COVER TIMES IN DYNAMICAL SYSTEMS

NATALIA JURGA AND MIKE TODD

ABsTRACT. We introduce the notion of cover time to dynamical systems. This quantifies the rate
at which orbits become dense in the state space and can be viewed as a global, rather than the
more standard local, notion of recurrence for a system. Using transfer operator tools for systems
with holes and inducing techniques, we obtain an asymptotic formula for the expected cover time
in terms of the decay rate of the measure of the ball of minimum measure. We apply this to a wide
class of uniformly hyperbolic and non-uniformly hyperbolic interval maps, including the Gauss map
and Manneville-Pomeau maps.

1. INTRODUCTION AND SUMMARY OF RESULTS

Let X CY be a subset of a compact metric space (Y, d) and consider a map f : X — X equipped
with an ergodic probability measure p.In this article we introduce and study the cover time of the
system (f, u) which, roughly speaking, quantifies the rate at which orbits become dense in X. More
precisely, given § > 0 we define the d-covering time 75 : X — N U {00},

T5(z) :==inf{n >1 : {z, f(z),..., f"(z)} is é-dense in X} (1.1)

where we say that a subset Z’ C Z is d-dense in Z if for all x € Z there exists 2’ € Z’ such that
d(xz,z') < 6. We will be interested in the asymptotic behaviour of the expected cover time with
respect to u, E,(75) as 6 — 0.

In probability, analogous notions to the cover time have a rich history of study, such as in the setting
of random walks on graphs [AlLl [ [DLP| and Markov chains [LP], as well as being extensively
studied in stochastic geometry [EL J, [P, [AI2]. Moreover, applications are numerous and include
wireless communications [BB| and genomics [ARS]. However the cover time, despite being a very
natural dynamical notion to study in connection with other better understood notions of recurrence
such as hitting and return times, has not yet been addressed in the field of dynamical systems. We
briefly describe an application which illustrates the utility of obtaining estimates on the cover time.
Suppose f : A — A is an expanding repeller. Then the expected cover time N = E,(75) describes
how long one would should expect to wait for an orbit segment {x, f(x),..., f¥(z)} to produce a
d-approximation of the repeller, which would be useful for an efficient computation of its image.

It is an interesting open programme to investigate what types of asymptotic behaviour are feasible
for the expected cover time and to characterise these in terms of the basic properties of the dynamical
system. We point to similar lines of research in the setting of random walks on graphs, such as
investigation into general lower and upper bounds on the expected cover time in terms of the number
of vertices in the graph and a conjecture that the smallest expected cover time should be attained
by complete graphs [L]. In this paper we make fundamental progress towards this general goal
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2 N. JURGA AND M. TODD

by obtaining an asymptotic formula for the expected cover time for a wide class of uniformly and
non-uniformly hyperbolic systems.

Define
M) = min  u(B(,6) (1.2
xesupp(u)

where B(x,d) denotes an open ball, noting that the minimum exists by compactness of supp(u)
and lower semicontinuity of x — u(B(z,d)). For a wide class of one-dimensional systems we will
show that E,(75) scales roughly like M, (§)~! as § — 0. In particular, if we let dimys p denote the

Minkowski dimension of p
dimy; g = lim M

1.
6—0 log & ’ ( 3)

which was introduced in [FFK]H then our main result says that if dimy e < oo then E, (75) scales
roughly like 6~ 4™V~ a5 § — 0. This is in correspondence with the asymptotic behaviour of the
expected hitting time E,(75(,,5)) (see (L.4)) to a shrinking ball centred at some z € X which grows

like O(6~P»(®@) as § — 0 where D,,(z) denotes the local dimension of x at x. In other words, while
hitting times are governed by local scaling properties of the measure p, cover times are governed
by the scaling properties of the (globally determined) ball of minimum measure. Our setup also
gives rise to natural examples of systems which cover the state space at a rate slower than 6= (for
any o > 0), namely where the expected cover time E,(75) has an exponential dependence on 1/4,
see We obtain more precise bounds on E,(75), which can be found in Theorems and in
the uniformly hyperbolic case and in Theorems and in the non-uniformly hyperbolic case.
We remark that the subexponential terms in the asymptotic expression for the expected cover time
are interesting since they capture how nuanced information about the system plays a role in the
expected cover time, such as how many balls of radius 6 and measure ~ M, (d) there are.

In [JM| BJK] the cover time of the chaos game was studied, which is a random algorithm that was
introduced by Barnsley [Bal, Chapter 3| for constructing the attractors of iterated function systems.
Assuming the iterated function system satisfies an appropriate separation condition, this is analog-
ous to studying E,, (7s) for a system (f, i), where f is necessarily a full and finite branched uniformly
expanding map (constructed using the inverses of the contractions belonging to the iterated function
system) and p is the stationary measure associated to the chaos game. In the current paper we
study the cover time from a dynamical viewpoint and in particular we study systems which are well
beyond the scope of [BJK] such as systems which are non-uniformly hyperbolic (subexponentially
mixing), are not full branched, or have infinitely many branches. In particular, our results give
partial answers to [BJK], Questions 6.3 and 6.4].

The cover time 75 is closely related to the hitting time 77 : X — N U {oo}
w(x)=inf{n>1: f*(z) e U} (1.4)

for U = B(z,6) where z € X. For background on hitting time statistics in dynamical systems see
for example [Sau|, [LEF™, Chapter 5]. In the uniformly hyperbolic case, a key tool in this paper
will be to adapt the tools based on the spectral theory of transfer operators for dynamical systems
with a family of holes shrinking to a point [BDT], to instead give bounds on the expected hitting
time E, (7y7) over a family Us of holes U = B(z, ) centred at « € X and which cover X. We have
to do this in a uniform way, which is a significant technical challenge, particularly when dealing

IThis differs from the definition for the Minkowski dimension which was given in [FEK], but the proof that
is an equivalent characterisation can be found in [BJK| Lemma 1.1]. Note that the limit in will exist for the
measures considered in this paper, however this is not the general case. We also note that this definition does not
agree with the definition of the Minkowski dimension given by Pesin [Pl §7] and that some authors would refer to
as the L™°° dimension (see e.g. [FFK| Proposition 4.2]).
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with the ‘short returns’ which requires a new symbolic argument given in §3| which restricts the
geometry of our setup (see below). Following this, we will adapt an approach of Matthews
[M], based on randomising the order in which balls U are visited, which will allow us to express the
expected cover time in terms of maxy E,(77), where the maximum is taken over balls U = B(z, ¢)
with z € A. Finally, given a non-uniformly hyperbolic system (f, ) we will consider a suitable first
return map F' = f™ which is uniformly hyperbolic, and show that the cover time for the original
system (f, ) can be estimated in terms of the cover time of the induced system (F, ﬁ wly)-

Notation. We say z = O(y) if there exists C' > 0 such that || < Cly|. We will also allow the
constants C, ¢ > 0 to take different values throughout the paper: they will indicate that the bounds
are uniform in the context in which they are used.

Organisation. In §2[ we state the main theorems in the uniformly expanding case (Theorems
and and study the transfer operators which will be used to obtain estimates on the expected
hitting times in this setting. In §3] we obtain estimates on expected return times, which are then
used in §4] to obtain estimates on expected hitting times. In §5] we prove Theorems and [2.2]
by obtaining a dynamical generalisation of Matthews’ approach [M| to express the expected cover
time in terms of the expected hitting times. In §6] we state the main theorems in the non-uniformly
expanding case (Theorems and and use an inducing argument to prove it. In § [7| we give
applications of our results, both in the uniformly hyperbolic and non-uniformly hyperbolic cases.
This includes applications to Gibbs-Markov maps, the Gauss map and Manneville-Pomeau systems
as well as examples of slowly covering systems. We postpone the proofs of Propositions [2:3] and
to the appendix: these guarantee that for all ¢ sufficiently small, we can find a family of balls
of radius roughly 9§, each of whose expected hitting time can be studied by our transfer operator
approach.

2. SETUP AND RESULTS FOR THE EXPONENTIALLY MIXING CASE

In this section we introduce a class of maps and potentials which lead to the system being expo-
nentially mixing, and state the main results in this setting. Furthermore we introduce the transfer
operators which will be used to estimate hitting times. We establish the uniform spectral properties
for these operators which will be required to obtain uniform estimates on expected hitting times.
From here on, all of our dynamical systems will be interval maps, which we formalise next.

Let I C R be a bounded interval and Z = {Z; };cz be a finite or countable collection of subintervals
of I with disjoint interiors. Let f : J,,cz Zn — I be continuous and strictly monotonic on each Z,.
We denote f; := f|z,. We call an interval H C I on which f is not defined a holeﬂ, for example
when there is a gap between Z;s. Write D = I\ |, Z;. We denote

A= {xEI:fk(q:)E Uanorallk:>0}
nel
to be the repeller of f and study the dynamical system f : A — A. In our notation we may sometimes
suppress the fact that we are restricting the dynamics to A, for instance by writing f(U) for some U
which is not a subset of A (for example U may be an interval, while A may be a topological Cantor
set); this is implicitly understood as f(U) = f(ANU). In many cases we consider, I = J, .z Zn (in
particular there are no holes), in which case A = I. Let Z™ be the set n-cylinders, i.e., of maximal
intervals Z of I such that f*(Z) C Z;, for some Z;, € Z for k=0,...,n— 1.

2These initially refer to the holes present in the original dynamics, but later this idea will be also used when we
will investigate hitting times via an open dynamical systems perspective, where an extra hole is introduced.
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We now outline our basic assumptions on our map f and invariant measure .

2.1. Basic assumptions on f and pu. We assume there exists a nonatomic Borel probability
measure m such that m(D) = 0 and m is conforma]ﬁ with respect to a potential ¢ : A — R, i.e.
dm__ — ¢? We set ¢|p = —oo and write S,¢ = Yoo ' %o fi. Let

d(mof) —
Lp(x) = Y dly)e?” (2.1)

yeflx

for ¢ € LY(A,m), (we will actually consider £ acting on functions of bounded variation, see Sec-
tion . We assume ¢ satisfies the following regularity properties as in [BDT], Section 2|:

(al) 3Cy > 0 such that |eSr¢®)=50W) _ 1| < Cy|f™(x) — f™(y)| whenever fi(x), f'(y) lie in the
same element of Z for each i = 0, 1,...,n—1;

(a2) 3ng € N such that sup, e50? < ian\D 2”01;

(a3) For each z € A and § > 0 such that J = B(z, §) has the property that JND = 0, AN = N(J)
such that infy\p LN jnp > 0.

Note that implies supp(m) = A. By conformality of m, [£"ldm = [1dm = 1 so that
infy\p £"1 < 1 for all n € N. Hence by , sup, e%70? < 1. By this and conformality of m:

there exist C' > 0,w > 0 such that any n-cylinder has measure < Ce ™. (2.2)

Since supy eSr0? < 1 and since sup A eSn? is submultiplicative, we have that

Z sup 9 < oo, (2.3)
n=1 A
By the same reasoning
Iny € N such that (2n; + 5)(Cy + 1) supe™m? < 1. (2.4)
A

We will also assume that

(a4) Fcp, > 0 such that infzezn m(f™(2)) = cm.

Along with the cylinder structure, this implies that for all 1 < ¢ < nq,
inf “Z)) > inf "(Z)) = e 2.5
Jnf m(f1(2)) > inf m(f"(2)) > ¢ (2.5)
Bym supy e? < (1 + Cy)m(Z)/m(f(Z)) so applying ([2.5) with i = 1 yields
Z
Z supe (1+Cyq) Z M < (1+Cy)eyt < oo (2.6)

s ez (2] -

As described in [BDT) Section 2.1], under|(al)H(a4)| (which as shown above imply (F1)-(F4) in that
paper) we can apply [R, Theorem 1] to show that £ admits a unique invariant measure p which
is absolutely continuous with respect to m and whose density g is bounded away from 0 and of
bounded variation. Moreover the system is exponentially mixing. By this and by conformality of

m, (2.3]) implies

=1+ sup u(Z (2.7)
>

3From a thermodynamic formalism point of view, our assumptions imply that the pressure of ¢ is zero.
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It will sometimes be more convenient to work with the symbolic coding of f. Recall that the index
set Z labels the intervals of monotonicity {Z;};er for f. Let ¥ C ZN be the subshift given by the
set of sequences i = (i, i1,...) € Z"° for which there exists an 2 € A such that f"(z) € Z;, for all
n € Np. Define the projection I1: ¥ — I as

(i, i1, -++) = lim filo.-wofid (I),

i.e. II(i) = . Then f oIl =1l oo where o : ¥ — ¥ is the left shift map. We let ¥,, denote the set
of all words of length n in ¥ and ¥* denote the set of all finite words in X. Given w € ¥* we write
[w] := {i € ¥ :iln = w} where ijn = (ig,...,in—1) if i = (in)nen, (sometimes for brevity we will
write w = ig...i,—1). We write fi to be the measure on 3 such that p = IL.f.

We will require two additional assumptions on ji:

(ab) i is quasi-Bernoulli; i.e. there exists C, > 1 such that for all finite words i,j € ¥*,
Co (DA < al]) < Cup(f])Adl):;
(a6) f1 is ©-mizing, i.e.
£(U[Zo, .. s Tim1,Y0, - - s Yjm15 20, - - - Z0—1])
fi([wo, ... @ia]) i ([0, - 20-1])
where the union is taken over all words yg...y;—1 of length j such that
(Z0s -+ im1, Y0y - -+ > Yjm15 205 - - - » 20—1) € Digjte, and y(j) = 0 as j — oo.

