some fixed δ′ > 0, we have |Ik|

|Ik+1| < 1 + δ′ for some

0 < k < m. Then for any ξ > 0,

M
∑

k=0

|F k(T̂ )|1+ξ

<
m
∑

k=0

(

C|I0|
min(k + t,m− (k + t))2

+ · · ·+ C|I0|
min(k + 1, m− (k + 1))2

)1+ξ

< C|I0|1+ξ
m
∑

k=0

(

1

k + 1
− 1

k + t

)1+ξ

.

The sum above is bounded above for any ξ > 0.

Next we suppose that the hypotheses of Lemma 4.3 do not hold. In particu-
lar, this means |Ik|

|Ik+1| > 1+δ′ for k = 0, . . . , m. Note that |I0| > (1+δ′)|I1| >

(1 + δ′)2|I2| > · · · > (1 + δ′)M |IM |. Therefore

M
∑

k=0

|F k(T̂ )| < 1

2

M
∑

k=0

k|Ik| 6
|I0|
2

M
∑

k=0

k

(1 + δ′)k
< C|I0|.

So the lemma is proved. �

We have shown that in both low and high cases we have
∑M

k=0 |F k(T̂ )|1+ξ <
C|I0|1+ξ. We may apply the usual method to show that this means that
∑ni−m′

k=1 |fk+m′

(T̂ )|1+ξ < Cσi,m maxm′<k6ni
|fk(T )|ξ. So there is some Ccasc

such that
ni−ni+m+1
∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m max
ni+m<k6ni

|fk(T )|ξ

as required. �

5. Exceptional case

In the last section we dealt completely with the saddle node cascade. It is
easily shown, for example applying Lemma 5.1 below to all branches, that
following a saddle node cascade we have a well bounded case, and so the
conclusions of Proposition 1.3 hold. An Ulam–Neumann cascade, however,
is not always followed by a well bounded case. We estimate the sum for
Fi in this alternative case here. Most of the sum is dealt with using the
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methods for the well bounded case, but we need some new techniques to
deal with two of the branches of Fi.

We consider the sum for Fi where Fi−2 has a central return and Fi−1 has a
high non–central return. The situation here is only slightly different from
the case considered in Section 3, since we can prove that all domains of
Fi are well inside Ii, except possibly two. Both of these domains I j

i have
Fi|Ij

i
= Fi−1|Ij

i
. We denote the left–hand such interval by IL

i and the right–

hand one by IR
i , see Figure 3. These are the exceptional domains. If Ii−1 is

I
i

L

I
i

I
i-1

I
i

R

I
i+1

Figure 3. The exceptional case.

a χ̂-scaled neighbourhood of Ii then by Theorem 2.3 we know that Ii is a
˜̂χ–scaled neighbourhood of both IL

i and IR
i , and we may proceed as in the

well bounded case. But this will not always be so if Ii−1 is at the end of a
long Ulam–Neumann cascade. So we will assume that Ii−1 is not a ˜̂χ-scaled
neighbourhood of Ii. Without loss of generality, we suppose that Fi−1(c) is
a maximum for Fi−1 : Ii → Ii−1.

We are now ready to begin the proof of Proposition 1.5. The strategy for
the proof is as follows.

• Show there is some upper bound on B(Ii, I
j
i ) for j 6= L,R.

• State our main result in the proof: Proposition 5.3. We suppose that
we have some interval J ⊂ I j

i for j 6= L,R, 0; Fi(J), . . . , Fm
i (J) ⊂

IL
i ∪ IR

i ; and Fm+1
i (J) ⊂ Ij′

i for j ′ 6= L,R, 0. Then there ex-
ists some λ < 1 such that B(Ii, J) < λB(Ii, F

m+1
i (J)). Further-

more,
∑m

k=1 |F k
i (J)| < B(Ii, F

m+1
i (J))|Ii|. We are then able to prove

Proposition 1.5. In the rest of this section we prove Proposition 5.3:
essentially we need an upper bound on

∑m
k=1 |F k

i (J)|.
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• In Lemma 5.4 we show that there exist an interval V ⊂ Ii and γ > 1
such that

|DFi|(IL
i
∪IR

i
)\V > γ.

This allows us to bound parts of the sum
∑m

k=1 |F k
i (J)| which lie in

(IL
i ∪ IR

i ) \ V .
• We next focus on V . We take first return maps to V and use decay of

cross–ratios again to estimate sums of intervals in V , see Lemma 5.6.
We can then complete the proof of Proposition 5.3

We first show in the following simple lemma that we have uniform bounds
on how deep the domains of Fi are in Ii for all domains except IL

i , I
R
i .

Lemma 5.1. In the exceptional case outlined above, if j 6= L, 0, R then Ii

is a ˜̂χ–scaled neighbourhood of I j
i .

In fact, a similar result holds for the central domain too by Theorem 2.3,
but this is not important for us here. This lemma proves that we can treat
the case where Fi−2 is central and Fi−1 is low and non–central as a well
bounded case.

As we shall see, the proof of this lemma is reminiscent of the cascade case
since we follow iterates of intervals along the central branch of some Fi′.

Proof. There exists some maximal i′ < i such that Fi′−2 is non–central.
Then by Theorem 2.3, Ii′ is a χ̂–scaled neighbourhood of Ii′+1.

For j 6= L,R we will find Fi|Ij
i

as a composition of some branches of Fi′ in

order to find some extensions. Fi′|Ii′+1
maps Ij

i out of Ii along the cascade,
through the sets Ii−1 \Ii, Ii−2 \Ii−1 and so on, until it maps to some interval

in Ii′+1 \ Ii′+2. Then this interval is mapped into some I j′

i′ . This then maps

back into Ii′+1. The process may be repeated many times before I j
i is finally

mapped back to Ii.

So know that Fi|Ij
i

is a composition of maps as follows. Let j1 6= 0 be such

that (F i−i′

i′ |Ii′+1
)(Ij

i ) ⊂ Ij1
i′ . Let k1 = i− i′. If Fi|Ij

i
= (Fi′|Ij1

i′
)(F

(i−i′)
i′ |Ii′+1

)|
I

j
i

then we stop here; we say r = 1. Otherwise, let k2 > 0 be minimal such
that F k1+1+k2

i′ (Ij
i ) ⊂ Ii′ \ Ii′+1. Let j2 6= 0 be such that F k1+1+k2

i′ (Ij
i ) ⊂ Ij2

i′ .
If Fi|Ij

i
= F k1+1+k2+1

i′ |
I

j
i

then we stop here; we say r = 2. Otherwise, we

continue this process until we finally return to Ii and obtain kr.

Suppose that r = 1. That is,

Fi|Ij
i

= F
(i−i′)+1
i′ |

I
j
i
.

Let U denote F
(i−i′)
i′ (Ij

i ) and U ′ denote Ij1
i′ . Then Fi′(U) = Ii and Fi′(U

′) =
Ii′ . We know that Ii′ is a χ̂–scaled neighbourhood of Ii. So if we can show
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that, taking the appropriate branch, (F
−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii, we know by

Theorem 2.4(b) that Ii is a ˜̂χ–scaled neighbourhood of I j
i (since all the

intervals we are concerned with are disjoint). It is easy to see that for this

branch, (F
−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii by the structure of the saddle node cascade

since we have (F−1
i′ |Ii′+1

)(U ′) ⊂ Ii′+1 \ Ii′+2, (F−2
i′ |Ii′+1

)(U ′) ⊂ Ii′+2 \ Ii′+3

and so on. So the lemma is proved when r = 1.

In the more general case, where r > 1 and

Fi|Ij
i

= F
∑r

l=1
(kl+1)

i′ |
I

j
i

we may apply the same idea, again using the disjointness of the domains of
the first return map, to prove that Ii is a ˜̂χ–scaled neighbourhood of I j

i . �

If necessary we adjust λ so that λ( ˜̂χ) 6 λ < 1.

