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Abstract. We introduce the notion of cover time to dynamical systems. This quantifies the rate
at which orbits become dense in the state space and can be viewed as a global, rather than the
more standard local, notion of recurrence for a system. Using transfer operator tools for systems
with holes and inducing techniques, we obtain an asymptotic formula for the expected cover time
in terms of the decay rate of the measure of the ball of minimum measure. We apply this to a wide
class of uniformly hyperbolic and non-uniformly hyperbolic interval maps, including the Gauss map
and Manneville-Pomeau maps.

1. Introduction and summary of results

Let X ⊆ Y be a subset of a compact metric space (Y, d) and consider a map f : X → X equipped
with an ergodic probability measure µ.In this article we introduce and study the cover time of the
system (f, µ) which, roughly speaking, quantifies the rate at which orbits become dense in X. More
precisely, given δ > 0 we define the δ-covering time τδ : X → N ∪ {∞},

τδ(x) := inf {n ⩾ 1 : {x, f(x), . . . , fn(x)} is δ-dense in X} (1.1)

where we say that a subset Z ′ ⊂ Z is δ-dense in Z if for all x ∈ Z there exists x′ ∈ Z ′ such that
d(x, x′) ⩽ δ. We will be interested in the asymptotic behaviour of the expected cover time with
respect to µ, Eµ(τδ) as δ → 0.

In probability, analogous notions to the cover time have a rich history of study, such as in the setting
of random walks on graphs [Al1, L, DLP] and Markov chains [LP], as well as being extensively
studied in stochastic geometry [F, J, P, Al2]. Moreover, applications are numerous and include
wireless communications [BB] and genomics [ARS]. However the cover time, despite being a very
natural dynamical notion to study in connection with other better understood notions of recurrence
such as hitting and return times, has not yet been addressed in the field of dynamical systems. We
briefly describe an application which illustrates the utility of obtaining estimates on the cover time.
Suppose f : Λ → Λ is an expanding repeller. Then the expected cover time N = Eµ(τδ) describes
how long one would should expect to wait for an orbit segment {x, f(x), . . . , fN (x)} to produce a
δ-approximation of the repeller, which would be useful for an efficient computation of its image.

It is an interesting open programme to investigate what types of asymptotic behaviour are feasible
for the expected cover time and to characterise these in terms of the basic properties of the dynamical
system. We point to similar lines of research in the setting of random walks on graphs, such as
investigation into general lower and upper bounds on the expected cover time in terms of the number
of vertices in the graph and a conjecture that the smallest expected cover time should be attained
by complete graphs [L]. In this paper we make fundamental progress towards this general goal
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by obtaining an asymptotic formula for the expected cover time for a wide class of uniformly and
non-uniformly hyperbolic systems.

Define
Mµ(δ) = min

x∈supp(µ)
µ(B(x, δ)) (1.2)

where B(x, δ) denotes an open ball, noting that the minimum exists by compactness of supp(µ)
and lower semicontinuity of x 7→ µ(B(x, δ)). For a wide class of one-dimensional systems we will
show that Eµ(τδ) scales roughly like Mµ(δ)

−1 as δ → 0. In particular, if we let dimM µ denote the
Minkowski dimension of µ

dimM µ = lim
δ→0

logMδ(µ)

log δ
, (1.3)

which was introduced in [FFK]1 then our main result says that if dimM µ < ∞ then Eµ(τδ) scales
roughly like δ− dimM µ as δ → 0. This is in correspondence with the asymptotic behaviour of the
expected hitting time Eµ(τB(x,δ)) (see (1.4)) to a shrinking ball centred at some x ∈ X which grows
like O(δ−Dµ(x)) as δ → 0 where Dµ(x) denotes the local dimension of µ at x. In other words, while
hitting times are governed by local scaling properties of the measure µ, cover times are governed
by the scaling properties of the (globally determined) ball of minimum measure. Our setup also
gives rise to natural examples of systems which cover the state space at a rate slower than δ−α (for
any α > 0), namely where the expected cover time Eµ(τδ) has an exponential dependence on 1/δ,
see §7. We obtain more precise bounds on Eµ(τδ), which can be found in Theorems 2.1 and 2.2 in
the uniformly hyperbolic case and in Theorems 6.1 and 6.2 in the non-uniformly hyperbolic case.
We remark that the subexponential terms in the asymptotic expression for the expected cover time
are interesting since they capture how nuanced information about the system plays a role in the
expected cover time, such as how many balls of radius δ and measure ≈Mµ(δ) there are.