— 1] < ()

2.2. Gibbs-Markov maps. In the case where f : A — A is Markov, i.e. for each Z € Z, f(2)
is a union of elements of Z, then the class of maps satisfying [(al){(a6)| is precisely the class of
Gibbs-Markov maps with the big images and pre-images (BIP) property. These maps and their
properties are discussed in more detail in [BDT, Section 2.6.2], but we give a brief account here.

We say that f satisfies the big images and pre-images (BIP) property if there exists a finite set
{Z;}jeq C Z such that VZ € Z, 3j,k € J such that f(Z;) O Z and f(Z) D Z;. We also assume
that |Df] > v7! > 1 on each Z € Z. We say that an invariant measure p (or ji) is Gibbs if
there exists a Lipschitz continuous potential ¢ (i.e., with some uniform Lipschitz constants such
that on each Z € Z, ¢ is Lipschitz) and constants K, P such that for all ig,...,i,—1 € %, and
ie [iOa s 7in71]7

ilio, - in-1))

eSno(I1(i))+nP

K< < K.

We say that (f,u) is Gibbs-Markov with BIP if f is Markov and satisfies BIP and p is Gibbs.
One can readily check that such maps satisfy [(al){(a6)l Indeed, as in [BDT) Section 2.6.2|, these
maps satisfy |(al){(a3)l Also |(a4)| follows from the big images property and Markov property; |(ab)]
follows because Gibbs measures fi are quasi-Bernoulli. Finally holds since Gibbs measures [i
are Y-mixing [Br].

On the other hand, suppose f is Markov and satisfies |(al){(a4). Then pu is necessarily a Gibbs
measure. Moreover by [S2|, f must satisfy BIP. In other words, the class of Markov maps satisfying
(a6)| coincides with the class of Gibbs-Markov map with BIP. We call f; = f|z, the branch of
fat Z; if f(Z;) = I then we say that f has a full branch on Z;. The simplest BIP examples are
when all branches of f are full.

2.3. Other assumptions on f and m. Before we state our main theorems, we will need to
introduce further assumptions on the system.
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Firstly, we assume that for some constant C,, < oo and s > 0,
m(U) < Cpdiam(U)*  for all intervals U C I. (2.8)

We will also require the derivatives of iterates of f to satisfy bounded distortion: there exists a
constant Cpq > 0 such that for all x,5 € A for which f%(z), fi(y) are in the same cylinder Z for
each 0 <7 <n—1 then ‘
LY@

Gt < () < O 29
f satisfies for example when f is uniformly expanding and has finitely many C'*® branches.
Similarly, when f is uniformly expanding, has infinitely many C'*® branches and there is a uniform
upper bound bound on the Holder constants associated to the first order derivative of each branch,

f also satisfies (2.9)).

Next, in order that f : I — I can be sufficiently well approximated by the symbolic representation
of the system, we require adjacent cylinders to be comparable. That is there is C' > 0 such that
given Z,Z' € Z" where Z,7' C Z,_1 € Z" ! which are adjacent, meaning that there is an interval
A C Z,_1 such that Z and Z’ are the only elements of Z™ intersecting A,

1 _ w2
—

C -z
Note that here we are assuming that given Z,_ 1 € Z"! each Z € Z" in Z,_; has an adjacent
Z' € Z™ in Z,_1, which implies that if domains of Z" accumulate in Z,_; € Z"~!, then this must
occur at the boundary of Z,,_1. Observe that it is sufficient to check this assumption for elements

of Z!, where I is the corresponding element of ZY.

<C. (2.10)

Finally, we will sometimes assume that m is Ahlfors regular: namely that there exists ¢ > 0 such
that for any = € A and r > 0,
sf
T« m(B(z,r)) < cr’/ (2.11)
where sy = dimyg A. This holds if m is Lebesgue, or more generally if m is conformal for a potential
—sflog |Df| and, for example, f is a finite branch Markov mapﬁ, in which case this is referred to
as the Hausdorff measure.

2.4. Results. We begin by stating our main theorem in the special case that m satisfies (2.11]), eg
if f is Markov and m is conformal for a potential —slog|Df|.

Theorem 2.1. Assume (f, ) satisfies (ab) and (2.8)—(2.11). There exist 0 < ¢ < C < o0
such that for all § > 0,

e < Eu(15) < Co°F log(1/6).
Moreover, if the system is Gibbs-Markov and f has at least 2 full branches then we also have the

sharp lower bound:
cd % log(1/6) < E,(15) < Co~°f log(1/6).

The assumption that f has at least 2 full branches allows us to find, for all § > 0 sufficiently small,
sufficiently many d-balls centred at a point in A which have measure close to M, () and are ‘far’
from each other in the sense that there is a good lower bound on the time in between consecutive
visits to these balls. This is enough to provide a sharp lower bound, however we expect that there
are weaker assumptions which would yield the same conclusion.

AT0 see this, approximate the measure m(B(z,r)) from above and below by the measure of appropriate cylinders
and apply conformality and |[(al)| (or alternatively using assumption ([2.9)).
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In the case where there is a sharp lower bound, one may wonder whether the limit
E(T,
lim ———————— (73)
6—0 0%/ log(1/9)
exists. In the probability theory literature on cover times of random walks, the existence of the
analogous limit has been established for some specific examples, such as for the expected cover time

of a disk by a random walk in Z? [DPRZ] and the expected cover time of the binary tree by a simple
random walk [AI3].

We also consider more general measures p which may not satisfy (2.11]). Suppose dimy p < co. For
each 6 > 0 we denote
_ log (M,(9)))

Err(60) := |dimp pe Tog 6

(2.12)

Clearly dimy; 1 < oo implies limg_,o Err(d) = 0. Therefore in the case that dimy; u < oo, one can
think of ¢~ dimm #£En(9) 49 heing upper and lower bounds on the measure of the ball of minimum
measure at scale 9.

Theorem 2.2. Assume (f, ) satisfies (a6) and (2.8)—(2.10). There exist 0 < ¢ < C' < oo and

€ > 0 such that such that for all § > 0,

c C
——— < E,(75) < ———= log(1/4). 2.13
MM((S/&“) H( 5) MI_L(S(D g( / ) ( )
In particular if dimy p < oo then
6~ dimy p+Err(§/¢) < EM(TZS) olm dimy; p—Err(ed) 10g(1/5) (214)

Note that € = 5% where ¢, T are given by (U)(a) below. We note that if the measure p is doubling
(for example, if f is a finite branch Markov map and p is Gibbs), then the dependence on & can
be removed from the estimates. For example in the denominators appearing in the bounds
could be replaced by M, (6) (the constants coming from the doubling property would be absorbed
in the constants ¢ and C'). The upper bound in is analogous to the upper bound in Theorem
The reason that Err(d) does not appear in Theorem is because for a general measure pu, the
measure of the ball of minimum measure at scale § may take some time to resemble the asymptotic

limit O(§9™M #) | whereas if ([2.11]) holds then this can already be seen at large scales ¢.

In order to obtain a sharper lower bound in Theorem [2.2] roughly speaking we would require an
estimate on the number of balls of measure O(§4™m #+ET(0/€)) geen at scale §. This is straightforward
in the case holds, since all balls of comparable diameter have comparable measure, which
ensures a sharp lower bound in Theorem 2.1} However we note that it is not always true that we
have exponentially many balls of measure O(§4mm ptErr(8/ E)) at scale 0 (meaning the system can
cover faster than log(1/d) times the reciprocal of the measure of the ball of minimum measure at
scale §) see for instance [JM|, Theorem 1.1(2)]. In the other hand, in §[7] we provide two examples of
slowly covering systems: systems for which dimy; 4 = oo and provide estimates on the asymptotic
growth of their expected cover times.

2.5. Uniformly large images for family of punctured maps. Suppose (f, ) satisfies |(al)|
in particular so that the constants ni from and ¢, from are well-defined. The main
result of this section is Lemma [2.5 where we show a uniform large images property for a family of
punctured maps, where each punctured map is obtained from (f, u) by introducing a ‘hole’ U in
the system. We say that the system (f, u) satisfies (U) if there exists dg > 0 such that for each
0 < § < §p we can find a finite collection Uy of closed subintervals of U C I which satisfy the
following assumptions:
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(U)(a) There exists 0 <t < 1 < T such that for all U € U(do) := Uys<s, ULU : U € Us}, there
exists z € A such that B(z,t5) CU C B(z,T9);

(U)(b) for any 0 < § < Jp the interiors of the intervals in Us are pairwise disjoint;

(U)(c) for each 0 < 6 < <~50, A CUpey, Us |

(U)(d) there exists 0 < B < cp, such that for all 1 <7 < nl, Z e Z"and U € U(dg) either Z C U

Unz
m,(n(z) ) < ("1+1)?1+Cd)2’ where ny comes from (2.4));

(U)(e) for any U € Us, UN A = I(U;ep,[i]) where Ps C E* is a finite or countable collection of
words i with the property that |i|] = O(log(1/d)) (where the implied constant is uniform
over all 0 < 9 < dy).

Under the additional assumptions and ., (f, ) satisfies [(U)l Note that the only place
where and ( . ) will be requlred is in the proofs of the following two propositions, which are
postponed to the appendix.

Proposition 2.3. Suppose (f, ) satisfies (2.8) and 2.9). Then (f, ) satisfies[(U)}

To obtain the sharp lower bound in Theorem (in the case (2.11]) holds) we will also require the
following proposition.

Proposition 2.4. Suppose (f, 1) is Gibbs-Markov with at least two full branches, and satisfies (2.8))
and (2.9). There exists 6o > 0 such that for each 0 < § < dg we can find a finite collection

Vs € {II([wab™]) : w € {a,b}"}

of pairwise disjoint subsets of A where:

(a) a,b € X1, a # b are such that f, and fy are full branched and ng € N is chosen such that
Cp([ab™ ) K < 1,

(b) for all0 < i< ng and U,V € Vs, f{(U)NV = ;

(c) there exists c,e > 0 such that #Vs > cd™¢;

(d) there exists T >t > 0 such that for all U € V5, there exists x € A such that B(z,t6) N A C
U C B(x,T9);

(e) there exists 0 < B < ¢, such that for all1 <i < ny, Z € Z* and U € U(dy) either ZNA C U

mg{g)z) < (mH)?HCd)Q, where ny comes from (2.4));

(f) for any U = I([wab™]) € Vs, |w| = O(log(1/d)) (where the implied constant is uniform
over all 0 < 6 < dp);
(g) iof H([wiab™)), I([weab"]) € Vs are distinct, then wiab™ is not a subword of waab™.

Proposition [2.4] essentially states that for sufficiently small 6 we can find sufficiently many balls of
diameter roughly ¢ and measure roughly M, (d) (this is (c) and (d)), which are dynamically far
from each other (namely there is a uniform lower bound on the time taken in between visits of any
orbit to any two balls in Vs - this is (b)). Proposition [2.4| will only be used in the proof of the lower
bound in Theorem 211

The proof of Theorems and will require us to study a family of punctured dynamical systems
which have a hole at some U € U(dp). Namely, given U € U(dy) we define the (punctured) map with
a hole at U by fU = fla\v- Then its iterates are given by fU = flgn-1 where Unt = =iy FUA\U)

(so that U% = A\ U). We will require that the transfer operators associated to these holes have a
uniform spectral gap, and this will follow from |(U)(d)| via the following lemma.
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Lemma 2.5. Assume f and p satisfy|(al) (2.8) and (2.9). Then there exists co > 0 such that
for allU € U(dy),

inf inf{m(fMJ):Jc 2" st. JNU™ £ () >
pent, o {m(fi+J) s #0} > co

where ny comes from (2.4)).

Proof. Throughout the proof we’ll assume A = I, the more general case follows similarly after taking
intersections with A. Fix Z € 2™ Z = U([ig,...,in,—1]) and U € U(dy) such that Z N U™ # ().
We want to show there exists ¢o which is independent of U € U(dp) such that m(f;;' (Z)) = co.

For each 0 < j < ny either f~7(U)NZ =0 or UNTL([ij,...,in,]) # O and f7(U)NZ = f* [(un

0.
II([éj, ... 9n,—1])), where fz‘;.l..z‘j_l = igl o-- fl;_ll corresponds to the inverse branch of f? which
maps I homeomorphically to II([ig...7;—1]) (in particular if j = 0 we define i;‘l_'ij_l = Id). Note

that this means that we cannot have II([i; . ..in,—1]) C U as this would imply that f~(U)NZ = Z

o

which is a contradiction since we’'ve assumed Z N U™ # ().