By the above, if Ii is a ˜̂χ–scaled neighbourhood of IL
i and IR

i then we can
proceed with the method in the well bounded case to prove Proposition 1.5.
But this is not generally the case. So for our work here, we may assume
that Ii is not a ˜̂χ–scaled neighbourhood of IL

i or IR
i , and that some iterate

of J enters IL
i ∪ IR

i .

Remark 5.2. In the previous sections we had uniform upper bounds on the
cross–ratio B(Ii, I

j
i ) for all j and so we obtained estimates on the decay of

cross–ratios directly. This was used to estimate the sums of intervals. The
problem we often encounter in this section is that sometimes we only get
good estimates on how cross–ratios decay and sometimes we only get good
estimates for the decay of the sizes of intervals. But these estimates are
difficult to marry together directly, so we will have to split up such cases.
The process is first described in the proof of Proposition 1.5 and again in
the proof of Lemma 5.6. (As we will see later, this splitting scheme deals
with the cases where we enter IL

i ∪ IR
i from Ii; V from IL

i ∪ IR
i ; and Λ from

V .)

The principal result in this section is the following proposition.

Proposition 5.3. If J, Fi(J), . . . , Fm
i (J) ⊂ IL

i ∪ IR
i then

(1) there exists some 0 6 m̂ < m such that
∑m

k=0 |F k
i (J)| < C(|Fm

i (J)|+
|F m̂

i (J)|);
(2) for some λ < 1 independent of i, if Fm+1

i (J) ⊂ Ij
i , j 6= L, 0, R then

(a)
∑m

k=0 |F k
i (J)| < CB(Ii, F

m+1
i (J))|Ii|;

(b) letting J ′ be the element of F−1
i (J) inside some interval I j′ for

j ′ 6= L, 0, R then we have B(Ii, J
′) < λB(Ii, F

m+2
i (J ′)).



22 MIKE TODD

See Figure 4 for a schematic representation of the situation of this proposi-
tion. If necessary we will adjust the λ < 1 we use throughout this paper so
that we may assume that the proposition above holds for that λ.

Ii

L

I
R

iI
j

i I
j’

i
Ii

0

F (J)i J F (J)
m+1

i
F  (J)

m

i
J’

Ii

c

Figure 4. An illustration of Proposition 5.3.

Proof of Proposition 1.5 assuming Proposition 5.3. As in the proof in the
well bounded case, we first show that we are principally concerned with the
intervals inside Ii. Again, the proof of this fact is a slight modified version
of the proof in the well bounded case.

Let ni+1 < m1 < · · · < mji
= ni be all the integers between ni+1 and ni

such that fmj (T ) ⊂ Ii \ Ii+1 for j = 1, . . . , ji − 1 and let m0 = ni+1. Let
Fi :

⋃

i U
j
i → Ii be the first entry map to Ii. As before, we will decompose

the sum
∑ni

i=ni+1+1 |f i(T )| as
∑ji−1

j=0

∑mj+1−mj

k=1 |fmj+k(T )|.

Suppose that fmj+1(T ) ⊂ U j
i for some U j

i . Suppose further, that Fi|Uj
i

=

f ij . Then there exists an extension to V j
i ⊃ U j

i so that f ij : V j
i → Ii′−1 is

a diffeomorphism, where i′ is defined in the proof of Lemma 5.1. Then we

have distortion bounds as usual: |fk(fmj+1(T ))|
|fk(Uj

i
)| 6 C(χ) |f

mj+1(T )|
|Ii| . Thus,

mj+1−mj
∑

k=1

|fmj+k(T )| < C(χ)σi

|fmj+1(T )|
|Ii|

.

Therefore,
∑ni

j=ni+1+1 |f i(T )| < C(χ) σi

|Ii|
∑ji

j=1 |fmi(T )|. I.e. we are prin-

cipally interested in the sum
∑ji

j=1 |fmi(T )|, that is
∑ji−1

k=0 |F k
i (T̂ )| where

T̂ = fm1(T ). In fact, we focus on bounding
∑ji−2

k=0 |F k
i (T̂ )|.

We split T̂ , Fi(T̂ ), . . . , F ji−2
i (T̂ ) into two groups: one for those intervals

outside IL
i ∪ IR

i and one for those inside IL
i ∪ IR

i . Suppose that J is an
interval such that for some k > 0, we have F k

i (J) ⊂ Ij
i for some j 6= L, 0, R;

then F k+1
i (J), F k+2

i (J), . . . , F k′

i (J) ⊂ IL
i ∪ IR

i for some k′ > k; and finally

F k′+1
i (J) ⊂ Ij′

i for some j ′ 6= L, 0, R. From the last part of Proposition 5.3
we have

B(Ii, F
k
i (J)) < λB(Ii, F

k′+1
i (J)).
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Therefore, we can bound the sums of intervals which lie in the intervals
Ij
i for all j 6= L,R in a similar manner to that for the well bounded case,

independently of those intervals inside IL
i ∪ IR

i , as follows.

Given k > 0 such that F k
i (T̂ ) ⊂ Ij

i for some j 6= L, 0, R we wish to estimate

|F k
i (T̂ )|. Let 0 6 k̂ 6 ji−2 be maximal such that F k̂

i (T̂ ) ⊂ Ij′

i for some j ′ 6=
L,R. Then we apply Proposition 5.3 repeatedly to obtain B(Ii, F

k
i (T̂ )) <

λlB(Ii, F
k̂
i (T̂ )) for some l > 0. The l counts the number of times that

F k+r
i (T̂ ) lies outside IL

i ∪ IR
i for 0 < r 6 k̂. Then

|F k
i (T̂ )| < |Ii|

1 + 2

λlB(Ii,F
k̂
i
(T̂ ))

.

We have two cases. In the first case we have k̂ = ji − 2. Then

B(Ii, F
ji−2
i (T̂ )) < B(Ii, I

j′

i )
|F ji−2

i (T̂ )|
|Ij′

i |
< ∆(˜̂χ)

|F ji−2
i (T̂ )|
|Ij′

i |
< ∆(˜̂χ)C( ˜̂χ)|F ji−1

i (T̂ )|.
Therefore, |F k

i (T̂ )| < Cλl|F ji−1
i (T̂ )|. This suffices to prove an upper bound

of the form C|F ji−1
i (T̂ )| for the Fi–iterates of T̂ outside IL

i ∪ IR
i in this case.

In the second case k̂ < ji − 2. We have

B(Ii, F
k̂
i (T̂ )) < B(Ii, I

j′

i )
|F k̂

i (T̂ )|
|Ij′

i |
<

∆|F k̂
i (T̂ )|

|Ij′

i |
.

Since |F k̂
i (T̂ )| < C(χ)|F k̂+1

i (T̂ )| |I
j′

i
|

|Ii| . Therefore, in this case we have a bound

of the form C|F k̂+1
i (T̂ )| for the iterates of T outside IL

i ∪ IR
i .

Finally we use the above information about sizes of intervals outside IL
i ∪IR

i

to bound the sums of intervals inside IL
i ∪ IR

i too. In the first case above,

we have a bound of the form C|F ji−1
i (T̂ )| for the iterates of T in IL

i ∪ IR
i . In

the second case above, we have a bound of the form C(|F k̂
i (T̂ )|+ |F m̂

i (T̂ )|+
|F ji−1

i (T̂ )|) for the iterates of T in IL
i ∪ IR

i .

So in the worst case we have the bound

Cexσi

(

|fni(T )|
|Ii|

+
|fni,2(T )|

|Ii|
+

|fni,3(T )|
|Ii|

)

for the sum
∑ni

k=ni+1+1 |fk(T )|, as required. �

5.1. Proof of Proposition 5.3. Denote the smallest interval containing
both IL

i and IR
i by I ′i. Recall that we are assuming that the critical point

is a maximum for Fi−1|I′
i
. (Recall that Fi|IL

i
∪IR

i
= Fi−1|IL

i
∪IR

i
.) This means
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that there is some fixed point p of Fi in IR
i . Clearly, there also exists a point

p′ ∈ IL
i such that Fi(p

′) = p. Let V := (p′, p).