In [JM, BJK] the cover time of the chaos game was studied, which is a random algorithm that was
introduced by Barnsley [Ba, Chapter 3] for constructing the attractors of iterated function systems.
Assuming the iterated function system satisfies an appropriate separation condition, this is analog-
ous to studying Eµ(τδ) for a system (f, µ), where f is necessarily a full and finite branched uniformly
expanding map (constructed using the inverses of the contractions belonging to the iterated function
system) and µ is the stationary measure associated to the chaos game. In the current paper we
study the cover time from a dynamical viewpoint and in particular we study systems which are well
beyond the scope of [BJK] such as systems which are non-uniformly hyperbolic (subexponentially
mixing), are not full branched, or have infinitely many branches. In particular, our results give
partial answers to [BJK, Questions 6.3 and 6.4].

The cover time τδ is closely related to the hitting time τU : X → N ∪ {∞}
τU (x) = inf{n ⩾ 1 : fn(x) ∈ U} (1.4)

for U = B(x, δ) where x ∈ X. For background on hitting time statistics in dynamical systems see
for example [Sau], [LFF+, Chapter 5]. In the uniformly hyperbolic case, a key tool in this paper
will be to adapt the tools based on the spectral theory of transfer operators for dynamical systems
with a family of holes shrinking to a point [BDT], to instead give bounds on the expected hitting
time Eµ(τU ) over a family Uδ of holes U = B(x, δ) centred at x ∈ X and which cover X. We have
to do this in a uniform way, which is a significant technical challenge, particularly when dealing

1This differs from the definition for the Minkowski dimension which was given in [FFK], but the proof that (1.3)
is an equivalent characterisation can be found in [BJK, Lemma 1.1]. Note that the limit in (1.3) will exist for the
measures considered in this paper, however this is not the general case. We also note that this definition does not
agree with the definition of the Minkowski dimension given by Pesin [P, §7] and that some authors would refer to 1.3
as the L−∞ dimension (see e.g. [FFK, Proposition 4.2]).
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with the ‘short returns’ which requires a new symbolic argument given in §3, which restricts the
geometry of our setup (see (2.10) below). Following this, we will adapt an approach of Matthews
[M], based on randomising the order in which balls U are visited, which will allow us to express the
expected cover time in terms of maxU Eµ(τU ), where the maximum is taken over balls U = B(x, δ)
with x ∈ Λ. Finally, given a non-uniformly hyperbolic system (f, µ) we will consider a suitable first
return map F = f τY which is uniformly hyperbolic, and show that the cover time for the original
system (f, µ) can be estimated in terms of the cover time of the induced system (F, 1

µ(Y )µ|Y ).

Notation. We say x = O(y) if there exists C > 0 such that |x| ⩽ C|y|. We will also allow the
constants C, c > 0 to take different values throughout the paper: they will indicate that the bounds
are uniform in the context in which they are used.

Organisation. In §2 we state the main theorems in the uniformly expanding case (Theorems 2.1
and 2.2) and study the transfer operators which will be used to obtain estimates on the expected
hitting times in this setting. In §3 we obtain estimates on expected return times, which are then
used in §4 to obtain estimates on expected hitting times. In §5 we prove Theorems 2.1 and 2.2
by obtaining a dynamical generalisation of Matthews’ approach [M] to express the expected cover
time in terms of the expected hitting times. In §6 we state the main theorems in the non-uniformly
expanding case (Theorems 6.1 and 6.2) and use an inducing argument to prove it. In § 7 we give
applications of our results, both in the uniformly hyperbolic and non-uniformly hyperbolic cases.
This includes applications to Gibbs-Markov maps, the Gauss map and Manneville-Pomeau systems
as well as examples of slowly covering systems. We postpone the proofs of Propositions 2.3 and
2.4 to the appendix: these guarantee that for all δ sufficiently small, we can find a family of balls
of radius roughly δ, each of whose expected hitting time can be studied by our transfer operator
approach.