Hence
m(f~9(U)N 2) . m(U NI ([i...3n,-1])) supy €%
m(Z) S m([M(iy . in—1]))  infzeSi?
m(UﬁH([zjzm,l])) < B
m(H([ij e im—l])) (n1 + 1)(1 + Cd)
where the first inequality follows by conformality, the second by and the third by Proposition
and [(U)(d)l Thus
m(Z\U™) m(ZnUjL, f7(U))
m(Z) m(Z)

In particular

< (1+Cy)

N
(n1+ 1)1+ Cy) 1+Cy

<(n+1) (2.15)

m(Z \ U™) sup,, e5m ®

m 81(2)) =m(f"(Z2)) —m(f"(Z\ [ojnl)) > m(f™(2)) — m(Z)  infyeSm?

m(Z\U™) 5
> "(Z) - ————(1 2 Cm —
where we have used conformality in the first inequality, [(al)|in the second inequality and (2.15)) in
the third inequality. The proof follows by setting ¢ := ¢, — 8. g

2.6. Transfer operators for closed system. We will study the action of the operator £ on the
Banach space B of functions 1 : A — R with bounded variation norm |[|-|| = ||-|[1 + | - |y, where
|-l1 denotes the L' norm with respect to m and | - |gy := | - | gv,; where for any interval J C I,

k-1
|Y|By,s := sup {Z [Y(@ip1) — ()] + o <@ <--- <xp, 2 €JNA, Vi < k}
=0

where the supremum is taken over all finite sets {z;}; C J N A.

Under [(al)H(a4)| we have the following.
Lemma 2.6. Assuming foralln >0,

(a) D zeczn e < oo;
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(b) for each Z € Z, |¢|pv,z < Cqsupy e?;
(C) |65”¢|BV < 0.

Proof. (a) follows by induction on (2.6)). (b) follows from (al) since |e?(*i+1) — e®(#)| < Cye®®) for
any {x;}¥_, C Z. For n = 0, (c) follows from (b) and ([2.6). Setting ¢|p = —oco only adds a term
bounded by the series in (2.6 to the variation. For n > 1 the claim follows by induction. O

Using Lemma and , the operator £™ satisfies the assumptions of |[R, Theorem 1], thus
L™ is quasi-compact on B. By [R, Theorem 3| and L™ has a simple eigenvalue at 1 and
no other eigenvalues of modulus 1, in other words £™ has spectral gap. By Lemma [2.6] since
L is a bounded operator on B, it also has a spectral gap. We let g € B denote the normalised
([ gdm = 1) eigenfunction of £ associated to the leading eigenvalue 1. ¢ is bounded away from 0.
Write dy = gdm.

2.7. Transfer operators for open systems. Here we use spectral properties of appropriate trans-
fer operators which will later give us information on hitting time statistics. This type of approach
has been used previously, for example in [D], [KL2] and [BDT], but we have to make some ad-
aptations, principally to Proposition below in order to get uniform estimates for our setting.
Lemma and Corollary are then essentially standard, but we include the short proofs for
completeness.

Definition 2.7 (Transfer operators for open systems). For any hole U let Ly - B — B denote the
transfer operator with a hole at U, given by

Lo@):= > v@e’™ = L{1nyy).

F—1
yer T

Note that the iterates of £y are given by

B = Y w()eS W = L (P1g,). (2.16)
yefya
By conformality of m,
/Z}}@ﬁdm = /£"(¢10n1)dm = [  tdm. (2.17)
Un—l

By (U) we have the following set of uniform Lasota-Yorke inequalities for the family of operators
{Lu Y veues,)-

Proposition 2.8. There ezist Cy > 0 and 0 < o < 1 such that for any ¢ € B, U € U(dy) and
n >0,

€3¢l < Coo”ligll + Ca | Iipldm.

The above is also true when EOU 1s replaced by L and Un1 s replaced by A.

Proof. Throughout the proof we’ll assume A = I, the proof in the more general case is similar. We
begin by noting that our holes U are closed, meaning that each U™ is relatively open in I, which is
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in contrast to much of the literature where the hole is taken to be open and U™ is closed. For each

J € Z" there is a unique choice of disjoint intervals {(z1,x2),..., (2, —1,2k,)} such that
ky/2
JN Unf1 = U (.’L’Qi_l,xgi).
i=1

In particular note that x; is the left hand end point of J and zj, is the right hand end point of J.
Given 9 € B,

1Ly < D [0e? gy + (a1)eS ) 4 () eSOk,
Jezn

Note that for all z € {z1,..., 2z, },

(z)eS @ < ——— [Yle*Cdm + |peS? v,y

JﬂU” 1 /Jﬁﬁn—l)

yielding
o k; g
LY By < (kg + D|ve*?| gy + ———— / |5 Pdm. (2.18)
= TG i
Next, note that
e |y, < sup Pl gy + sup || pv,.s
< supYCysup e”? 4+ supe n¢’¢’BV,J (2.19)
J J J

Cy
< su e nd Cy+1)+ o/ dm
Jp <|¢|BVJ( d ) m(J N Un—l) Jnim—1 ¥l

where in the second line we have used Lemma (b) and in the last line we have bounded sup ;¢ <
et oo [ldm + [l sy,

Combining with (2.18)) we obtain

L3l By
1
< Z (kg +1)sup 65n¢‘1/}|BV,J(Cd +1) + (ks + 1) sup e®"®Cy + kJ)/ ) i]e 3 dm.
= J J m(J NU"1Y) Jyngn—1
(2.20)
By conformality and , forallz € JN (O]”_l,
n rn—1
eSuo) T OU)) o (2.21)

m(J N Um=1)
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Also, note that k;y < 2n + 4, since J N Un~1 contains at most n + 1 holes corresponding to
U,...,f7™(U). Combining these with (2.20)) we obtain

L2l 5y < (2n+5) sup e (Cy + 1) 9| sy

1
+ ((2n + 5) sup €5"?Cy + 2n + 4)(1 + Cy) - / [Yldm
JEZZ" I m(fr(JnUrt) Jingn-
(2.22)
1
< (20 + 5)sup e*(Cy + )| | gy + ((2n + 5) sup e**?Cy + 2n + 4)(1 + Cd)c— / [¢|dm
I I 0 Jon—1
(2.23)
where we have used Lemma in the final line.
Applying (2.23) with n = n; we see that for & = (2n; + 5) sup; e51%(Cy 4 1)| < 1 we have
o 1
1L sy < alglpy + (201 + 5)sup e¥1°Cy + 21 + 4)(1 + Cd)cﬁ |¢b]dm.
1 0 Juri—1
We can then iterate this to complete the proof with a = &/, O

By Proposition the compactness of the unit ball of B in L!(m) and the conformality of m that
the spectral radius of Lu acting on B is at most 1 and its essential spectral radius is bounded by
a < 1, for each U € U(dp) and the same is true for £. Thus £ and each Z',U are quasi-compact as
operators on B. Define the following perturbative norm for operators P, () acting on B:

1P = Qllf := sup{|Pe — Qpl1 : [[oll <1}.
Lemma 2.9. For any U C I,
i€ = Lull < m(U) < Ciu(U)
where C; = 1/ essinf g.

Proof. If ¢ € B with ||¢|| <1 then

12 = Luyelin = [ 10p0)dm < suplelm(v) < m(©)
by conformality. The fact that essinf g > 0 follows from [(a3)] O

Corollary 2.10. There ezists 6, € (0,00) such that for all U € U(8,), Ly and L have uniform
spectral gap. In particular, £ and Ly admits the following spectral decomposition

L=T1+R
Ly = \lly + Ry

where

(a) Ay is the leading eigenvalue of EOU for the normalised ([ gudm = 1) eigenfunction gy, i.e.
£DUgU = Augu (analogously the leading eigenvalue of L is 1, with normalised eigenfunction
9);

(b) H)U is the projection onto the eigenspace spanned by gy (analogously Il is the projection onto
the eigenspace spanned by g), moreover £’&mU = Aymy for the eigenmeasure my;;

(¢) for a < B1 < By < 1 we have \y > B2 and the spectral radius o(Ry) < B1 (also o(R) < f1);

(d) H?] =1IIy and Iy Ry = Rylly = 0 (analogously 112 = 11 and IR = RII = 0).
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Moreover, there exist constants K1, Ko, K3, K4 > 0 and n € (0,1) such that for all U € U(61),

My = Ij| < Kym(U)" (2.24)
IRy || < Koy (2.25)

11— v| < Ksu(U) (2.26)
lgull < K4 (2.27)

Proof. As already discussed in the previous section, £ has a spectral gap by |[R]. Using Proposition
and Lemmaand IKL1l Corollary 1] there exists 6; € (0, ) such that the family {ZU}Ueu(al)
has a uniform spectral gap and the stated eigendecomposition including properties (a)-(d) (note that
although [KLI] studies just one sequence of perturbed operators, we can obtain analogues of the
bounds in [KL1], Corollary 1| (and thus the uniform spectral gap) over our whole family of operators
{EOU}Ueu((;l) due to the uniformity of the constants in Proposition . follows from [KL1,
Corollary 1(1)], follows from [KLI Corollary 2(2)] and (2.27) follows from [KL1, Corollary
1(2)| (again the constants are uniform due to the uniformity of the constants in Proposition

To see ([2.26]) note that

I1—A\y| = ‘/gUdm—)\U/gUdm‘ = '/EgUdm—/EoUgUdm‘

_ \ - imgydm] < sup llgulllle = Loll < CLEap(0)
Ueu(s))

where the last inequality follows by Lemma and (2.27)). O

3. RETURN TIME ESTIMATES

We will estimate the expected hitting times to U € U; in terms of the top eigenvalue A\y. In order
to then obtain Theorem [2.1| we will need to estimate Ay in terms of the measure of U (which will be
done in Proposition . To this end, we will first require the following estimates on return times
to U, which is the main focus of this section (note that the following proposition, and in particular
in the lemma following it, is the only place we use (2.10)). We denote py = ﬁ plo.

Proposition 3.1. Assume (f,u) satisfies (a6) and (2.8)—(2.11). Then there exist ¢ > 0 and
92 € (0,01) such that for allU € U(d2) and n > 1/u(U),

uu(Tr = n) = Ay
We will require the following lemma, which allows us to approximate intervals by a pair of well-

understood sets of cylinders. Let d(Z) be the depth of a cylinder Z. Note that given a cylinder
[0, ..., xk], for £ < k, its C-prefix is (xo, ..., z).

Lemma 3.2. Assume (2.10)).

(1) IfUr cU CUp and n € N then

ljffjljo))#Uo(TUo < n) > IUU(TU < n) = ,U(U)
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(2) There exists k > 0 with the following property. For an interval U, there are depths dr,,dg
such that there are U C UNA C Up with p(Ur) = (1 — k)pu(U) and p(Uop) < (1 + k)p(U).
Moreover, Ur and U are each the I1 image of (at most) a union of (dr,+1)-cylinders {Ut };
and (dgr +1)-cylinders {Uk}; where all the {U}}; have the same dr-prefix and all the {U%};
have the same dg-prefic.

Proof. For the first part,

w(Ur)

plzelU:my(x)<n) > ——p(r el y,(r) <n)= 0

1
w(U)

pu(to <n) = pu, (Tu, < n),

b
n(U)
and similarly for the upper bound.

For the second part, for an interval U, let Uy, and Ug be the deepest cylinders such that II(Uy) and
II(Ug) are adjacent to each other, II(UL) to the left, so that U N A C II(UL U Ug).

Claim. There exists B € (0,1) such that for {Ut}; the depth d(UL) + 1 cylinders contained in
U NIITYU) and {Uk}; the depth d(Ug) + 1 cylinders contained in Ug N1171(U),

LCORCRE

Moreover adding in Ut C Up, and Uk, C Ug, the depth d(U) + 1 and depth d(Ug) + 1 cylinders
respectively so that II-1(U) C Uf UURU (UZ Ui) U (Ul U}é),

M(U{uU,gu (UUL> U (UUR>) < “(BU).

Proof of Claim. This claim follows from the cylinder structure. It is sufficient to show that

p (U£U (U, 1D))
(U 07))
is uniformly bounded above (the case for the right-hand cylinder follows similarly). First note that

U, Ui # () since otherwise Uy, is not the deepest cylinder we could have chosen. Then since U f
must be adjacent to some Ui, the bound follows directly from ([2.10)). ]

O

Proof of Proposition[3.1l The problems here are when there are multiple overlaps, so the worst case
is when the symbolic model is the full shift, so we will assume this here. Moreover we will assume
that A = I: the adaptation to the general case goes through by intersecting intervals with A.

We first show what happens for the non-conditional measure case.
Claim. There exist constants 0 < c¢(U,n) <1 < C(U,n) < oo with the property that
c(U,n)\; < pw(ty =2 n) < C(U,n)\G

where c¢(U,n),C(U,n) = 1 as w(U) — 0 and n — oo.
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Proof.
> ) = [V - am = [ L) am = ([ 1ute) + 3" R tg)am
— < / cqu + AU"Rg(g)dm> _ (c A" / Rg(g)dm>
for the constant ¢ = [ gdmy, by definition of II;;. Then
e=11=| [ e dm— [ g am| =| [T0(g) don — [ 109) dm| < Ks0Plgl < s K"
by (2.24) and (2.27). Since also from (2.25),

[ Rt am| < 1R < Kol < Ko,

we obtain "
u(ru = n) 2 Ay <1 - K1 Kyu(U)" — K2 Ky <g1> > ;
2
completing the proof of the lower bound, and the upper bound is similar. O

The idea is to ‘add buffers’ of length m so that we lose some of the power coming from Ay, but gain
better distortion estimates using -mixing [(a6 )|

Single cylinder case

We start by assuming II71(U) is a cylinder, and generalise later on. To simplify notation, we switch
to using the symbolic measure i and assume U itself is a cylinder.