We outline the proof of Proposition 5.3 as follows. We suppose that some
iterate of J enters V . Let 0 6 s1 6 s2 6 s3 be defined as follows. F k

i (J) ⊂
I ′i \ V for 1 6 k 6 s1; F

s1+1
i (J) ⊂ V ∩ (IL

i ∪ IR
i ); and F s2+k

i (J) ⊂ I ′i \ V for
1 6 k 6 s3 − s2. Any sum of the form

∑m
k=0 |F k

i (J)| can be broken up into
blocks consisting of such sums.

The scheme for proving Proposition 5.3 is to firstly to show that |DFi|I′
i
\V

is uniformly large. This is proved in Lemma 5.4 and helps to deal with the
sums

∑s1
k=0 |F k

i (J)| and
∑s3−s2

k=1 |F s2+k
i (J)|. Then we have to prove that we

have bounds on the sums of intervals which return to V . This, proved in
Lemma 5.6, helps to deal with

∑s2−s1
k=1 |F s1+k

i (J)|.
Note that the proof of Proposition 5.3 is the only time in this paper that
we use the symmetry of the map (and it is only a simplifying assumption).

Lemma 5.4. There exists some γ > 1 independent of i such that

|DFi|I′
i
\V > γ.

Proof. We start by observing as in the last section that |DFi(p)| > ρf . By
symmetry, |DFi(p

′)| > ρf too. Observe that IL
i also contains a fixed point q

of Fi. We have |DFi(q)| > ρf too. Furthermore, there exists a point q′ ∈ IR
i

such that Fi(q
′) = q. From symmetry, |DFi(q

′)| > ρf .

We can estimate |DFi|(p,q′) using the Minimum Principle as follows. We
use our µ given in (4) in place of µg. Then |DFi|(p,q′) > µ3ρf . When I0 is
small enough, µ is close to 1. Thus we may ensure that our intervals are so
small that |DFi|(p,q′) > ρ for some ρ > 1. (To fix precisely how small our
intervals must be, we can, for example, choose ρ =

√
ρf .) By symmetry,

|DFi|(q,p′) > ρ.

We deal with the remaining part of the proof of the lemma by showing that
Fi has large derivative when x ∈ I ′i and either x < q or x > q′. We use the
following consequence of Theorem 2.3 and the Minimum Principle.

Claim. There exists some γ ′ = γ′(χ) > 1 such that, denoting IL
i = (l−, l+)

and IR
i = (r−, r+), if I0 is sufficiently small and B(Ii, I

L
i ), B(Ii, I

R
i ) are

sufficiently large then

|DFi|(l−,q), |DFi|(q′,r+) > γ′.

Proof. Let θ := 1
2

(

|Ii′ |
|Ii′+1|

− 1
)

> χ̂ where i′ is defined in the proof of

Lemma 5.1. We suppose that |DFi′|Ii′+1\Ii
6 1 + 2θ. Then we prove by
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induction that
|Ii′+k|

|Ii′+k+1|
> 1+2θ for 0 6 k < i− i′. By construction it is true

for k = 0. We assume that it is true for some 0 6 k < i− i′ − 1. Then

|Ii′+k+1|
|Ii′+k+2|

>
|Ii′+k+2| + (supIi′+1\Ii

|DFi′|)−1|Ii′+k \ Ii′+k+1|
|Ii′+k+2|

> 1 +

(

2θ

1 + 2θ

)

|Ii′+k+1|
|Ii′+k+2|

Then it is easy to see that
|Ii′+k+1|
|Ii′+k+2|

> 1 + 2θ as required.

In particular, we have proved that |DFi′|Ii′+1\Ii
6 1 + 2θ implies that Ii is a

θ̃–scaled neighbourhood of both IL
i and IR

i : a contradiction (since θ̃ > ˜̂χ).
So there must exist some x ∈ Ii′+1 \Ii such that |DFi(x)| > 1+2θ > 1+2χ̂.
Therefore, by Theorem 2.5 and (1) we have

|DFi′ |(x0,p) > µ3 min(1 + 2χ̂, ρf).

Choosing |I0| small we have some γ ′ > 1 such that |DFi|(x0,q) > γ′. In
particular |DFi|(l−,q) > γ′. Similarly we can show |DFi|(q′,r+) > γ′. �

Letting γ := min(ρ, γ′), the lemma is proved. �

By the above, we will be able to estimate the sizes of iterates of T inside
(IL

i ∪ IR
i ) \ V as a geometric sum.

We will need some real bounds for V . The following lemma, which contrasts
with Lemma 5.4, will later be used to obtain these bounds.

Lemma 5.5. There exists some Ĉ = Ĉ(χ, |I ′i|) > 0, where Ĉ(χ, |I ′i|) tends

to some constant Ĉ(χ) as |I ′i| → 0, such that

|DFi|IL
i
∪IR

i
< Ĉ.

Proof. We work with Fi′ : Ii′+1 → Ii′ where i′ is defined in the proof of
Lemma 5.1. There exists some m > 1 such that Fi′ |Ii′+1

= fm|Ii′+1
. We can

decompose this map into two maps so that Fi′ = L ◦ g where g = f |Uφ
, i.e

g(x) = f(c) − |φ(x)|α, and L = fm−1 : f(Ii′+1) → Ii′.

By Theorems 2.4(a) and 2.3(a) we have DL(x)
DL(y)

< C(χ) for x, y ∈ f(Ii+1). So

|DL(x)| 6 C(χ)
|Ii|

|f(Ii+1)|
= C(χ)

|Ii|
∣

∣

∣φ
( |Ii+1|

2

)α∣
∣

∣

for x ∈ f(Ii+1). Also

|Dg(x)| = α|Dφ(x)||φ(x)α−1| < α sup
x∈Ii′+1

|Dφ(x)|
∣

∣

∣

∣

∣

φ

(

|Ii+1|
2

)∣

∣

∣

∣

∣

α−1

.
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For Û ⊂ Uφ a small neighbourhood of c, let Dist(φ, Û) := supx,y∈Û
|Dφ(x)|
|Dφ(y)| .

Observe that as I ′i becomes smaller, Dist(φ, I ′i) tends to 1. For x ∈ IL
i ∪ IR

i ,

|DFi(x)| < αC(χ)
supx∈Ii+1

|Dφ(x)||Ii|
∣

∣

∣φ
(

|Ii+1|
2

)∣

∣

∣

< 2αC(χ)Dist(φ, I ′i)
|Ii|
|Ii+1|

.

Since we have assumed that |Ii|
|Ii+1| is bounded below, there is some constant

C > 0 such that for all x ∈ I ′i,

|DFi(x)| < CC(χ)Dist(φ, I ′i).

Letting Ĉ(χ, |I ′i|) := CC(χ)Dist(φ, I ′i) we have proved the lemma. �

We denote the first return map to V by F̂i :
⋃

j V
j → V . We first wish to

find some control on the sizes of the domains of F̂i. Let mV,j be such that

F̂i|V j = F
mV,j

i |V j . The following lemma is key to proving Proposition 5.3.

Lemma 5.6. If F l1
i (J), . . . , F lm

i (J) ⊂ V ∩ (IL
i ∪ IR

i ) are all the iterates of
J up to lm which lie in V ∩ (IL

i ∪ IR
i ), and all intermediate iterates F k

i (J)
for k = 0, 1, . . . , lm lie in IL

i ∪ IR
i then

lm
∑

k=0

|F k
i (J)| < C|F lm

i (J)|.

Furthermore, there exists λV < 1 such that |J | < Cλlm−m
V |F lm

i (J)|.