2. Setup and results for the exponentially mixing case

In this section we introduce a class of maps and potentials which lead to the system being expo-
nentially mixing, and state the main results in this setting. Furthermore we introduce the transfer
operators which will be used to estimate hitting times. We establish the uniform spectral properties
for these operators which will be required to obtain uniform estimates on expected hitting times.
From here on, all of our dynamical systems will be interval maps, which we formalise next.

Let I ⊂ R be a bounded interval and Z = {Zi}i∈I be a finite or countable collection of subintervals
of I with disjoint interiors. Let f :

⋃
n∈I Zn → I be continuous and strictly monotonic on each Zn.

We denote fi := f |Zi . We call an interval H ⊂ I on which f is not defined a hole2, for example
when there is a gap between Zis. Write D = I \

⋃
i Zi. We denote

Λ :=

{
x ∈ I : fk(x) ∈

⋃
n∈I

Zn for all k ⩾ 0

}
to be the repeller of f and study the dynamical system f : Λ → Λ. In our notation we may sometimes
suppress the fact that we are restricting the dynamics to Λ, for instance by writing f(U) for some U
which is not a subset of Λ (for example U may be an interval, while Λ may be a topological Cantor
set); this is implicitly understood as f(U) = f(Λ∩U). In many cases we consider, I =

⋃
n∈I Zn (in

particular there are no holes), in which case Λ = I. Let Zn be the set n-cylinders, i.e., of maximal
intervals Z of I such that fk(Z) ⊂ Zik for some Zik ∈ Z for k = 0, . . . , n− 1.

2These initially refer to the holes present in the original dynamics, but later this idea will be also used when we
will investigate hitting times via an open dynamical systems perspective, where an extra hole is introduced.



4 N. JURGA AND M. TODD

We now outline our basic assumptions on our map f and invariant measure µ.

2.1. Basic assumptions on f and µ. We assume there exists a nonatomic Borel probability
measure m such that m(D) = 0 and m is conformal3 with respect to a potential ϕ : Λ → R, i.e.
dm

d(m◦f) = eϕ. We set ϕ|D = −∞ and write Snϕ =
∑n−1

i=0 ϕ ◦ f i. Let

Lψ(x) :=
∑

y∈f−1x

ψ(y)eϕ(y) (2.1)

for ψ ∈ L1(Λ,m), (we will actually consider L acting on functions of bounded variation, see Sec-
tion 2.6). We assume ϕ satisfies the following regularity properties as in [BDT, Section 2]:

(a1) ∃Cd > 0 such that |eSnϕ(x)−Snϕ(y) − 1| ⩽ Cd|fn(x)− fn(y)| whenever f i(x), f i(y) lie in the
same element of Z for each i = 0, 1, . . . , n− 1;

(a2) ∃n0 ∈ N such that supΛ e
Sn0ϕ < infΛ\D Ln01;

(a3) For each x ∈ Λ and δ > 0 such that J = B(x, δ) has the property that J∩D = ∅, ∃N = N(J)
such that infΛ\D LN1J∩Λ > 0.

Note that (a3) implies supp(m) = Λ. By conformality of m,
∫
Ln1dm =

∫
1dm = 1 so that

infΛ\D Ln1 ⩽ 1 for all n ∈ N. Hence by (a2), supΛ eSn0ϕ < 1. By this and conformality of m:

there exist C > 0, ω > 0 such that any n-cylinder has measure ⩽ Ce−ωn. (2.2)

Since supΛ e
Sn0ϕ < 1 and since supΛ e

Snϕ is submultiplicative, we have that
∞∑
n=1

sup
Λ
eSnϕ <∞. (2.3)

By the same reasoning

∃n1 ∈ N such that (2n1 + 5)(Cd + 1) sup
Λ
eSn1ϕ < 1. (2.4)

We will also assume that

(a4) ∃cm > 0 such that infZ∈Zn1 m(fn1(Z)) ⩾ cm.