Given m € N and assuming n > 2k + 2m, we write

au (T = n) = fy (g = (zo,21,...) €U : [ug,...,up_1] ¢ U?;02[9:i+1, . ,l‘z‘_;,_k])
=pu (z €U :|ug,...,up—1] ¢ U?:_13+m[$i+1, )
— i (z €U : [ug,- .., up—1] € U Han, o, i)
& [ugy ... up—1] ¢ U?:_k2+m[$i+1, e ,:L‘H_k]).

We refer to these terms as (I) and (I7)

For (I), using ¢-mixing (a6 )|
v (z €U : [ug, ... up—1] ¢ U?:_k2+m[xi+1, o Tigk])

1 . e
= m# (& €U :[ug,...,up1] ¢ Ui:k%rm[l‘wl, S ani—&-k:])

> (1—~(m))a (g €Y [ug,...,up_1] ¢ U?:_Ok_m_Q[xiH, e ,$i+k]> ~ )\Z_k_m_z,
where the final step follows from the claim since
p <g € X [ug,...,up—1] ¢ U?:_Ok_m_Q[le,...,ka]) =pzeX:mx)2n—k—m-—2).
Then for (1) we look at the larger value

AU (& €U [ug, ..., up—1] € U Mwign, o, wigk] & [uo, .- 1] € Ulgr omnl@is1, - 7xi+k]> :

There are three conditions here: being in U as well as the two conditions on the cylinders. By
P-mixing these are almost independent. The problematic part here, the short returns, is dealt
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with by the following claim. We note that the arguments here are similar to those in [AL], but here
we have more general systems (our measures need not be Bernoulli) and ultimately have to deal
with more than one cylinder.

Claim. There is § < 1 independent of U such that

U (@ e U : [ug,...,up—1] € {[xit1,.- xz+k]}k+m 1) < 0.

Proof of Claim. We first estimate

~ k—1 0
pu (& e U :[ug,...,up-1] € {[zit1,. .. 7xi+k]}i=0> <0,
so we are interested in estimates of the form

. .
MU([u07u17"‘7ui7u07"‘7uk—1]) - m,u([u07 7uk—1] ﬂ [u07u17"‘7ui7u07"‘7uk—1]) .

We can deal with this case by case: if the intersection here is non-empty and 7 = 0 then u; = ug
for all 1 < j < k and then

1 ~
0" ( Ao (U0 Ukt UZ;—1]>
1-—

ﬂU ([UOaUOa “e. ,Uk_l]) — ﬁU ([uﬂa ce. 7uk‘—17uk—1]) =1-

1 1
<1 it (Vs lh]) = 1= (1= ) < 1

by [(a5)} Crucially here we do not have to consider any further overlaps, since in this case they are
accounted for by the first one.

Similarly, if the relevant intersection is non-empty for ¢ = 1 with ug % u; but ug = ue, then in fact
u; = u; if and only if ¢ = j mod 2. So

fu ([uo, w1, o, - .., ug—1]) = i ([wo, - - -, Uk—1, Uk—2, Up—1])
1 / /
=1- /2 ILL (U(uk o Up_ 1)¢(uk—2,uk_1)[u07 sy U—1,Ug_9, uk;_l])
1 .
6 ( (Uf_g:Uf_q) Uk—27uk—1)[u§€—27u;c—1]) =1- a (1 —H ([uk—2’uk—1])) <L

(Again, we only have to consider one overlap here.)

We can proceed in the same way to deal with all possible periods up to length L%J within U since
if there is a non-empty overlap of [ug, ..., up_1] N [ug, u1, ..., u;, ug, ..., up_1], but not for smaller
i, then this argument says that the jth coordinate of U determines the (i + j + 1)st coordinate
of U for any i. But this uniquely determines all possible overlaps if ¢ < L%J, and indeed all
subsequent overlaps are accounted for by the first one. On the other hand, if there an overlap for
some i > L%J, but not before this, there may also be multiple overlaps for subsequent ¢ > ¢
which are not already accounted for at time . However, in this case we can use the quasi-Bernoulli

property [(ab)| to give
5 <SU eU: [’LLO, .. ,uk._l] € {[SL‘Z'_H, R ’xz""k]}f:kalJ)
)

< G (ﬂ[u0’7u|_k2;1J] +oe +[NL{U0,...,U]€_2]> < 1_ e«

Since for k large, this estimate is very small, we see that the the worst estimate is essentially for
the first case we dealt with here, from which we would derive our new 6 < 1.
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However, we also need to deal with the cases

LU (& eU: [UQ, ... ,uk_l] S {[a:iH, ... ,CCH_k]}f;r]:iill) .
But since these cases consist of estimates of the form
i (Ue,... by yez(tio, - - s uk—1,b0, ..., be—1,u0, ..., up—1]) < CLi(U)

for 0 < ¢ < m — 1, which sum to Cum(U). So for U small, this doesn’t affect 7] very much, so we
abuse notation and keep this the same. O

Putting together the estimates for (I7) we obtain )\Z_Q_Qk_Qm(l +7(m))?0. Here we have used that

(@ € X [U(), ... ,uk_l] ¢ U?:_22k+2m[$i+17 e $z+k])
is just a preimage of the set {x € ¥ : 7y(x) > n — 2 — 2k — 2m}. Therefore the overall asymptotic
estimate is

X272 (R (1= () — (14 7(m))2)

Since Af;272K72m > \n it is sufficient to prove ()\ZLJ“k(l —(m)) — (1 —}—’y(m))Qé) > 0. This
follows since we can fix some large enough m so that v(m) is sufficiently small, and then use (2.26))
which, since also fi(U) < Ce™* implies Ay > 1 — K3i(U), so XZ}HC — 1las u(U) —0.

Approximating intervals by cylinders

Now in the case that U is not a cylinder, but II(U) is an interval, Lemma implies that it is
enough to prove for certain unions of cylinders. We will simplify the situation by just looking at a
union of two cylinders, but notice that since the lemma tells us that we only have two families of
cylinders, of depths dy + 1 and dg + 1 respectively, where the dp-th (or dp-th) prefix is the same
for all members of the family, the proofs will go through for these unions too.

Suppose that U and V' are cylinders of depth ky and ky respectively, so U = [uo, ..., uk,—1] and
V = [vo,...,Uk,—1]. Assume ky > ky. To make similar estimates to the single cylinder case, we
will replace k with ky in (1) and (I7). The estimate for (I) follows as in the single cylinder case,
so we focus on (IT). To estimate the short returns we will be dealing with estimates of the form

(1) Houv ([Uo,...,Ui,UO,...,UkU 1]) for i < -1
(ii) poov ([wo, .-, ui,vo, . ., Vg, —1]) for i < kU —1;
(ili) pouv ([vo, ..., v, ug, ... Uk, —1)) for i < ky —1;
(iv) poov ([vo, ..., visv0,. .., Uk, —1]) for i < ky —1;
(V) Huuv (UbPGA['UO, - 7?)1@‘,—1,170, .. .,b]_l,uO, .. .,ukU_l]) and ky <1< ky — 1,
(vi) puuv (Upealvo, .-, vy -1, b0, . -, bj—1,v0, ..., vk, —1]) and ky <i < ky — 1.

As in the single cylinder case, for ¢ small we have to make careful estimates, but for 7 large a rough
estimate suffices (in particular, the idea for dealing with ¢ around k + m — 1 is the same as in the

single cylinder case, so we will not deal with that here). Indeed the estimates (v) and (vi) the

estimates are < CC*;“(%T‘S‘(/&?M, which is very small, and sum nicely. Estimates for (i) and (iv)

follow as in the simple cylinder case. It remains to consider (ii) and (iii).

As in the single cylinder case, the naive estimate takes over for ¢ large, so let us assume:
. _ kv _ku
1< o < o (3~1)
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We give some details for Case (iii). The first ¢ with non-empty overlap is [v, . .., vi, ug, . . ., U, —1] C
UUV with i < ky — 1.

e First assume [vg, ..., v, U, ..., Uk,—1) C V.
Then wg = vi41,U1 = Vig2, .., Uj = Vigjpl, -« Uky—i—2 = Vky—1-

Now suppose [vo, ..., Vi, Vit1, U0, - - -, Ugy—1] # 0. Then if this set is in V' then uy =
Vi+2 = U1 = VUj4ly-..,Uj = Vit245 = Uj+1 = Vitj+1 for ] < min{kU — 1,kv -2 — ’L'},
ie., viy1 = -+ = viyjy1 = up. Hence any relevant non-empty intersection will already be
contained in [vg, ..., v, uo, . .., u;] for j = min{ky — 1,ky —2 —i} > ’%’ —

If instead we consider ) # [vo,...,v;, Vit1, U0, ..., Uk, —1] C U then this also forces
Ujpit1 = Uj = Ujqiq1 for j < ky —i— 2, ie, ugp = uy = -+ = ug,—;—2. Hence any
relevant non-empty intersection will be contained in [vo, ..., v;, ug, . . . , Uy —i—2].

We can proceed as before to cover intersections [vo, ..., Vs, Vig1, -+, Vigjs U0, - - -, Uk —1]
fori+j < ]%V: we can always cover all the resulting intersections with [vg, ..., v, ug, . . ., ug]
for £ > Ry

e Now, instead, start by assuming [vo, . .., v;, U, - . ., Uk, —1] C U, thenug = wiq1, ..., up,—i—2 =
Uy —1-

If also 0 # [vo,..., v, Vig1, U0, .., uk,—1] C U then as above all further relevant non-
empty intersections will already be contained in [v, ..., v;, ug, . . ., U, —i—3]

If instead we assume 0 # [vg, ..., Vi, Vit1, U0, - - -, Uky—1] C V then we can deduce that

Uitj = Vg for 0 < j < ky — 1 — i (we already had u; = v; for 0 < j < ky — 1). This again
puts us in the single cylinder case for the first ’%" — 1 intersections.

Again we can proceed as before to cover all other intersections
[Uo,. ey Vi Uil e v oy Vigjy UQ,y - - - ,ukal] for i+ j < kTV

Case (ii) follows similarly. O

4. HITTING TIMES ESTIMATES

In this section, we obtain the following estimates on the expected hitting times.

Theorem 4.1. Assume (f,pn) satisfies (2.8) and (2.9), so that by Proposition we
can choose U(93) which satisfies (U). There exist 0 < ¢ < C < oo, 03 € (0,03) such that for all

U € U(53),
u(U)

< E(ry) < ,u(CU)

In order to obtain uniform estimates on E(7y) we write E(7y) = >, -1 p(7y = n) and observe that

u(ty =n) = /ﬂ{m>n} -gdm = /Ez(g) dm

and so it will be sufficient to obtain uniform estimates on [ 5?] (g) dm.

Lemma 4.2. There exist constants 0 < ¢ < C' < oo and 0 < §5 < 01 such that for all U € U(53)
and n € N,

eAr < /E?J(g) dm < CAp.
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Proof. By Corollary for all U € U(6y).

[ L@ = ([Tt 3Ry @am ) =35 [ g -+ 45" Ry g)am)
=3 (e + 2" [ Rpla)im )

where we have used that [ gydm = 1. By -,
[ Retayim| < IRy )] < Kl
By (2.24),
u—ww{/H@Mm—/nmmm4<mmwwwy

Now, we can choose N € N so that Ka||g|(81/62)" < 1. Now choose 05 < &; such that M :=
supy ey (sy) Kallgm(U)" <1 - Ks||gl|(B1/B2)N. Then for all n € N and U € U(53),

/%@MKMW+M+%%WWMD
<N (14 M+ Kag]).

Moreover, since essinf g = C% > 0 and |gy|eo < K4, one has g > ﬁgU so that for any n > 0,

. 1 1 ° 1
L (g)dm = dm > dm = —— | Lgudm = —=\}.

O

Therefore, to complete the proof of Theorem we require estimates on Ay. This is provided by
the following result.

Proposition 4.3. There exist constants 0 < ¢ < C' < oo and 63 € (0,02) such that for allU € U(d3),
cu(U) <1 =Xy < Op().

Proof. The upper bound follows from For the lower bound we adapt some arguments from
IKL2|. In [KL2| and [BDT] the limit hmgﬁo (()}Uf is computed for (5., Us = {z}. We require

R N . .
something less precise (only a lower bound on the ratio TUfsUSS)’ but it needs to be uniform over
U € U(d3) for some 3 > 0.

We begin by verifying that uniform versions of (A1)-(A6) from [KL2| hold over our family of
operators {Lu }ueus,)- (Al)-(A2) is precisely the spectral decomposition from Corollary m
(A3) requires that
S 175
>y 100
n—o UEU(61)
which holds by ([2.25) - (A4) requires that J gudm = 1, which we have, and that

sup ||gull < oo
Ueld(d1)

which follows from (2.27). (A5) requires that supy ey 7o — 0 where

< 00

Ny = sup
l1=1

/(ﬁw - fyw)dm’ , (4.1)
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which holds by Lemma [2.9| since ny < m(U). Finally (A6) requires that

(£ = Lo)(9)ll < C'u(U)
for some constant C” which doesn’t depend on U € U(d;). Since

1L = Lu)(9)ll = I1£2ug)ll < Ll Togll < II£]g]
we indeed have
null(£ = Lo)(@)ll < mO)|[L]l[lg]l < C1lI L]l g]lw(U)

as desired.