Proof. We split the sum as follows

lm
∑

k=0

|F k
i (J)| =

m−1
∑

j=0

lj+1−lj
∑

k=1

|F lj+k
i (J)|

where we let l0 = −1. We know from Lemma 5.4 that |DFi|I′
i
\V > γ so

lj+1−lj
∑

k=1

|F lj+k
i (J)| < |F lj+1

i (J)|
lj+1−lj−1
∑

k=0

γ−k <
|F lj+1

i (J)|
1 − γ−1

.

Whence,
lm
∑

k=0

|F k
i (J)| < 1

1 − γ−1

m
∑

j=0

|F lj
i (J)|.

So we only need bound the sum of returns to V .

Denote the rightmost element of
⋃j V j by V 1 and the leftmost element by

V 2 (observe that F̂i|V 1 = F 2
i |V 1 and F̂i|V 2 = F 2

i |V 2). We get an estimate
on how deep each V j is inside V for j > 2 because V 1 and V 2 have some
definite size compared to |V |; since by Lemma 5.5 we know that |V 1|, |V 2| >
|V |
Ĉ2 . Therefore, there exists some δ′0 depending only on f such that V is a

δ′0–scaled neighbourhood of V j for all j > 2. So by Lemma 3.2, there
exists some λ′

V < 1 depending on δ′0 such that for any interval J ′ ⊂ V j,
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B(V, J ′) < λ′VB(V j, J ′) for j > 2 (in fact this is also shown in the claim
below). As usual we can use Lemma 3.3 to conclude that there exists some

λV < 1 such that B(V, J ′) < λVB(V, F̂i(J
′)). If we remain away from V 1

and V 2, this fact and the usual argument would be sufficient to obtain the
required bound on sums.

We must deal with the case where iterates enter V 1, V 2. The idea is to split
the situation into the case where intervals land in a region where |DF̂i| is
large and the case when the intervals land in a region where we don’t have
good estimates on |DF̂i|.
We first focus on V 2. We know from Theorem 2.6 that |DFi(p

′)| > ρf and

so |DF̂i(p
′)| > ρ2

f . There must also exist some fixed point r of F̂i in V 2 with

|DF̂i(r)| > ρf . Letting Λ2 := (p′, r) and applying the Minimum Principle

as before, we obtain |DF̂i|Λ2 > ρ for some ρ > 1. Let r′ be the point in

V 1 such that F̂i(r
′) = r. Then adjusting ρ > 1 if necessary, |DF̂i|(r′,p) > ρ.

We define Λ1 to be the interval in V 1 which has F̂i(Λ1) = V \ V 2. Clearly

Λ1 ⊂ (r′, p), so |DF̂i|Λ1 > ρ. For convenience later, we let Λ := Λ1 ∪ Λ2.

We are now ready to deal with bounding
∑m−1

k=0 |F̂i

k
(J)|. Observe that

F̂i

m−1
(J) must be contained in some V j. Suppose first that j > 2; we

deal with the case where j = 1 or 2 later. Suppose further that J ⊂ V j′ and
j ′ > 2; here the other case is similar. We will again split up the sum. Let

N ′
0 = 0. Let N1 be minimal such that F̂i

N1
(J) ∩ Λ = ∅ and F̂i

N1+1
(J) ⊂ Λ.

Let N ′
1 > N1 be minimal such that F̂i

N ′

1(J) ⊂ Λ and F̂i

N ′

1+1
(J) ∩ Λ = ∅. In

this way we obtain N ′
0 < N1 < N ′

1 < · · · < NM−1 < N ′
M−1 so that

m−1
∑

k=0

|F̂i

k
(J)| =

M−1
∑

j=0







Nj+1−N ′

j
∑

k=1

|F̂i

N ′

j
+k

(J)| +
N ′

j+1−Nj+1
∑

k=1

|F̂i

Nj+1+k
(J)|







+

NM−N ′

M−1
∑

k=1

|F̂i

N ′

M−1+k
(J)|

where NM = m − 1. Observe that the first sum in the brackets concerns
intervals which land inside Λ and the second sum in the brackets concerns
intervals in V \ Λ. Then

N ′

j+1−Nj+1
∑

k=1

|F̂i

Nj+1+k
(J)| < |F̂i

N ′

j+1(J)|
Nj+1−N ′

j+1−1
∑

k=0

ρ−k <
C

1 − ρ−1
|F̂i

N ′

j+1(J)|

for some C.

Now we consider
∑Nj+1−N ′

j

k=1 |F̂i

N ′

j
+k

(J)|. In fact we learn most from estimat-

ing the sum
∑NM−N ′

M−1

k=1 |F̂i

N ′

M−1+k
(J)|. If necessary we make λV < 1 smaller

so that for J ⊂ V j \Λj for j = 1, 2 we have B(V, J) < λVB(V, Fi(J)). Then
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for 1 6 k < Nm −N ′
M−1,

B(V, F̂i

N ′

M−1+k
(J)) < λ

NM−N ′

M−1−k

V B(V, F̂i

NM

(J)).

Recalling that M = m−1 we calculate B(V, F̂i

m−1
(J)) < B(V, V j) |F̂i

m−1
(J)|

|V j | .

Letting BV := max
{

supj>2B(V, V j), B(V, V 1 \ Λ1), B(V, V 2 \ Λ2)
}

, we ob-
tain

|F̂i

N ′

M−1+k
(J)| < |V |

1 + 2|V j |

λ
NM−N′

M−1
−k

V
BV |F̂i

m−1
(J)|

.

Letting B̂V := BV

BV +2
we have

|F̂i

N ′

M−1+k
(J)| < B̂V λ

NM−N ′

M−1+k

V

|V |
|V j| |F̂i

m−1
(J)|.

Hence we have
Nj+1−N ′

j
∑

k=1

|F̂i

N ′

j
+k

(J)| < C|F̂m−1
i (J)|.

We now estimate the other sums concerning intervals outside Λ as follows.

Let µ′ := exp
{

−σ′(I0)
|I0|

1−ρ−1

}

. Suppose that F
NM−2

i (J) ⊂ V j. Then taking

the appropriate branch, F̂i

NM−2−N ′

M−1−1
(V ) ⊂ V j and

B(V, F̂i

NM−2
(J)) < λ′VB(F̂i

NM−2−N ′

M−1−1
(V ), F̂i

NM−2
(J))

<
λ′V
µ′ B(F̂i

−1
(V ), F̂i

N ′

M−1(J))

<
λ′V
µµ′B(V, F̂i

N ′

M−1+1
(J))

Shrinking I0 if necessary, as usual, so that
λ′

V

µµ′
=: λV < 1, we obtain

B(V, F̂i

NM−2
(J)) < λVB(V, F̂i

N ′

M−1+1
(J)).

Clearly then we can proceed in bounding the sum using the usual method

of decaying cross–ratios. So can bound
∑m−1

k=0 |F̂i

k
(J)| above by C|F̂m−1

i (J)|
for this case.

To complete this case, we will bound |F̂i

m−1
(J)| in terms of |F̂i

m
(J)|. We

do this by constructing an extension. Let the left–hand and right–hand
members of F−1

i (p′) be denoted by b and b′ respectively. Denote (b, b′) by
V ′. By Lemma 5.5, V ′ is a δV ′–scaled neighbourhood of V where δV ′ depends
only on f .

Claim. For all domains V j, j > 2 there exists an extension to some interval
U j ⊃ V j such that U j ⊂ V and F

mV,j

i : U j → V ′ is a diffeomorphism.
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Proof. For j > 2 the return maps are a composition of Fi|V followed by Fi|IR
i

and then some number of iterates of Fi|IL
i
. So F̂i

−1
must pull V ′ back into

IL
i . Observe that this element of F−1

i (V ′) is below p′ (and clearly away from
Fi(c)). Any further pullbacks in IL

i remain below p′ also. Therefore when
some element F−k

i (V ′) is finally pulled back into IR
i , it is mapped above

p and remains away from Fi(c). Therefore we have elements of F−k−2
i (V ′)

mapping inside V which don’t contain c. �

By the above claim and Theorem 2.4 we have some C > 0 depending only
on f such that if j > 2,

1

C

|V |
|V j| 6 |DF̂i|V j 6 C

|V |
|V j| .