Along with the cylinder structure, this implies that for all 1 ⩽ i ⩽ n1,

inf
Z∈Zi

m(f i(Z)) ⩾ inf
Z∈Zn1

m(fn1(Z)) ⩾ cm. (2.5)

By (a1), supZ eϕ ⩽ (1 + Cd)m(Z)/m(f(Z)) so applying (2.5) with i = 1 yields∑
Z∈Z

sup
Z
eϕ ⩽ (1 + Cd)

∑
Z∈Z

m(Z)

m(f(Z))
⩽ (1 + Cd)c

−1
m <∞. (2.6)

As described in [BDT, Section 2.1], under (a1)–(a4) (which as shown above imply (F1)–(F4) in that
paper) we can apply [R, Theorem 1] to show that L admits a unique invariant measure µ which
is absolutely continuous with respect to m and whose density g is bounded away from 0 and of
bounded variation. Moreover the system is exponentially mixing. By this and by conformality of
m, (2.3) implies

K := 1 +

∞∑
n=1

sup
Z∈Zn

µ(Z) <∞. (2.7)

3From a thermodynamic formalism point of view, our assumptions imply that the pressure of ϕ is zero.
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It will sometimes be more convenient to work with the symbolic coding of f . Recall that the index
set I labels the intervals of monotonicity {Zi}i∈I for f . Let Σ ⊂ IN be the subshift given by the
set of sequences i = (i0, i1, . . .) ∈ IN0 for which there exists an x ∈ Λ such that fn(x) ∈ Zin for all
n ∈ N0. Define the projection Π : Σ → I as

Π(i0, i1, · · · ) := lim
n→∞

f−1
i0

◦ · · · ◦ f−1
in−1

(I),

i.e. Π(i) = x. Then f ◦Π = Π ◦ σ where σ : Σ → Σ is the left shift map. We let Σn denote the set
of all words of length n in Σ and Σ∗ denote the set of all finite words in Σ. Given w ∈ Σ∗ we write
[w] := {i ∈ Σ : i|n = w} where i|n = (i0, . . . , in−1) if i = (in)n∈N0 (sometimes for brevity we will
write w = i0 . . . in−1). We write µ̃ to be the measure on Σ such that µ = Π∗µ̃.

We will require two additional assumptions on µ̃:

(a5) µ̃ is quasi-Bernoulli ; i.e. there exists C∗ > 1 such that for all finite words i, j ∈ Σ∗,
C−1
∗ µ̃([i])µ̃([j]) ⩽ µ̃([ij]) ⩽ C∗µ̃([i])µ̃([j]);

(a6) µ̃ is ψ-mixing, i.e.∣∣∣∣ µ̃ (∪[x0, . . . , xi−1, y0, . . . , yj−1, z0, . . . , zℓ−1])

µ̃ ([x0, . . . , xi−1]) µ̃ ([z0, . . . , zℓ−1])
− 1

∣∣∣∣ ⩽ γ(j)

where the union is taken over all words y0 . . . yj−1 of length j such that
(x0, . . . , xi−1, y0, . . . , yj−1, z0, . . . , zℓ−1) ∈ Σi+j+ℓ, and γ(j) → 0 as j → ∞.

2.2. Gibbs-Markov maps. In the case where f : Λ → Λ is Markov, i.e. for each Z ∈ Z, f(Z)
is a union of elements of Z, then the class of maps satisfying (a1)-(a6) is precisely the class of
Gibbs-Markov maps with the big images and pre-images (BIP) property. These maps and their
properties are discussed in more detail in [BDT, Section 2.6.2], but we give a brief account here.

We say that f satisfies the big images and pre-images (BIP) property if there exists a finite set
{Zj}j∈J ⊂ Z such that ∀Z ∈ Z, ∃j, k ∈ J such that f(Zj) ⊇ Z and f(Z) ⊇ Zk. We also assume
that |Df | ⩾ γ−1 > 1 on each Z ∈ Z. We say that an invariant measure µ (or µ̃) is Gibbs if
there exists a Lipschitz continuous potential ϕ (i.e., with some uniform Lipschitz constants such
that on each Z ∈ Z, ϕ is Lipschitz) and constants K,P such that for all i0, . . . , in−1 ∈ Σn and
i ∈ [i0, . . . , in−1],

K−1 ⩽
µ̃([i0, . . . , in−1])

eSnϕ(Π(i))+nP
⩽ K.