The above implies that [KL2, Lemma 6.1] holds for a uniform constant C. In particular, defining

for each n € N
¢ E — 1, 4.2
? <52 (4.2)

k=n
there exists C' > 0 such that for all U € U(d7),

(a) |||1R: {gde| < Cm(U) where my is given by Corollary m(a),
(b) 75,;9 < Crn((£ = Lu)(@l + 1 = Aul)-

Following the proof of Theorem 2.1 in [KL2] now yields that for any n € N,

-y (1 - i A5ka,U> + K
uw(U) (14 0(u)1+nO(ny))

(4.3)

where k!, = O(k,) and

gy = MUE=LO)LH(L = Lo)g) _ plEp)
’ m((L = Ly)g) w(U)

for
Ef ={zcU: fiz)¢U i=1,... k f*Yz)eU},
see [BDT].

Recall that by k], = O(ky) we mean that for some constant C” > 0 which is independent of n (and
U), |kl] < C"|kn|. Let C be any constant such that

|| < C(B1/B2)"
for all n € N. Choose 8} € (0, d2] such that
,: b
’ 52 infUEZ/{(ﬁ’Q) )‘U

which is possible by ([2.26]), and such that infyey(sy) Au = Ba. Let ¢ be given by Proposition

Let N be sufficiently large that Cp’¥ < ¢B2. We claim that there exists ¢ > 0 and 0 < &) < d2 such
that for all U € U(0%) with Ny :=1/u(U) > N,

<1,

Ny—1

B w(Ef)
! kZ:O n(U)

+ Ky, = ¢ (4.4)
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To see this note that the left hand side of (4.4]) equals

Ny—1 k
U(EU) / N(xGU:TU(x)gNU) / /
1-— + Ky =1-— +ky. =1—pylty < Ny)+ kK
g wuy () o ( )+

= pu (0 = Ny +1) + Kly,, -
By Proposition m pu(ty = Ny +1) > c)\gUJrl therefore
pu(ty = Ny +1) + HQVU = C)\][yU—"_1 + K?VU = )\gU (chy — C (ﬁl/ﬁg)\U)NU).
All of this implies that for all U € U(d}),

Ny—1

1- Z arU + Ky, = AJJU(CBQ —CpMv) >0,
k=0

proving (4.4). Finally, we choose 0 < d3 < 05 sufficiently small that the denominator in (4.3),

inf (1+0 1+ NyO >0
Uelg(é?))( + O(nu))(1+ NyO(nu))

(possible since ny < 1/m(U) and noting that it is clearly uniformly bounded above too) and such

that the numerator
Ny—1
inf [1- AP + Ky >0
Uel(ss) ( IR qk’U> Nu

k=0
which is possible by (4.4) and (2.26)). By (4.3]) this completes the proof of the proposition. O

Proof of Theorem[{.1] Since
B(r) = St 2w =Y [ £(g) dm

n>1 n>1

it follows from Lemma [4.2| that for all » € (0, d2] and U € U(d3),

c C
<E <
oy SE ST
for some uniform constants 0 < ¢ < C. Take 05 = min{d3, d3} where d3 is given by Proposition
The proof now follows from Proposition [4.3] O

5. EXPECTED COVER TIME: UNIFORMLY HYPERBOLIC CASE

In this section we prove Theorems [2.1] and 2:2] This will be done by generalising the ‘Matthews
method’ for Markov chains (see [M] or [LP, Chapter 11]) which will establish a relationship between
the expected cover time and the expected hitting times, at which point we can apply our estimates
from §4 Recall from §2] that there exists a subshift o : ¥ — ¥ and a projection II : ¥ — I such
that f oIl = Il o o. Further recall that there exists a quasi-Bernoulli measure fi on ¥ such that
It = p. In this section we will primarily work with symbolic versions of cover and hitting times,
which we describe below.

Let P be a finite set of subsets of ¥ where (a) for each P € P, there exists a finite or countable set
of words P* C X* such that P = J;cp.[i], and (b) for distinct P,Q € P, PN Q = @.ﬂ Note that
P is not necessarily a partition of ¥ since there is no requirement that |Jp.p P = X. We will call
P a subpartition of X if it satisfies (a) and (b). For i € ¥ we let 7p(i) denote the first time n that

Note that here we only require disjointness as subsets of 3, rather than disjointness of their II-projections to R.
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{i,o(i),...,0"(i)} has visited every element in P. For P € P we let 7p : ¥ — No U {00} be defined
as

7p(i) = inf{n > 0:0"(i) € P}
i.e. the first n > 0 such that o™ (i) begins with a word in P*.

Remark 5.1. Since 7p may take the value 0, strictly speaking Tp is not a hitting time in the same
sense as (1.4]). Let us briefly write 7p(i) = inf{n > 1:0"(i) € P}. Then

{iex:7p(i)=n}=c1({ie L :7p(i) =n—1}),

implying in particular that E;(tp) = Eu(7p). Hence, slightly abusing notation, we will still refer
to Tp as the hitting time throughout this section. The fact that the expectations coincide along with
the fact that ll,p = p, oo = f oll and non-uniquely coded points have zero measure, we have

Eu(mp) = Eu(m(p))-

We need to set up some notation and obtain some preliminary results. Let P = {Py,..., Py} be a
subpartition of ¥ and given a permutation s of {1,..., N} and 2 < k < N, let A;; C X be the set

of points which visit Pyy) for the first time after Py,..., Pyx—1) have all been visited. That is,

denoting 7, = 7p, .\ (k) and T ((lk) Y {0 be the first time n € No that Py, .., Pyx—1) have all been

visited by {i,o(i),...,0"(i)}, we have
. s(k—1) /.
Ts(ky (1) > Ts((l) )(1)
forie As,k~
Let P be the uniform measure on the set of all permutations s € Sy of {1,..., N}.

Lemma 5.2. Let P be a subpartition of ¥ and Ay and P be as above. Then

[t = (5.1)

Proof. Fix 2 < k < N. For each s € Sy consider the unordered set {s(1),...,s(k)}. Note that
—1)-(N—(k

there are Y&V (N —1) bossible values. For each possible value {i1,...,ix} C {1,..., N} that
this set can take, let Sn({i1,...,ix}) denote the set of all s for which {s(1),...,s(k)} = {i1,...,ix},
thinking of these as unordered sets.

Next, we can further separate each Sy ({i1,...,ix}) into k subsets S%({il,...,ik}), (1 <5<
k), which determines the set of all s € Sn({i1,...,i}) for which s(k) = i;. Note that each

Sy ({i1, ..., ir}) contains (N —k)!(k—1)! permutations, corresponding to (N —k)! ways to order the
last N —k terms and and (k—1)! ways to arrange the first k—1 terms. Over each s € S ({21, ceey ik},

the set Agj is constant. If for each 1 < j < k we choose a representative s; € % N ({in, - ik))
then since the sets in P are pairwise disjoint, it follows that {ASJ.,;C}J:1 are pairwise disjoint and

U?:l AS]‘,k‘ — Z
Hence for any choice of {iy,... it} C {1,..., N},

k
N k)
/ gap=3" & A ), (5.2)
Sy ({i1,

i) =
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where the factor N' comes from the fact that P is uniformly distributed. Now, since U 1 Asj =2
and {Aq, i}k j—1 are pairwise disjoint we have
k—1
ﬂ(ASk,k) =1- ﬂ(ASj,k)
j=1
and substituting this into we obtain
N k)! (k— 1IN -k, 2
/sm{n, g sk IE = Z Aldogi) + N (1 = )
(k: — DN = Ek)!
N! ’
Therefore, ' '
/SN i(Aqp)dP = N(N —-1) k(!N (k-1)) . (k 1)]\([]'V k)! _ %
O

We are now ready to prove Theorems [2.1] - Il and 2.2] Note that the upper bound in Theorem [2.7] is
just a special case of the upper bounds in Theorem [2 - 2.2 (by using and that g = du/dm is
strictly positive on A), hence it suffices to prove the upper bound in Theorem

Proof of upper bound in Theorem[2.4 For each § > 0 consider the set of closed intervals Us given
by (U). Recall that for any U € Us, there exists x € A such that B(z,t5) C U C B(z,T9) for some
uniform constants ¢ and T'. Let Ps be the subpartition

Ps = {int(II"1(V)) : U € Us} (5.3)

where int is taking the interior inside . This ensures Pjy is a subpartition (by ensuring a set in Ps
cannot contain any isolated points in the cylinder sets topology and guarantees pairwise disjointness
of sets in Py).

By|(U)(a)land|(U)(c)} if {i, o (i), ..., 0™ (i)} has visited each element in Ps /o7 then {z, f(z),..., f"(2)}
is 0-dense, hence

EM(T5) < Eﬂ(T'st/zT)' (5.4)
Now, fix § and fix P = Psjar. Let L = maxjep [i], so that L = O(log(1/d)) by We order
P ={P1,..., Py} and let P be the uniform measure on the set of permutations Sy. We have

/ rpdii = / / Tj((g djidP = / / Ts(l)dudIP’+Z / / stk) ’“ ”dudP
_ / / dud]P’+Z / / S(f) Ydudp. (5.5)

Fix s € Sy. Let A7, denote the set of all finite words i = ig ..., € X* for which (a) for all 1 < j <
k —1, i contains at least one word from P;;), and we let 0 < n; < n — L denote the index at which
the first word from P;;) begins (so that i, is the first digit of this word) (b) for £ < max;¢j<r—1 7y,
i does not contain any word from Py, beglnnmg at i¢ and (c) |i| = L + max<jcir—1 ;. Note that
Agp = UieA: k[l] For i € A7, let Bj ) denote the set of all finite words j € ¥* for which ij € X~
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and j ends in the first occurrence of a word from Py). Given j € Bj sy let jou) € Py denote the
word that j ends in. Also, let B, j denote the set of all finite words j € X* which end in the first
occurrence of a word from Pyy. Then

(k—1
[ —rban < S AN+ L~ i)
As ke €A} | J€Bi sk

Then by the quasi-Bernoulli property we have

SN EEDUI+L = D) < G D> > AEDAGD U+ L = s

16A*,k JEBi s,k 1€A*’k JEB; sk

< CufilAsk) Y AN+ L = s

jEBs,k
< CiAsi) (Bi(Tsry + 2L)).

To see the final inequality, we use that |7/ ’( Ts(k)| < L where, denotlng T (k)( i) to be the first time
n € N that i|, ends in a word from Py, S(k)( i) denotes the time n’ < n that this word from Py
begins. Putting back into (5.5 and using L = O(log(1/0)) we get

N
/Tpdg < C(log(1/6) + max Ey(7m)) (1 + Z/ﬂ(As,k)dP>
SR k=2

= log(1/0 E 1+1/2+---+1/N
 (108(1/5) + s Euruisy) ) (141/2+ -+ 1)
by Lemma and Remark [5.1] m Note that N < C/¢. Using this, we obtain that

E.(r5) < C <Ug1u%5{2T 0 log (1/6) + (10g(1/5))2>

L C
¢ <minx€A 1(B(x, 15/2T)) log (1/6) + (log(l/é))2> < M, (/2T) log (1/0)

where in the first inequality we have used (5.4), Theorem and the fact that p is non-atomic, and
in the second we have used [(U)(a)l In the specific setting that (2.11]) holds, similarly

g (1/0) + Qog(1/0))?) < 5 1og (1/0)

E, () <C max
(1) <U€”t6/2T w(U)

where again we have used |(U)(a)| to conclude that maxyey, Jor ﬁ < maxgep m and
(2.11)) for the second inequality. O

Now we prove the lower bounds in Theorems [2.I] and 2.2l The lower bound in the first displayed
equation in Theorem is a special case of the lower bound in Theorem Therefore, we will
first prove the lower bound from Theorem and then proceed to prove the lower bound from the
second displayed equation in Theorem

Proof of lower bounds in Theorem and[2.3. We begin by proving the lower bound from Theorem
Define P; as in (5.3). Note that if {z, f(z),..., f"(2)} is 6-dense then it necessarily visits every
ball centred at a point in A of radius greater than or equal to 0 hence {i,o(i),...,0"(i)} has visited
each element in Pys/, by [(U)(a) and |(U)(b), Hence

Eu(7s) = En(7pys,)-
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Moreover, for each P € Posy,

c
Ei(7pys,,) 2 Ba(rp) = Eu(mie)) 2 ——5n
B\TPys /1 i p\TTI(P) w(IL(P))
where we have used Remarkto justify the equality of expectations. Since some U = I1(P) € Uy
must belong to the ball of minimum measure at scale 279/t we have
c c
mingep w(B(z, 276 /1)) M, (2T5/t)

proving the lower bound from Theorem

EM(T5) =

Next, we prove the lower bound which appears in the second displayed equation in Theorem [2:1]
In particular, we are now additionally assuming holds, f is Markov and f has at least 2 full
branches, moreover Proposition is applicable. Since f is Markov, it is useful to keep in mind
that for i,j € X* the legality of concatenations ij will be equivalent to the legality of concatenating
the last digit of i with the first digit of j. For each § sufficiently small consider the set Vs given by
Proposition [2.4] Define