(Recall that we are assuming that Fm−1
i (V ) ∩ Λ = ∅.)

Therefore,
NM−N ′

M−1
∑

k=1

|F̂i

N ′

M−1+k
(J)| < C|F̂i

m
(J)|.

There remains a further case to consider. Above we assumed F̂i

m−1
(J) ⊂ V j

where j > 2. But if j ∈ {1, 2} we have two cases. We first note that if
F lm

i (J) ∩ {r, r′} = ∅ then the intervals we are concerned with are either
completely inside Λ2,Λ1 or completely inside V \ (Λ2 ∪ Λ1). Then we may
proceed as above. But if F k

i (J) contains r or r′ then we split F k
i (J) into two

intervals, with this periodic point at their intersection. We may then apply
the procedure above to estimate the size of each interval. We need only
apply this splitting argument once since if we intersect a periodic point of
F̂i once, we must stay there for all time under iteration by F̂i. Thus we need
only alter our constants by a factor of 2 to deal with this case. Note that we

only have one sum where this problem could occur:
∑N ′

M
−NM

k=1 |F̂i

NM+k
(J)|

where N ′
M = m. This is because r is a fixed point for F̂i.

Clearly, we can use the cross–ratio argument as usual to obtain the estimate
|F l1

i (J)| < λm−1
V C|F lm

i (J)|, so |J | < λm−1
V C|F lm

i (J)|. �

We may adjust our usual λ so that λV 6 λ < 1.

Proof of Proposition 5.3. Suppose first that Fm+1
i (J) ⊂ Ij

i for j 6= L,R.
Then, in particular, we can be sure that Fm

i (J) does not contain p or p′.
Then we also know that none of F k

i (J) contain p or p′ for 0 6 k 6 m − 1.
This means that we can be sure that all the intervals we consider are either
contained in V or are disjoint from V .
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Recall that 0 6 s1 < s2 6 s3 = m are defined as follows. (We suppose that
some iterate of J enters V : otherwise the proof is simpler.) F k

i (J) ⊂ I ′i \ V
for 1 6 k 6 s1; F

s1+1
i (J) ⊂ V ∩ (IL

i ∪ IR
i ); and F s2

i (J) ⊂ V ∩ (IL
i ∪ IR

i ),
F s2+k

i (J) ⊂ I ′i \ V for 1 6 k 6 s3 − s2.

Then if s3 > s2,

s3−s2
∑

k=1

|F s2+k
i (J)| < |F s3

i (J)|
s3−s2−1
∑

k=0

γ−k < C|F s3
i (J)|,

by Lemma 5.4.

From Lemma 5.6,
s2−s1
∑

k=1

|F s1+k
i (J)| < C|F s2

i (J)|

and |F s1+1
i (J)| < C|F s2

i (J)|.
Also

s1
∑

k=0

|F k
i (J)| < γ−1|F s1+1

i (J)|
s1
∑

k=0

γ−k < C|F s2
i (J)|.

Therefore,
s2
∑

k=0

|F k
i (J)| < C|F s2

i (J)|.

If s3 > s2 then
s3
∑

k=0

|F k
i (J)| < C (|F s3

i (J)| + |F s2
i (J)|) .

Therefore, the first part of the proposition is proved.

Now if Fm+1
i (J) ⊂ Ij

i for j 6= L,R, 0 then recalling that s3 = m we will
obtain an estimate for |F s2

i (J)| in terms of B(Ii, F
m+1
i (J)).

B(Ii, F
s2
i (J)) < B(F−s3+s2

i (Ii), F
s2
i (J)) <

B(Ii, F
m
i (J))

µ
<
B(Ii, F

m+1
i (J))

µ2
.

We are allowed to use µ here since all intermediate intervals must be disjoint
(otherwise we would have to pass through V again). Therefore

|F s2
i (J)| < |Ii|

1 + 2µ2

B(Ii,F
m+1
i

(J))

< C|Ii|B(Ii, F
m+1
i (J)).

Similarly we can show that |Fm
i (J)| < C|Ii|B(Ii, F

m+1
i (J)). Therefore

s3
∑

k=0

|F k
i (J)| < C|Ii|B(Ii, F

m+1
i (J)) < C1|Ii|

for some C1 > 0.
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We now prove the final part of the proposition. Clearly for any run of
intervals Fi(J), . . . , F k

i (J) ⊂ IL
i ∪ IR

i , considering the branch of F−k
i which

follows the iterates of J , we have B(F k
i , F

−k
i (Ii), J) > µ′′ where µ′′ :=

exp{−C1σ
′(|I0|)|I0|}. We consider the branch of F−m−2

i which follows the
backward orbit of Fm+1

i (J). Clearly, F−m−2
i (Ii) is strictly inside Ij

i . Thus,

B(Ii, J
′) < λ′B(Ij

i , J
′) < λ′B(F−m−2

i (Ii), J
′) <

λ′

µ′′B(F−1
i (Ii), F

m+1
i (J ′))

<
λ′

µ′′µ
B(Ii, F

m+2
i (J ′)).

For |I0| small enough, we can alter the usual λ slightly so that λ′

µ′′µ
6 λ and

still ensure that λ < 1. Thus, B(Ii, J
′) < λB(Ii, F

m+2
i (J ′)) as required.

When we do not escape IL
i ∪ IR

i then we may have some intersection with p
or p′. In this case, we split our interval in two and estimate the size of each
piece as above. We need only apply this idea once, so we can change our
constants to cater for this case too. In this case, part 2 of the proposition
doesn’t occur. �

6. Proof of the main theorem in the non–infinitely

renormalisable case

We recall that B(fn, T, J) > exp{−C∑n−1
k=0 |fk(T )|1+η} when f ∈ C2+η. We

will find a bound on the sum
∑n−1

k=0 |fk(T )|1+η by using the main propositions
above and also finding some decay property for the size of the domains of
Fi for some values of i. We assume that f k(T ) ∩ ∂Ij 6= ∅ only within a
cascade case (i.e. when there exist i,m such that Fi is in a cascade case
and f k(T ) ⊂ Ii \ Ii+m). It is easy to see how to extend the proof when this
is not true.

Let Fi :
⋃

j U
j
i → Ii be the first entry map to Ii (we include the branches

of the first return map in this case too). For i < j and an interval V ,
we define S(i, j, V ) to be the maximum of |f i+1(V )|, |f i+2(V )|, . . . , |f j(V )|.
We will consider S(ni+1, ni, T ). Let n(i, j) be such that Fi|Uj

i
= fn(i,j)|

U
j
i
.

Now let U
s(i)
i be the interval for which S

(

0, n(i, j), U j
i

)

is maximal. Let

n̂(i) = n(i, s(i)). Clearly,

S(ni+1, ni, T ) 6 S
(

0, n̂(i), U
s(i)
i

)

.

We would like to show that for certain i, this quantity decays with i in a
controlled way.

We start by assuming that Fi−1 is in a well bounded case. We have two

cases. Firstly, suppose that U
s(i)
i ⊂ Ii. Then since Fi−1 is in a well bounded
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case, we have |U s(i)
i | < |Ii−1|

1+2χ
. Since Ii is a domain of the first return map to

Ii−1 we have

|U s(i)
i | <

S
(

0, n̂(i− 1), U
s(i−1)
i−1

)

1 + 2χ
.

Now assume that U
s(i)
i ∩Ii = ∅. Then there exists some extension Vi ⊃ U

s(i)
i

such that fn(s(i)) : Vi → Ii−1 is a diffeomorphism. We will show that U
s(i)
i is

uniformly smaller than Vi. By (1) we know that B(Vi, U
s(i)
i ) < B(Ii−1,Ii)

µ
for

µ as in (4). Thus, by Lemma 3.1, |U s(i)
i | < |Vi|

1+ 2µ

∆(χ)

. Since Vi is a first return

domain to Ii−1 we have

|U s(i)
i | <

S
(

0, n̂(i− 1), U
s(i−1)
i−1

)

1 + 2µ
∆(χ)

.

Let γ := max
(

1
1+2χ

, 1
1+ 2µ

∆(χ)

)

. Clearly γ < 1. So

S
(

0, n̂(i), U
s(i)
i

)

< γS
(

0, n̂(i− 1), U
s(i−1)
i−1

)

.

We let Call = max(Cwb, Ccasc, 3Cex). Note that by disjointness, all σi, σi,m <
1. If f ∈ NF 2+η and Fi−1 is well bounded, we have

B(fni−ni+1, fni+1+1(T ), fni+1+1(J))

> exp







−C (S(ni+1, ni, T ))η
ni−ni+1
∑

k=1

|fk+ni+1(T )|






> exp
{

−C
(

S
(

0, n̂(i), U
s(i)
i

))η
Call

}

> exp
{

−C
(

γS
(

0, n̂(i− 1), U
s(i−1)
i−1

))η
Call

}

.

If we are not in the infinite cascade case then the sums for Fi, Fi+1, . . .
can be broken into blocks consisting of a cascade; possibly followed by an
exceptional case; followed by one or more well bounded cases. So suppose
that Fi is well bounded, Fi, Fi+1, . . . , Fi+m−1 have central returns, Fi+m has
a non–central return and Fi+m+1 is an exceptional case. So note that, in
particular, Fi+m+2 must be well bounded. Then,

S
(

0, n̂(i +m+ 3), U
s(i+m+3)
i+m+3

)

< γS
(

0, n̂(i+m + 2), U
s(i+m+2)
i+m+2

)

, . . .

. . . , γS
(

0, n̂(i + 1), U
s(i+1)
i+1

)

< γ2S
(

0, n̂(i), U
s(i)
i

)

.
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Therefore, we have

B(fn, T, J) > exp

{

−C
n−1
∑

k=0

|fk(T )|1+η

}

> exp

{

−CCall

(

S
(

0, n̂(0), U
s(0)
0

))η
∞
∑

k=0

γkη

}

> exp

{

−CCall

(σ′(|I0|))η

1 − γη

}

.

Hence it is easy to see that for any 0 < K < 1, if I0 is the central domain of a
first return map to some I−1, I0 is sufficiently small and F−1 is non–central,
then we may bound B(fn, T, J) below by K.

Note that we can always start with a well–bounded case when we don’t
have an infinite cascade. We simply induce on a nice interval finitely many
times until we obtain a non–central return and thus obtain a suitable I−1.
We consider the infinite cascade case in the next section.

The second part of Theorem 1.2, concerning A(fn, T, J), is proved in the
same way.

7. Infinite cascade case

Here we consider the case where we have some I0 such that Fi are central
for i = 0, 1, . . .. In this case we will find that |Ii+1|

|Ii| gets very close to 1. See

Figure 5 for an example of such a map. In particular, Ii will not shrink down
to a point (the critical point c) as i increases so we can’t use the method
above to bound sums of intervals which land very close to c. The principal
tool here is an extension given by a result of [K2]. We will not supply all
the details of our proof of Theorem 1.2 in this case since the techniques are
mostly the same as applied in the previous sections. We start by letting I0

be any nice interval about c. We assume that we have some infinite cascade.
This means that for a nice interval I0 3 c, Fi is central (and high) for all
i, where Fi is defined in the usual way. The main idea here is that we can
still find good bounds on some interval I0,0 and then apply the methods of
Section 4 to it. Then we need to find another interval I1,0 around c which
is smaller than all I0,i, also has good bounds and is uniformly smaller than
I0,0. In such a way, we obtain a sequence of intervals Ii,0 which can each be
treated as in the high cascade case above, and which shrink uniformly to
the critical point. Clearly Fi,j will always be central and high for all i, j > 0.

Proposition 7.1. For f ∈ NF 2, and ξ > 0 there exists some Cinf > 0
such that for any small I0,0 defined as above, T ⊂ I0,0 implies

n−1
∑

k=0

|fk(T )|1+ξ < Cinf .
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I
i

I
i+1

I
i+2

I
i+3

Figure 5. An infinite cascade.

Clearly this completes the proof of Theorem 1.2 in this case.

Proof. We will prove this with a series of lemmas.

For all i the central branch of Fi has two fixed points, q0 and p0 to the left
and right of c respectively (as usual, we assume that Fi(c) is a maximum for
Fi|Ii+1

). We let q′0 be the point in Ii+1 not equal to q0 which maps by Fi to q0.

We define p′0 similarly. We define I0,0 to be (p′0, p0). Let F0,0 :
⋃

j I
j
0,0 → I0,0

be the first return map to I0,0 (where I0
0,0 is the central domain). We have

the following lemma.

Lemma 7.2. There exists some χ̂ > 0 depending only on f such that I0,0 is

a χ̂–scaled neighbourhood of every domain I j
0,0 which has ∂Ij

0,0 ∩ ∂I0,0 = ∅.

Proof. Clearly, Ii tends to (q0, q
′
0). So we denote (q0, q

′
0) by I∞. We will first

show that I∞ is uniformly larger than I0,0 and then show that all except
two non–central domains of the first entry map to I0,0 have an extension

to I∞ and show what this means for I j
0,0. These two domains are the ones

with either p0 or p′0 in the closure.

In a similar manner to the exceptional case, we will find an upper bound
for |DFi|Ii+1

. This will allow us to get good bounds for the first return map
to I0,0
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For large i, the ratio Ii has |Ii+1|
|Ii| close to 1. The following lemma, an

adaptation of Lemma 7.2 of [K2], allows us to bound |DFi|Ii+1
.

Lemma 7.3. If f ∈ NF 2 then there exist constants 0 < τ2 < 1 and τ3 >
0 with the following property. If T is any sufficiently small nice interval
around the critical point, RT is the first entry map to T and its central
domain J is sufficiently big, i.e. |J |

|T | > τ2, then there is an interval W which

is a τ3–scaled neighbourhood of the interval T such that if c ∈ RT (J) then
the range of any branch of RT : V → T can be extended to W provided that
V is not J .

This lemma is only needed as a C3 result in [K2], but it easily extends to
our C2 case.

It is straightforward to see that the above lemma is sufficient to prove a
version of Lemma 5.5 in our case. That is, for large i, there exists some Ĉ ′

such that |DFi|Ii+1
< Ĉ ′. This implies that there exists some 0 < θ < 1

depending only on f such that |I0,0| < θ|I∞| and, equivalently, some δ > 0
such that I∞ is a δ–scaled neighbourhood of I0,0.

Now, for the moment we let F0,0 also denote the first entry map and
⋃

j I
j
0,0

also include the first entry domains. We will show that many of the branches
have an extension to a uniformly larger domain. Suppose that there exists

a domain Ij
0,0 with I0,0 ∩ Ij

0,0 = ∅ such that F0,0 : Ij
0,0 → I0,0 does not

have an extension to I∞. That is, supposing F0,0|Ij
0,0

= fn(j)|
I

j
0,0

, there is

no interval V ⊃ Ij
0,0 such that fn(j) : V → I∞ is a diffeomorphism. Let

0 6 k 6 n(j) − 1 be maximal such that fn(j)−k : fk(Ij
0,0) → I0,0 has no

extension to I∞. Clearly if I0,0 is small f : fn(j)−1(Ij
0,0) → I0,0 always has an

extension, so k < n(j)− 1. Then there exists some interval W ⊃ f k+1(Ij
0,0)

such that fn(j)−k−1 : W → I∞ is a diffeomorphism and the element W ′ of
f−1(V ) containing f k(Ij

0,0) contains c.