Qs = {[wab™] : I([wab™]) € Vs} C {[wab™] : w € {a,b}"}

noting that Qj is a subpartition since sets in Vs are pairwise disjoint. Note that if {z, f(z),..., f"(x)}
is d-dense then it necebbarily visits every ball centred at a point in A of radius greater than or equal
to 0 hence by (U)(a)| and |(U)(c)| {i, o(i),...,0™(i)} has visited each element in Qys/,. Hence

EM(Tg) = Eﬂ(TQQ(s/t)' (5.6)

Now, fix § and fix Q@ = Qy5/,. Write Q@ = {[i1],...,[im]} and let P be the uniform measure on the
set of permutations Sys. Let As, C X be the set of points which visit [iy)] for the first time after
lisc)], - - -5 [is(k—1)] have all been visited. For brevity we write 7,y = 73 ) and 7 ((k) D to be the

first time that [i51)], ..., [is(k—1)] have all been visited. Then as in ({.5)

/ngu //TS(I)d,udIF’—f—Z// Ts(k) —T )dudP (5.7)

Fix s € Syr. Let A} ;. denote the set of all finite words i € X* for which (a) i contains every word

in {is s(k— 1)} ( ) i does not contain the word i) and (c) for some 1 <i <k — 1, i ends in
the ﬁrst occurrence of the word i,(;). In particular, A, = ;e 4+ k[l] by Proposition (g)

Let Bj ;1 denote the set of all finite words j € ¥* for which ij ends in the first occurrence of the word
is(k)- Note that since i ends with a digit in {a,b} and the system is Markov, necessarily ij € ¥*.
Then by the (lower) quasi-Bernoulli property |(a6)

/A Tawy = 7oy i =Y S A (i |+ 13— )
s,k

iEA; kjEBi s,k

> 1/C Y Y aDalE) (ise| + 15l = lisw)
IGA*kJEBlbk

> (Ask)/C [nf > wED) (i) + 3l = [is))- (5.8)

SkJGBlsk

Note that

B (o) = 3 = (fig | + 13— o)) < G S A (il + i = s, (5.9)

jeB; H([ls(z)]) =y

i,s,k Je i,s,k
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where we are using FEj;

i,;) to denote the expectation (with respect to ji) conditioned to [is(;)].

Let L = maxjeg |i|, noting that L = O(log(1/4)) by Proposition [2.4]f). Consider the function

Wy(kyn () := inf{m > n: 0™ (x) € [igp)]}-

Denote wy) s(i) = Ws(k),Ji, ;|- Observe that on [is(i)]s
L
Wi(k),s(i) S Ts(k) T Z 1{Ts(k):‘is(i)H_é_‘is(k)|}(ws(k)7|is(i)‘+é +4),
(=1
therefore
L
B, o, (Wsr,s() < Biy (To) + D Biy (L gy =l oy [+l ([} (W (), iy |2+ £))- (5.10)
/=1

Let Cy(i),s(k),c C ¢ be the set of words k such that iy;)k ends with the first occurence of the word

is(k) (note that necessarily iz;)k € X* since i) € {a,b}*) and let Cy;) o UZ 1 S(Z (k)0 Let
D1y denote the set of words j such that j ends with the first occurrence of the word i) Define

Pyiysty = (K] and Pyysme= Y, (k)

keCss),s(k) ke (), s(k) e

Note that for any choice of permutation s, Py sx) < Ckfi[ab™]K. To see this, write iyy) =
Ui ... upab™, thus

ot < Aa™] 4 filunab™] 4 ifur - nab™) < Cuilab™s K

In particular r := CEPS(i),s(k) < 1 by Proposition (a).

( S(’L k.] . .
]Eis(i) (1{Ts(k):|is(i)|+f—|is(k)\}(ws(k),lis(i)|+f + £)> = Z Z (i (€ +1jl — |ls(k)|)
k€Cs(i),5(k),e S€Ds (k)

N ﬂ([isz‘j]) .
<ci Y k) Y ﬁ(um—\ls(k)\)
keCyi),s(k),e JED(1) s(?)
< C2 Py (k) 6B ) (Ws iy s(i) + L)-

So by (5.10)
3 3
Ei ) (Tatk) 2 Bay ) (Wsh) s()) (1 = CXPoiy,s(k)) = C Pt (i) L (5.11)

Moreover

=

i)
Biyo (Ws(.50) = D is(@))])(“' — lisqey))

jEDs(k)

*

1
Z |J’ - ’15(k |) aEﬁ(Ts(k’))' (5'12)
€Dy
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So by (5.9), (5.11)) and (5.12)),

ey q 1
> Al i + 13l = lisw) = o Bi (7o)

JEBi sk
1
> EEiS(i) (Ws(r),s5(0)) (1 = CLPyiy s(y) — C2 Py sy L
1 3 9 1—r
> Gl (1= CoPut ) = CiPai.am b 2~z Balra) = L

Finally, substituting this into (5.8|) and applying (5.7)),

E, (1) > (1_7" min Eﬂ(fm)—rL> (1+1/24 -+ 1/M)

C2 1<m<M
1 c
>c¢ min ——log(1/§) = —log(1/d
i s loe(1/6) = 5 10g(1/6)

where in the first line we have used (5.6)) and Lemma and in the second we have used Remark
the fact that L = O(log(1/d)), Proposition ¢) to bound M > ¢d~¢ as well as Theorem 4.1
(2.11)), Proposition 2.4[d) and the fact that |g|e = |dp/dm|ee < 0o on A.

O
6. EXPECTED COVER TIME: NON-UNIFORMLY HYPERBOLIC CASE
In this section we consider some cases where the system f : I — I does not satisfy our standard

assumptions |(al){(a6)}(2.8)-(2.10). By considering a first return map (to a subset of I) which
satisfies|(al)H(a6)} (2.8])-(2.10), we will be able to recover results on the expected cover time for the

original system.

Let f : I — I with a conformal measure m and invariant probability measure p which is absolutely
continuous with respect to m. Given an interval Y C I with u(Y) > 0 we define F = fV : Y - Y
be the first return map to Y and define uy = ﬁu!y. We let Y = {Y;}; be the intervals on which
Ty is constant, write 7; = 7y|y;, and assume F' :Y; — Y is monotone: correspondingly, let }" be
the set of n-cylinders.

For x € Y let R,(x) = Z?:_Ol 7y o F'(z) denote the nth return time of z to Y. By Kac theorem,
for puy almost every x € Y,

Rn(w) 1« k n—+00
= 23y (Fra) 22 = 1/u(Y).
n n £ Ty (F ) y Ty djy /u(Y)

Let Z™ denote the set of n-cylinders for f, which are defined just as in §2 We will require the
following property: there exists N; € N such that

Ny
(a) | f"(¥) =Y and (b) 2™ is finite in V. (6.1)
n=0

We note that (6.1))(b) implies that sup; <, <x, sup,ey |(f™)'(x)] < oco.
As in §2| we begin by stating our result in the special case that (2.11]) holds.
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Theorem 6.1. Let f,m, u be as above, in particular we assume (2.11). Suppose there exists Y C I
such that f satisfies (6.1). Moreover assume that the first return map F 1Y — Y equipped with

the measure py satisfies (ab), (2.8)-(2.11), with partition Y replacing Z there. Additionally
assume that py (ty > n) = O(n=7) for some v > 2. There exist 0 < ¢ < C < o0 such that for all

0 >0,
co % < E,u(15) < Co*F log(1/6).
Moreover, if F' has at least 2 full branches, we have a sharp lower bound

e log(1/6) < E,(15) < Co~°f log(1/6).

Next we state our result for general measures.

Theorem 6.2. Let f,m, pu be as above. Suppose there exists Y C I such that f satisfies (6.1]).
Moreover assume that the first return map F :Y — 'Y equipped with the measure py satisfies

1}1' Additionally, assume that py (v > n) = O(n™7) for some v > 2. There exist

0 <c<C < oo such that for all § > 0,
c C
<Ry () < o log(1/6).
My(s) =" M,.(9)
In particular if dimy p < oo then there exists € > 0 such that
5~ dimyg p+Err(6/¢) < EM(T(;) <C6™ dimy; p—Err(ed) log(l/é)

We denote
7 (x) :=inf{n>1 : {x, f(x),..., f"(x)} is 6-dense in Y} (6.2)

and
Ts(z) :==inf{n > 1 : {z, F(z),...,F"(x)} is d-dense in Y'}. (6.3)

Fix € > 0 and consider the sets of large deviations
Ay =Ayc:={zeY In>u, |Ry(z)/n—1/puY)| > e}
Lemma 6.3. Under|(a6), py (v >n) = O(n~7) implies Y oo py (Ay) < 0.

Proof. By |G1l Theorem 2.2], see also [G2, Theorem 4|, ¢-mixing and py (7y > n) = O(n~7) implies
u(Ay) = O(n') .

Using Lemma we will show that under the assumption that uy (ry > n) = O(n™7) for some
v > 2, it follows that [E,(75) is proportional to E,, (75), and the proof of Theorems [6.1] and [6.2] will
follow by applying Theorem [2.1] to F'.

The following lemma allows us to estimate 75 from above in terms of Tg/ , whose expectation can be
more easily related to E(7s).

Lemma 6.4. There ezists k > 0 such that for all sufficiently small 6 > 0 and all z € Y, 75(x) <
Y
Trs(x).

Proof. By (6.1))(b) there exists C' < oo such that sup;<, <y, supcy |(fV) (z)| < C and we set

k= 1/(2CNi(Ny + 1)). Let P be a partition of Y into sets of length at most m and at

least with the property that each set in P is contained inside a single element of Z1.

)
20N (N1 +1)

Denote
A:={f"J) : JeP, 1<n< Ny, ff(J)N(I\Y) # 0}
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and note that for each f"(J) € A, diam(f"(J)) < Cdiam(J) = J\h# < g. Moreover, by
definition of Ny,

Jv=1\v (6.4)
UecA
Fixz e Y andlet k = ( ). Note that since each set J € P has diameter at least WMH) = K0,
this implies that each set in P is visited by the orbit segment {z, f(z),..., f*(z)}. Let J C

{1,...,k} be the set of indices i for which fi(xr) € Y. For each i € J let J; € P denote the
partition element that f’(x) belongs to. Note that each f(J) € A must be visited by the orbit
segment {x,..., f¥(z)} except possibly the following sets:

B:={fi(J;) :i€J, 1<j<Nist.i+tij>k}

(This is because any set in B might only be visited after time k). There are at most 1+24...+ Ny =
N1(N7+1)/2 distinct sets in B. By continuity of f¥* on ZM, each set in B is necessarily an interval
of length at most 6/N1(Ny +1). Therefore, the largest interval contained in | ;.5 J' has length at
most 0/2. In particular by {z,..., f*(z)} must be 6 dense in T\ Y. O

We are almost ready to estimate E,, (75) in terms of E,, (75). We will require the following simple
but useful lemma.

Lemma 6.5. Suppose xz € AS,. Then

Y u u
75 () > ——= = Ts(z) >

o )=y T W >

and
u u
Ts(z) > ——— =78 (z) > .

W= = T W
Proof. Note that for any z € Y, Ry;(;)(2) = ¥ ().
From our definitions

@@ _m@ _ 1
T5(x) Ts(z) — p(Y)
where |s| < e since x € AS. Therefore if 7 (2) > 207 then
¥ (2) u/p(Y) u
Ts(z) = ) > —
O =) s V) e 1+ en(?)
which proves the first part. On the other hand if 75(z) > 7) then
T5(x) u u
Y
75 () = +sTs(x) > ————(1/uw(Y) —¢e) =

which proves the second part. ]

The following proposition allows us to estimate E,, (75) in terms of E,,, (7s).

Proposition 6.6. Assume that Y .- | py (Ay) < co. There exist constants ¢ < 1 < C such that for
all § >0,

By (T5) < Epy (15) < CBpy (Trs)-
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Proof. Since py is supported on Y, by Lemma [6.4]
EMY (Tg/) < E,UY (7—5) < E,uy (7—;3;)

so it is enough to obtain lower and upper bounds on E,, (7¥) in terms of E,, (75). To this end

By (73) Z py(t5 =n)= Z (/j,y(Tg/ ZnANAL vy + py (1) =nA Aw(y))

neN nGN
Z ny < > Z M nu(Y
= 1 + EM
1
_Z (M; >n> +Z“(Anu(Y))
neN neN
Ts(l+e¢
= EMY <M> + Z /~LY n,u(Y
'u neN
 T4ep(Y)
- M(Y) EHY (7:5> + % Ky (An,u(Y))

where to get the inequality we have used Lemma Note that since ) -y ty (Appuvy) < 00, it is
just a constant which is independent of 9, therefore we have the upper bound.

Similarly for the lower bound,

Euy (75) Z py (15 ZnANAL ) 2 Z Ky (

neN neN

S

nu(Y)
3 —sum)

75(1 —w(Y))) (1 —eu(Y))
=K v = E v Ts
o (P uy ) et
where again we have used Lemma ]

Proposition [6.6 will allow us to obtain a lower bound on E,(75) since E,,(75) = pu(Y)E,, (75). Next
we will obtain an upper bound on E,(75) in terms of E, (7¥).