Since I∞ is a nice interval, W ′ ⊂ I∞. We also know that f k(Ij
0,0) ⊂ I∞\I0,0.

Therefore W ′ contains either p0 or p′0. But then either fn(j)−k−1(p0) or
fn(j)−k−1(p′0) is contained in I∞ \ I0,0 which is not possible.

Consider Ij
0,0 for some j 6= 0 where I j

0,0 ⊂ I0,0 is a domain of the first return
map. We will show that this domain is uniformly deep inside I0,0. There

exists some V ⊃ f(I j
0,0), where fn(j) : V → I∞ is a diffeomorphism and

V is a δ̃–scaled neighbourhood of f(I j
0,0). Let V ′ be the maximal interval

around Ij
0,0 such that f(V ′) = V . We show that V ′ ⊂ I0,0. Let V (f(c))

denote the maximal interval around f(c) which pulls back by f−1 to I0,0. If
V is not contained in V (f(c)) then either p0 or p′0 is contained in V ′. Thus,
fn(j)(p0) or fn(j)(p′0) lies in I∞ \ I0,0, a contradiction. So V ′ ⊂ I0,0 and I0,0
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is a δ′–scaled neighbourhood of I j
0,0 where δ′ = min

(

δ̃, 1
2

)

. The case of the

central branch follows in the usual manner. �

So we are in a type of high cascade case for F0,0. Note that the branches
with p0 or p′0 in their closure can be dealt with in the same way as the
domains V 1, V 2 were dealt with in the exceptional case.

We may assume that F0,0 has an infinite cascade and is high too. Let F0,1

be the first return map to I0,0 and so on, so we obtain I0,i. We sum for
F0,0, F0,1, . . . as in the high cascade case. We let q1, q

′
1, p1, p

′
1 be defined as

above for the fixed points of F0,0|I0,1 . We let I0,∞ denote (q1, q
′
1). We may

apply the same ideas as above to find some new interval I1,0 := (p1, p
′
1)

which has |I1,0| < θ|I0,∞|. We may define Ii,j for i > 2, and 0 6 j 6 ∞ in a
similar way.

Let fNi(T ) be the last iterate of T which lies inside Ii,0. Let N ′
i be the

maximal integer Ni > N ′
i > Ni+1 such that fN ′

i(T ) is not in Ii,0 \ Ii,∞. Then
these arguments prove the following lemma.

Lemma 7.4. There exists some C > 0 such that

Ni−N ′

i
∑

k=1

|fk+N ′

i(T )| < Cσ̂i

where σ̂i is defined as follows. Let σi := supV ∈domFi,0

∑n(V )
j=1 |f j(V )| (and

n(V ) is defined as k where Fi,0|V = f k). Let V̂ ⊂ Ii,0 \ Ii,1 be an interval

such that f n̂(V̂ ) is one of the connected components of Ii,0 \ Ii,1 and f j(V̂ )

is disjoint from both Ii,0 \ Ii,1 and Ii+1,0 for 0 < j < n̂(V̂ ). Then σ̂i is the

supremum of all such sums
∑n̂(V̂ )

j=1 |f j(V̂ )| and σi.

Now we consider
∑N ′

i
−Ni+1

k=1 |fk+Ni+1(T )|. If none of these intervals contain
pi, qi then we are in Ii,∞ \ Ii+1,0. By the Minimum principle, |DFi|Ii,∞\Ii+1,0

is uniformly greater than 1. So we can easily bound our sum. If none
of our intervals contains pi, but some f k+Ni+1(T ) contains q0, q

′
0 we can

split f k+Ni+1(T ) at q0 or q′0 into two intervals. It is easy to see that there

is some C > 0 such that
∑N ′

i
−Ni+1

k=1 |fk+Ni+1(T )| < Cσ̂i. If p0, p
′
0 is con-

tained in some |f k+Ni+1(T )| then we must split the interval at p0 or p′0.
Note that we may have to split the interval |f k+Ni+1(T )| at arbitrarily

many pi, q
′
i or p′i, qi. Therefore,

∑N ′

i
−Ni+1

k=1 |fk+Ni+1(T )|1+ξ < C
∑∞

k=i(k −
i)S(Nk, n̂(k), T )ξσ̂k where S and n̂ are defined analogously to Section 6. As
before there is some constant 0 < θ′ < 1, here depending on θ rather than
γ such that θ′ governs the decay of S(Ni, n̂(i), T ). Hence, we can put this
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estimate together with Lemma 7.4 to get
Ni−Ni+1
∑

k=1

|fk+Ni+1(T )|1+ξ < CS(Ni, n̂(i), T )ξ
∞
∑

k=0

kθ′kξ.

Similarly to before, we can conclude that there exists some Cinf > 0 such
that

n
∑

k=0

|fk(T )|1+ξ < Cinf .

�

Appendix A. Proof of the Yoccoz Lemma

We recall the lemma.

Lemma 4.3 Suppose that f ∈ NF 2. Then for all δ, δ′ > 0 there exists
C > 0 such that if I0 is a nice interval such that

(1) I0 is a δ–scaled neighbourhood of I1;
(2) Fi is low and central for i = 0, . . . , m;

(3) there is some 0 < i < m with |Ii|
|Ii+1| < 1 + δ′,

then for 1 6 k < m,

1

C

1

min(k,m− k)2
<

|Ii+k−1 \ Ii+k|
|Ii|

<
C

min(k,m− k)2
.

For similar statements see [FM] and [Sh2].

Proof. We first point out the following claim.

Claim 1. For f as in the lemma, there exists some C(f, δ, δ ′) > 0 such that

|Im|
|I0|

> C(f, δ, δ′).

This is proved in Section 5 of [Sh2]. One consequence of this is that |Im\Im+1|
|I0|

is uniformly bounded below. This is one of the assumptions in the statement
of the Yoccoz Lemma in [FM].

Our proof now involves using a result of [ST], the bound δ and the small size
of I0, to find a nearby map in the Epstein class. The structure of such maps,
particularly at parabolic fixed points, along with some new coordinates, give

us estimates for |Ii+k−1\Ii+k|
|Ii| .

We suppose that s > 0 is such that F0|I1 = f s|I1. We observe that f s−1

has uniformly bounded distortion depending on δ. We will denote F0|I1 by
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F . Letting ψ : [am, a1] → [0, 1] be an affine diffeomorphism we will work
with the map ψ ◦ F ◦ ψ−1. For the rest of the appendix we will abuse the
notation and denote this map by F too.

Previously we assumed that F |I1 had a maximum at c. It will be convenient
to suppose now for this section that c is a minimum for F |I1. Also we let
Ii = (a′i, ai). So in particular, F (ai+1) = ai. We firstly define a point which
allows us to partition [am, a1] in another way.

Let x0 ∈ [am, a1] be defined so that |F (x0) − x0| = minam6x6a0 |F (x) − x|.
It is easy to show that DF (x0) = 1. We will suppose throughout that
|F (x0)−x0| shrinks to zero as |I0| → 0: otherwise the proof is much simpler.
We can estimate the shape of F near x0 using the following definition and
lemma.

Let κ > 0. We say that the real analytic map f : [0, 1] → [0, 1] is in the
Epstein class Eκ if f(x) = ϕQψ where Q is the quadratic map Q(z) = z2,
ψ is an affine map and ϕ : [0, 1] → [0, 1] is a diffeomorphism whose inverse
has a holomorphic extension which is univalent in the domain C(−κ,1+κ) :=
C \ ((−∞,−κ] ∪ [1 + κ,∞)). For more details on maps in this class see
[MS]. The following lemma is proved in [ST].