For this we will view the system as a tower (A, fa,ua) built over (Y, F = f™ uy), recalling we
denote the domains of F' by Y = {Y;}; and 7y |y, = 7;. We will borrow the language of Young Towers,
but we do not assume any structure other than that assumed in Theorems [6.1] and [6.2], for example
we do not assume the return map to the base is Markov. We call the base which corresponds to
Y, Ag, and we'll use notation A;; for domains in A, where A; g C Ag, corresponding to Y;; and
JA(Aip) = A, for j <7 —1and fi(Aip) C Ag (corresponding to F(Y;) C Y). Points in A, ; are
denoted (z,j) for x € Y. Then f{" on Ay corresponds to F on Y. We let 7 : A — I be the natural
projection m(z, j) = f7(x). Note that since F is a first return map, 7|a, : Ag — Y is bijective. We
define pia to be the measure pa(A; ;) = pa(Aip) = p(Y;). Then mopa = pand fom =mo fa. Let
Ay, = HAlA, - we will similarly restrict pa to A;; to get pa, - We will also consider the symbolic
coding for F' as in in this setup ¥ can be taken to be the set of all i = (ig, 41 ...) such that for
some x € Y, x € Ay, 0, F(z) € A0 and so on. Moreover, in this case II(i) = . Let fiy be the
measure on Y such that Il iy = py, which by our assumptions is quasi-Bernoulli. The relationship
between fiy and pa, is the following: pa, = p(Y)IL iy .

We can also extend the cover time function to Ag in the natural way:

AO(ac j) :=inf{n € N: {n(x,j),...,7(fA(x,j))} is 0 dense in Ag},
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where the metric on Ag is the one induced from Y. Since fonm = mo fa and by definition of ua,
we have E, (7)) = EMA(Tﬁ;O).

Proposition 6.7. Suppose F' and py , with partition Y, satisfy|(al)i(a4 ), |(a6), ( and ( and
that py (ty > n) = O(n~7) where v > 2. Then for some e >0, and C >0

Eu(15) < CEpy (75)-

Proof. By Lemma [6.4) we have
Eu(7s) < Bu(ris) = Bup (750)-
For any z € A;p,
7o (2,4)) < 70 (F(2),0) + 7 = ji
Hence
Epa,, (75) < Buayy (T 0 F 47— 5).

Summing over the column (i.e. summing over j) we obtain

Ti—1 Ti—1
Z E“Am‘ < 30) ST ‘EH’Ai,O (7_’%0 ° F> + IU’A(AZ}O) Z(Tz - ])
j=0 =0

Now summing over ¢ we obtain

Ti—1

ZZE“A” Tios Zn nay, 00F)+R (6.5)

where R := >, ua(Aip) Zj”:_o Jj = >, nuy(Ty > n) < oo since we have assumed py (1y > n) =
O(n™7) for some v > 2.

Now, let Ps be defined as in (5.3)) for the system F' : Y — Y (which is possible by our assumptions
on F' and py). Put P = P,s/r. By definition of ua

4,07

Epa, (T3 © F) = p(YV)Epuy iy (T © F) < p(YV)Egiy iy (rp 0 F) = n(Y) Y ji (8] (Z ”’“)
k

JEP

< Cop(Y) iy (1)) D~ fiv (3] (ZTM) = Cuing (i 0)Ezy (Tp)

C,
gc*qu(Ai,O)E#Y(Ttié/ST) H(y)“AO(A )EﬂAo(tig/ST)

where the first inequality follows by (5.4), the second inequality by the quasi-Bernoulli property
(ab)| of py and the final inequality follows by ((5.6)).

Now putting back into (6.5 and using that >, 7ua,(Ai ) = 1 we obtain

Cx
Eu(1s) < Eua( ;ﬁso) < ,U(Y) ZT“LAO (ALO)E“AO (Ttﬁg/?’T) tR

C* A
= MENAO (Tw})m:r) + K = CGE,y (Ttié/iiT) + R

which completes the proof. O
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Proof of Theorems[6.1] and[6.3 By our assumption, there exists Y C I such that the first return
map F : Y — Y equipped with the induced measure uy satisfies the assumptions of Theorem [2.1]

Since Lemma [6.3| implies > o2 ; py (Ay) < o0,
Eu(15) 2 p(Y)Epy (75) = cp(Y)Epy (75)

where in the second inequality we have used Proposition Now, in the setting for general pu
(ie proof of Theorem the lower bound is obtained by applying Theorem to deduce that
E., (T5) > (575 In the setting where (2.11]) holds (ie. proof of Theorem observe that (2.11))

holds on Y, thus we can again apply T heorem . to deduce that E,, (75) > ¢d~°f log(1/0).

For the upper bound we have
Eu(75) < CEuy (13 ) < CEpy (75) < CEpiy (Trs)

where in the first inequality we have used Proposition [6.7] in the third we have used Proposition
. In the case for general u (ie. proof of Theorem [6.2) we obtain the upper bound by applying
Theorem to get E,y (Tis) < (mé Iog(l /9). In the setting where (2.11)) holds we can again

apply Theorem 2.1 to deduce that E,, (7,s) < C6~*log(1/6). O

7. EXAMPLES

7.1. Full branched interval maps with acip. Let f be a full branched map of an interval I (i.e.
A = I) and assume each of the branches f|z is C'+EP, such that there is a uniform bound on the

Lipschitz constants of the derivatives. Assume |[Df| > ~v~! > 1 on each Z € Z and \|Z'|| is uniformly

bounded for adjacent intervals Z, Z' € Z. The potential ¢ = —log|D f| gives rise to an acip u for

1.

Since f is full-branched, it is Markov and satisfies BIP. The potential ¢ is Lipschitz with uniform

Lipschitz constants, hence satisfies (2.9). Moreover u is necessarily Gibbs for the potential ¢ =

—log | D f], so by the discussion in §2.2[the eystem (f, n) satisfies|(al){(a6)} In this case the conformal
2.10)

measure m is Lebesgue measure, hence (| is satisfied for s = 1. For (2.10)), this follows from the
uniform bounds on the density and the bound on % In particular Theorem |2.1| applies.
We note that if there is @ > 0 such that each of the branches f|z is C1*® with uniform a-Hélder
constants and uniformly expanding, then Theorem is also applicable to this system, by making
some small adjustments to the proof, similar to what is described in the following section.

7.2. Gauss map. The Gauss map f : (0,1] — (0, 1] is defined by f(z) = % mod 1, so defining
our partition Z as {Z,}n = {( %ﬂ’ 1)}, f is continuously differentiable on each element of Z. We
set ¢ = —log |Df| and m be Lebesgue measure on (0,1]. Then we have an invariant density is

g(x) = 1022 115 defining an acip p: call ((0,1], f, ¢, 1) the Gauss system.

(al)| fails for this system, however as in [BDT| Section 2.6.3] the potential satisfies the following
weaker Hoélder distortion control on the cylinder sets and the system can be shown to satisfy our
theory as below.

Lemma 7.1. There exists Cq > 0 such that |eSn@@)=Snd(Y) _ 1| < Cy| fa — fry|'/? whenever fi(x)
and f"(y) lie in the same element of Z for each i =0,...,n — 1.

Proof. See |[BDT, Lemma 2.9|. O
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We'll show that Lemma [7.1] suffices to prove Proposition 2.3 and Proposition [2.8] so that Theorem
2.1 holds for the Gauss system.

First we verify that the remainder of our assumptions hold for the Gauss system. For |[(a2)| notice
that |e?|o < 1 while [e%2?|,, < 1 thus |e%"?|,, converges to 0 exponentially fast in n, while £"1
converges to g which is bounded away from 0 on [0, 1]. |(a3)| holds since f is full branched and the

potential satisfies Lemma (a4)| holds since f is full branched. |(ab)| and hold since p is
Gibbs. (2.8) and (2.11)) hold for s = sy = 1 since m is Lebesgue measure. (2.9) follows from Lemma

(2.10) holds since 1 < £ fig;)l) < 8 for all n > 2. Instead of (2.4) we choose n; such that

2D supy eSn1®|¢| gy < 1 (the reason for this will be made clear later).

We note that Proposition [2.3[still holds for the Gauss system since the only time|(al)|is used in the
proof is in (A.1)), where (2.9) can be used instead, to obtain the same conclusion.

We also verify that Lemma [2.6 holds: (a) holds by induction on (£2.6)), (b) holds with Cy = 1 since
e? is monotonic on each Z € Z so |¢|pv.z < supy e and (c) holds by induction on (b), using (a).

Finally, we are ready to demonstrate that the uniform Lasota-Yorke inequalities hold in Pro-

position (al)| is used in two places in the proof: in (2.19) and (2.21). (2.19) holds with
Cyq =1 by Lemma [2.6(b). (2.21)) holds using (2.9). Hence the contracting term in (2.23) becomes

2"2+ 5 supy eSn1® |¢| By, which is the same expression, just with Cy = 1, hence since n; was chosen

such that % supy eS”1¢]<Z>| By < 1, the proof of Proposition is complete. Hence we have shown
that Theorem [2.1] holds for the Gauss system.

7.3. Manneville-Pomeau maps. For a € (0,1), we will study the class of Manneville-Pomeau
maps defined by

z(1+2%%) ifxel0,1/2),

f_fa:$'_>{2$_1 1f$€[1/271]

(This is the simpler form given by Liverani, Saussol and Vaienti, often referred to as LSV maps.)
We let Z = {[0,1/2),[1/2,1]}. These maps all have an acip u = 1o, which is an equilibrium state
for the potential ¢ = —log D f. Our first returns will be taken to the set Y = [1/2,1]. The induced
system (Y, F = f™) is a full-branched Gibbs-Markov map with respect to the induced potential
—log DF: letting Y; denote the interval on which 7y = i, F|y. = f|y, is a diffeomorphism. This
full-branched property implies holds: in fact since f([3/4,1]) =Y, it holds with Ny = 1. We
write Y = {Y;};. Adjacent intervals, Y; and Y;_; can be shown (see for example [S1, Corollary
1

1]) to have % ~ (ﬁ) Q—H, SO holds. Moreover, the conformal measure is Lebesgue,
SO holds with sy = 1, and the induced system is 1)-mixing, which we used in the proof of
Proposition (though in fact we only require ¢-mixing, which is a weaker condition). Thus to
apply Theorem [6.1} it is sufficient that p(ry > n) = O(n™7) for some v > 2. It is well known that
for fa, pu(ry > n) = O(n=1/®) (again, see for example [SI, Corollary 1]), so our results apply to the
case a € (0,1/2).

Remark 7.2. Hitting Time statistics results hold for all o € (0,1) at all points, see [FETV], so it
1 a natural question to ask if the results here should also hold in that generality. However, in this
setting we are required to take expectations, which means summing over more quantities, so it is not
clear if the restriction to (0,1/2), which is used twice in our argument, is an artefact of our proof
method or is intrinsic for this problem. It may be relevant to note that the range o € (0,1/2) is the
range of parameters for which the Central Limit Theorem holds: for o € (1/2,1) it fails (this is also
seen in the i.i.d. case with observables outside L?).
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7.4. Systems with slow covering. In previous related studies of the cover time [JM) BJK],
the leading term for the expected cover time E,(75) always obeyed a power law in 1/§, that is,

dimy e < oo and E,(75) =~ (1/ §)HmME - However, our setup presents natural examples of systems
in which average orbits become dense in the state space at a much slower rate. In these examples
dimy; 4 = 00, therefore the formula for the expected cover time can no longer be expressed as a
power law in 1/4.

Example 7.3. Let f:[0,1] — [0, 1] be the Manneville-Pomeau map

fla) = fi(z) = z(1 4 2%z9), x €[0,1/2)
fa(z) =22 — 1, x € [1/2,1]

although this time we equip it with the measure p which is given as the pushforward of the (1/2,1/2)
Bernoulli measure on {1,2}" through the coding map II : {1,2} — [0, 1],

(ig...in—1...) = lim fi'o- o fi ! ([0,1)).

n—o0

Another way of viewing this is that u is the measure of maximal entropy, the equilibrium state for
the constant potential — log 2.

Exactly as in §7.3, we write Z = {[0,1/2),[1/2,1]} and we can take a first return map F' to
Y = [1/2,1] with domains Y = {Y;};. The induced potential now is ¢(z) = —7y (z) log 2, we see that
this system satisfies the conditions in Section . Moreover, since we can compute uy (Y;) = 1/2¢
(note that the conformal measure and the invariant measure coincide here), clearly holds
with C' = 2 and holds since the diameters of Y; are polynomial in k£, while the u-measures are
exponential. Theorem therefore applies.

Then for each n € N, p(II([1"])) = 1/2" whereas diam(II([1"])) ~ %(an)_l/o‘. In particular
M, (6) < (21/9%)71/(22%) g0 by Theorem E,(75) > (21/9%)1/(@2%) The key point here is that it
is very difficult for this system to cover a neighbourhood of 0, which drives the expected cover time
up.