Lemma A.1. Let f ∈ NF 2. Suppose that I is a nice interval around c and
J is a first entry domain which is disjoint from I and with entry time s.
Suppose that δ > 0 is some constant such that there exists some Ĵ ⊃ J such
that f s : Ĵ → I ′ is a diffeomorphism where I ′ is a κ–scaled neighbourhood
of I and

∑ |f j(Ĵ)| 6 1. Let τ0 : J → [0, 1] and τs : I → [0, 1] be affine
diffeomorphisms. Then for all ε > 0 there exists δ > 0 such that |I| < δ
implies that there exists some function G : I → I in the Epstein class E κ

2

such that ‖τs ◦ f s ◦ τ−1
0 −G‖C2 < ε.

We use this to prove the following claim.

Claim 2. There exists some 0 < A < B such that for I0 sufficiently small

F (x0) + (x− x0) + A(x− x0)
2 6 F (x) 6 F (x0) + (x− x0) +B(x− x0)

2.

Proof. We know that f s : I2 → I1 has the following property. The map
f s−1 : f(I2) → I1 has an extension to I0. Furthermore, since I0 is a δ–
scaled neighbourhood of I1 we use Lemma A.1 to obtain a map G∞ in the
Epstein class which is C2–close to f s.

In fact we can choose different starting intervals In with the same real
bounds which are smaller and smaller and which are then rescaled to maps
Fn which map from the unit interval to itself. For each such map we obtain
the nearby map Gn in the Epstein class where ‖Fn−Gn‖C2 → 0 as n→ ∞.
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For Fn we let xn
0 denote a point which is equivalent to x0 for F . Since we

assume that |Fn(x
n
0 ) − xn

0 | goes to zero, our limit map G∞ has a parabolic
fixed point x∞0 . Also D2G∞(x∞0 ) > 0. Thus, there exist 0 < A < B
depending only on f such that for all x ∈ [0, 1] we have

G∞(x∞0 )+(x−x∞0 )+A(x−x∞0 )2 6 G∞(x) 6 G∞(x∞0 )+(x−x∞0 )+B(x−x∞0 )2.

Clearly, for large n, we have the same condition for Gn. Therefore, if we
take I0 small enough, we may assume that it holds for F too. �

We denote ε := F (x0) − x0. Then we have

ε+ A(x− x0)
2 6 F (x) − x 6 ε+B(x− x0)

2.

We suppose that N is such that x0 ∈ [aN , aN+1). Then for 0 6 i 6 N−1 we
let xi := F i(x0). We will use this equation to find estimates for aj − aj+1.
Throughout we will let C,C ′ denote some constants depending only on δ, δ′.

Claim 3.

N = O

(

1√
ε

)

.

Proof. Let N ′ = max{1 6 j 6 N − 1 : xj − x0 6
√
ε}. We will first show

that N ′ satisfies the claim. For j 6 N ′, we have

ε 6 xj+1 − x0 6 ε(B + 1).

Therefore,

N ′ε 6
N ′−1
∑

j=0

xj+1 − xj 6 N ′ε(B + 1).

Since
∑N ′−1

j=0 xj+1 − xj = xN ′ − x0 6
√
ε we have N ′ 6 1√

ε
. Furthermore,

xj+1 − x0 >
√
ε so ε(N ′(B + 1) + 1) >

√
ε and N ′ > 1

(B+1)
√

ε
− 1. I.e.

N ′ = O
(

1√
ε

)

.

Next we find estimates for N −N ′. For N ′ < j 6 N we again consider the
equation

ε + A(xj − x0)
2 6 xj+1 − xj 6 ε +B(xj − x0)

2.

But note that here B(xj − x0)
2 > ε so we can write instead

A(xj − x0)
2 6 xj+1 − xj 6 2B(xj − x0)

2.

We make a change of coordinates. We let yj := 1
xj−x0

. Then we have

yj − yj+1 =
xj+1 − xj

(xj − x0)(xj+1 − x0)
.

By the above bounds we have

A(xj − x0)

xj+1 − x0
< yj − yj+1 <

2B(xj − x0)

xj+1 − x0
< 2B.
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Furthermore,

yj − yj+1 >
A(xj − x0)

(xj+1 − xj) + (xj − x0)
>

A(xj − x0)

2B(xj − x0)2 + (xj − x0)
>

A

2B + 1
.

Observe that xN ∈ (a1, a0) and |a0 − a1| > δ. So since |xN − xN−1| is
approximately |a0−a1| and since we fixed δ, we know that yN = O(1). Also

note that yN ′ = O
(

1√
ε

)

and so yN ′ − yN = O
(

1√
ε

)

. Summing we obtain

C√
ε
< yN ′ − yN =

N ′

∑

j=N−1

yj − yj+1 < 2B(N −N ′)

and
C ′
√
ε
> yN ′ − yN =

N ′

∑

j=N−1

yj − yj+1 >
A(N −N ′)

2B + 1
.

So N − N ′ =
(

1√
ε

)

too. Adding this to the estimates for N ′ we prove the

claim. �

To prove the lemma, we will use Claims 1 and 3 together, along with
bounded distortion, which means that aj − aj+1 is like xN−j − xN−j−1.

Firstly we will use the above coordinate change again. For j > N ′ we have

yj > yj − yN =
j
∑

j=N−1

yi − yi+1 >
A(N − j)

2B + 1

and so 1
xj−x0

> A(N−j)
2B+1

and xj+1 − xj < 2B
(

2B+1
A(N−j)

)2
.

We have proved that if 0 6 j 6 N ′ then

(5) ε < xj+1 − xj < C ′ε

and if N ′ < j 6 N then

(6) ε < xj+1 − xj <
C ′

(N − j)2
.

Similarly we can define xj = F j(x0) for negative j where 0 6 |j| < m−N .
Now we will show that Claim 3 follows for this situation too and we get
equivalents to (5) and (6). We define some M ′ analogously to the definition
for N ′ and so if |j| 6 M ′ then

ε < xj+1 − xj < C ′ε.

And if M ′ < |j| 6 m−N then

C

(m−N + j)2
< xj+1 − xj <

C ′

(m−N + j)2
.

(In the step of the proof where estimates on yN−m are required, we use
Claim 1 to give |am−1 − am| uniformly bounded below and the fact that
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|x−m−1 − xm| is approximately |am−1 − am|.) Note also that we can show

that m−M ′ = O
(

1√
ε

)

.

Observe that aj − aj+1 is essentially the same as xN−j − xN−j−1. So if
N > j > N −N ′, we have

Cε < aj − aj+1 < C ′ε.

Observe that 1
N−N ′

> 1
j

> 1
N

. Since ε
(

1
N2

)

and ε
(

1
(N−N ′)2

)

this implies that

we have
C

j2
< aj − aj+1 <

C ′

j2
.

Now if N −N ′ > j > O(1) then clearly we have aj − aj+1 <
C′

j2 . Also,

xN−j − xN−j−1 > A(xN−j−1 − x0)
2 = A





N−1
∑

k=j−1

xN−k − xN−k−1





2

> A





N ′

∑

k=1

xk − xk−1





2

> A(N ′√ε)2.

Now since
√
ε = O

(

1
N ′

)

, we have xN−j − xN−j−1 & 1. Thus

C

j2
< aj − aj+1 <

C ′

j2
.

If N 6 j 6 m−M ′ then again we have

Cε < aj − aj+1 < C ′ε.

Note that we also have m−N > m− j > m−M ′. Since m−N,m−M ′ =
(

1√
ε

)

we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2
.

If m−M ′ 6 j 6 m− 1 we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2

where the lower bound follows as above.

To conclude, if 1 6 j 6 N then we have some constant C such that j 6
C(m− j) and aj −aj+1 � 1

j2 . If N 6 j 6 m−1 then we have some constant

C ′ such that m− j 6 C ′j and aj − aj+1 � 1
(m−j)2

. So in either case we have

aj − aj+1 �
1

(min(j,m− j))2

as required. �
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