Example 7.4. Let ag = 0 and for k > 1, let a, = Z?:l ﬁ where ¢ = %2. Thenlet f:[0,1) — [0,1)
be the map

f(z) = ck*(x — ap_1) for = € [ag_1,ar) == Zy

equipped with the measure p which is the equilibrium state (and conformal measure) for the po-
tential ¢|z, = —klog2, for which the conditions in Section hold. Moreover, for Z = {Z;},
(2.10) holds with C' = 2 and ({2.8]) holds since the diameters of Zj are polynomial in k, while the

p-measures are exponential.
This is a Gibbs-Markov system so Theorem applies. Then for each k € N, u(Zy) = 2% whereas
diam(Zy) = # In particular for § = #, M,(0) < ﬁ so by Theorem E,(15) = 2V /.

In this example, it is very difficult for the system to cover a neighbourhood of 1, which drives the
expected cover time up.

APPENDIX A. PROOF OF PROPOSITIONS 2.3] AND 2.4]

In this section we prove Propositions 2.3 and 2.4] and we begin with the former. We start with the
simpler case where A = I. Following this, we will describe how the proof can be adapted to hold
for more general A.
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A.1. Proof of Proposition for interval maps. The proof in the case that f has finitely
many branches is trivial, therefore we focus our attention on the case where f has infinitely many
branches.

Throughout the proof, given an interval J we’ll denote its diameter by |J|. The rough idea is the
following. For each small » we will partition I into intervals of diameter roughly r in an iterative
way. If a union of neighbouring 1-cylinders can be taken of the correct length then this union forms
a ball in Us. For all 1-cylinders which are too large, we split it into 2-cylinders and consider unions
of these which have both the correct diameter and whose diameter comprises a small proportion
of the diameter of the 1-cylinder. On the other hand, for all 2-cylinders which are too large we
iterate the process by splitting them into 3-cylinders. This is continued until we reach n;-cylinders,
at which point any nj-cylinder which is too large is split into arbitrary intervals (not necessarily
unions of (n; + 1)-cylinders) which have the correct diameter and whose diameter comprises a small
proportion of the ni-cylinder.

For any interval J let ¢(J) and r(J) denote the left and right end points of J respectively. Beginning
from ¢(I) we can uniquely choose a (possibly infinite) union of 1-cylinders U, eq, J1 which forms an
interval such that £(Uy,eq,J1) = (1), |Useay J1| = 0/2 and such that for any subcollection o) C oy
for which Uy, ¢4y J1 is an interval starting at £(1), we have [Uj cqr J1| < 3/2. If [Ujea, J1| < 36/2
then we add Uy eq,J1 to Uy. Otherwise, there exists J; € a; such that r(J7) = r(Ujeca,J1) and
| Useay J1| — |J5] < 0/2, in particular [Jf| > 6. In this case we add Uy, eq, J1 to V3.

We then repeat the above, replacing ¢(I) by r(Uj,eq,J1), and continue the process until either
U1 U Vi cover I or we are left with one interval with right hand end point (/) and diameter less
than /2. In this case we add this interval to Rj.

Recall that ¢, is given by and C, is given by ([2.8)). Now, let 0 < B < ¢, and put
Benm

= ConCoy(ny + (1 + Cy)?”

Next, for each A € V; we take the final 1-cylinder J; contained in A and beginning from ¢(.J}) we
can uniquely choose a union of 2-cylinders U j,cq,J2 which forms an interval such that (U j,cq,J2) =
£(J}), | Useas J2| = B3/4 and such that for any subcollection afy C az for which Uj,cqyJ2 is an
interval starting at £(J7), we have |Uj,eqy Jo| < 86/4. If [Ujyea, Jo| < 86/2 then we add Uj,ea,J2
to Us. Otherwise, there exists J5 € ag such that 7(J5) = r(Ujeca,J2) and |Upeaq, Jo| — | J5| < 5/4,
in particular |J5| > $0/4. In this case we add Uj,cq,J2 to Vo. We then repeat the above, replacing
0(J}) by r(UjeayJ2), and continue the process until either Uy U Uy U Vo U Ry cover I or we are left
with a finite number of intervals (all of which appear on the left or right hand sides of intervals in
V1). The ones on the left will have length at most ¢/2 and will be made up of a union of 1-cylinders,
and we put these into L;. The ones on the right will have length at most $6/4 and these will be
put into Rs.

We can continue the above process inductively for each 2 < n < ny — 1. For each A € V,, we
take the final n-cylinder J contained in A and beginning from ¢(.J;)) we can uniquely choose a
union of n + l-cylinders Uy, . ca,;Jnt1 Which forms an interval such that £(Us,  canJnt1) =
0(T%), | Udnircanss Jns1] = 6(B/4)" and such that for any subcollection «,; C 41 for which
UJpirear,,, Jnt1 is an interval starting at 0(J}), we have ‘UJn+1€aer+l Jn+1] < 0(B/4)". I |Ug, . eamin
Jns1] < 0(8/2)(8/4)"! then we add UJpsi€anstInt1 10 Uny1. Otherwise, there exists J)7, | € a1
such that 6(J;, 1) = r(Us,icansIntt) and | Ug,cany Jnrt| — |Jnq| < 6(B/4)", in particular
|Jr 1] = 0(8/4)". In this case we add Uy, cansy Jnt1 to Vg1, We then repeat the above, replacing
0(J3) by r(Uj,sieanisJnt1), and continue the process until either Uy U---UUp41 UV 1 UL U -+ U
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L,-1URyU---UR, cover I or we are left with a finite number of intervals (all of which appear
on the left or right hand sides of intervals in V;,11). The ones on the left will have length at most
§(8/4)""! and will be made up of a union of n-cylinders, and we add this to L,. The ones on the
right will have length at most 6(5/4)™, which we put into Ry,41.

Let Ls be the smallest integer for which any ny + Ls cylinder has diameter at most %(g)”l Since
[ is uniformly expanding, Ls = O(log(1/d)). For each A € Vj,, we take the final ni-cylinder J;;,
contained in A and split it up into intervals of length at least (5/4)”% and at most (8/4)™4, in
such a way that each interval is determined as a union of nj 4+ Ls cylinders. We call this collection

Un, .

Append each interval in the set (J;2, L; to the nearest interval to its right belonging to (X, U;,
and name the new collection [ J;!; U;. Then, append each interval in the set [ J;; R; to the nearest
interval to its left belonging to (J;, U;. We define this new collection to be Us. |(U)(b)| and |(U)(c)|

follow from construction. |(U)(e)| holds since each U € Uj is given by a finite or countable collection
of n; + Ls cylinders. To see note that for any U € Us and any Z € Z* where U N Z # (), if

Z is not a subset of U then |Z] > §(3/4)" ! and |U N Z| < §(8/4)" +6(8/2)(8/4)" "1 hence

m(UNZ) _ supye®m(f(UNZ)  Cun(Cqg+1) .. ,
< : < d unz))® Al
m(Z) inf, eS¢ m(fi(2)) cm iam(f*( ) (A1)
_ COn(Cat+1)Cyy (diam(U N Z) s < Om(Ca+1)Cy 5(36/4)(B/4)1\°
h diam(2) = o(p/4)—1
< Cm(cd + 1)C§d6 _ B
Cm (n1 +1)(14 Cy)?
where the first inequality is conformality, the second is by (2.8)),[(al)]and (2.5), the third is by ([2.9)
and the fact that diam(f"(Z)) < 1. Finally, to see|(U)(a)} notice that since f is an interval map,
by [(a3)[suppm = I and so it is enough to show that the diameter of any set in Us can be bounded
above and below by a constant times ¢, where the constants are independent of §. The maximum

length any interval in Us can be is max{3§/2+6/2,6/2+08/4+---+6(B/4) L +(8/4)"§}. The
minimum length is (5/4)™ g. This proves |(U)(a)

Cm Cm

Proof of Proposition for maps f: A — A

The proof of Proposition for more general maps f: A — A (where A is not an interval) follows
similarly to above, with some small changes, which we discuss here. Let I be the closed interval
beginning at inf,czinfzcz x and ending at sup,c supycz .

In the interval map setting we had that |Jczni1 Z = Uz c2n Z', whereas more generally we only
have (e zni1 Z CUgrezn 2’ We H™ be the set of intervals for which

U ru Y z= |J 7

HeH™ ZeZn Z'ezZn—1

Note that for any H € H", HNA = (). Now we broadly follow the method from the previous section
replacing Z™ by Z™ U H" for each level 1 < n < ny. Namely, at the first step instead of taking
minimal unions of intervals from Z! whose length exceeds §/2, we take minimal unions of intervals
from Z!' U H! whose length exceeds §/2. If the length of the union is less than 35/2 we add this
interval to U; as before. If it exceeds 38/2 but the last interval added was an interval H from #H!,
we simply take a smaller proportion of the interval H so that the union has total length less than
30/2 and add this interval to U;. Finally, analogously to before if the length of the union exceeds
36/2 and the last interval added was an interval Z from Z!, then it is added to V;.



COVER TIMES IN DYNAMICAL SYSTEMS 37

Let ~
Bem

QCngd(nl + 1)(1 + Cd)s.

At the next stage, for each set in V!, we take the rightmost cylinder from Z! contained in the set
and consider it as a union of intervals belonging to Z2UH?2. We will take a union of these intervals
whose length exceeds f6/4 and add it to Us if its length is less than $6/2, add it to V5 if its length
exceeds 36/2 and the last interval added was from Z? and if its length exceeds 36/2 but the last
interval added was from H? then we simply remove the last part of this interval from the union so
that the total union has length less than $6/2, and add it to U,.

8=

Once the algorithm is finished, as before we end up with a partition Us of I. After removing any
intervals which do not intersect A we obtain U5 which satisfies |(U)(b)H(U)(d)l In particular, the
minimum length of any set in Uj is %(6/4)"1 Note that regarding [(U)(d)} for any U € Uy and
Z € 2" (1 <i<ny) where UNZ # () and Z is not a subset of U we have

m(UNZ) o g
m(Z)  2(ng +1)(1+Cy)?

i.e. we have gained an extra factor of 1/2. However U; does not necessarily satisfy |(U)(a)| (we have
upper and lower bounds on the diameter and since each U € Uj intersects A then Us satisfies the
assumption involving 7" in |(U)(a)| but not necessarily the assumption involving ¢ since for instance
an interval in U; may only intersect A close to its boundary). We obtain a new family U§ from Uj
which additionally satisfies this property. For each U € Uj choose the leftmost point z7 € A NU;s
and fix an interval [zy — ay, zy + by| where

(A.2)

0 5
B/ S < av, by < (B/0" %

and such that [zy — ay, 2y + by] is equal to a union of ny + L cylinders. Let

Ws = {[l‘U —ay,Ty + bU]}.

For any two intervals in Wy whose interiors intersect we take their union, giving a new collection of
closed intervals Wy with pairwise disjoint interiors. Finally we enlarge each interval in Wy so that
their interiors remain pairwise disjoint, each interval intersects at most two intervals from Uy, each
interval in Uy is covered and so that any new interval formed is still given by a union of n; + Ls
cylinders. We call this new collection U . holds for U5’ by construction. (U)(d)| holds
since any U € U5 can contain at most two intervals from Uy and by (A.2)). [(U)(e)| holds since for
each U € UY, U N A is given by a finite or countable collection of ny + Ls cylinders.

A.2. Proof of Proposition We now assume f has at least 2 full branches. Choose a,b € ¥4
and n3 € N to satisfy Proposition [2.4|a) and define

Vi = {H([wabnS]) s w € {a,b}* s.t. sup |DfH(x)] <0 < sup|Df;_1(x)]},

where w™ denotes the word w with the last digit removed and the suprema are taken over A (since
fo and f, are full branches). By definition, any two sets in V§ can may intersect at most at one
point, thus by removing at most half of the sets in V§ we obtain a collection V§' C Vj of pairwise
disjoint sets. Proposition (c) must be satisfied for Vj’ since the dimension of the repeller of
{fa, fo} is positive and each V € VY has diameter Cy;'d < |V| < Cy;'0 by (2.9). To see Proposition
2.4(d) for V{, note that there exists ¢ > 0 and z € I[ab™] such that B(z,t') N A C II([ab"]).
By given any II([wab™]) € V{, B(fy'(z),Cpat’d) N A C I([wab™]). The other part is
similar. Proposition (e) holds for V§ provided dg is taken sufficiently small since we are only
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considering the finite branched system {f,, f»}. Proposition [2.4(f) holds for V§ by uniform hyper-
bolicity. Proposition [2.4fg) holds for Vj (therefore also for V) since if II([wyab"]), II([waab™]) €
V5 are distinct and wqiab™ is a subword of woab™ this contradicts that II([wiab™]) € V5 (the
bounds on the derivative Df, ! cannot hold). However, Proposition (b) may not hold for
Vi since sup, [Df b, (x)] < 6 < sup, |Dfyt ., (x)] does not exclude the possibility that
sup, [Dfpl o (@) < 6 < sup, [Dfyl . (x)]. However, if we let k& € N be sufficiently large
that
inf, min{Df; *(z), D f, ' (z)}

(sup, min{D f *(z), be_l(x)})k
noting that this is possible since f is uniformly expanding, then whenever sup, |D 1;01.”% ()] <
§ <sup, |Dfut . (x)| we have sup, |Dfy! ., (x)| > 4. In particular wy. .. wpab™ ¢ V{ for any

¢ > k. Therefore, we can find V5 C V{, where #Vs > %#V” , so that Proposition (b) holds for
Vs. Moreover, the remaining parts of Proposition [2.4] also hold for V.
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