We say that (f, µ) is Gibbs-Markov with BIP if f is Markov and satisfies BIP and µ is Gibbs.
One can readily check that such maps satisfy (a1)-(a6). Indeed, as in [BDT, Section 2.6.2], these
maps satisfy (a1)-(a3). Also (a4) follows from the big images property and Markov property; (a5)
follows because Gibbs measures µ̃ are quasi-Bernoulli. Finally (a6) holds since Gibbs measures µ̃
are ψ-mixing [Br].

On the other hand, suppose f is Markov and satisfies (a1)-(a4). Then µ is necessarily a Gibbs
measure. Moreover by [S2], f must satisfy BIP. In other words, the class of Markov maps satisfying
(a1)-(a6) coincides with the class of Gibbs-Markov map with BIP. We call fi = f |Zi the branch of
f at Zi; if f(Zi) = I then we say that f has a full branch on Zi. The simplest BIP examples are
when all branches of f are full.

2.3. Other assumptions on f and m. Before we state our main theorems, we will need to
introduce further assumptions on the system.
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Firstly, we assume that for some constant Cm <∞ and s > 0,

m(U) ⩽ Cmdiam(U)s for all intervals U ⊂ I. (2.8)

We will also require the derivatives of iterates of f to satisfy bounded distortion: there exists a
constant Cbd > 0 such that for all x, y ∈ Λ for which f i(x), f i(y) are in the same cylinder Z for
each 0 ⩽ i ⩽ n− 1 then

C−1
bd ⩽

|(f i)′(x)|
|(f i)′(y)|

⩽ Cbd. (2.9)

f satisfies (2.9) for example when f is uniformly expanding and has finitely many C1+α branches.
Similarly, when f is uniformly expanding, has infinitely many C1+α branches and there is a uniform
upper bound bound on the Hölder constants associated to the first order derivative of each branch,
f also satisfies (2.9).

Next, in order that f : I → I can be sufficiently well approximated by the symbolic representation
of the system, we require adjacent cylinders to be comparable. That is there is C > 0 such that
given Z,Z ′ ∈ Zn where Z,Z ′ ⊂ Zn−1 ∈ Zn−1 which are adjacent, meaning that there is an interval
A ⊂ Zn−1 such that Z and Z ′ are the only elements of Zn intersecting A,

1

C
⩽
µ(Z)

µ(Z ′)
⩽ C. (2.10)

Note that here we are assuming that given Zn−1 ∈ Zn−1, each Z ∈ Zn in Zn−1 has an adjacent
Z ′ ∈ Zn in Zn−1, which implies that if domains of Zn accumulate in Zn−1 ∈ Zn−1, then this must
occur at the boundary of Zn−1. Observe that it is sufficient to check this assumption for elements
of Z1, where I is the corresponding element of Z0.

Finally, we will sometimes assume that m is Ahlfors regular: namely that there exists c > 0 such
that for any x ∈ Λ and r > 0,

rsf

c
⩽ m(B(x, r)) ⩽ crsf (2.11)

where sf = dimH Λ. This holds if m is Lebesgue, or more generally if m is conformal for a potential
−sf log |Df | and, for example, f is a finite branch Markov map4, in which case this is referred to
as the Hausdorff measure.

2.4. Results. We begin by stating our main theorem in the special case that m satisfies (2.11), eg
if f is Markov and m is conformal for a potential −sf log |Df |.

Theorem 2.1. Assume (f, µ) satisfies (a1)-(a6) and (2.8)–(2.11). There exist 0 < c < C < ∞
such that for all δ > 0,

cδ−sf ⩽ Eµ(τδ) ⩽ Cδ−sf log(1/δ).

Moreover, if the system is Gibbs-Markov and f has at least 2 full branches then we also have the
sharp lower bound:

cδ−sf log(1/δ) ⩽ Eµ(τδ) ⩽ Cδ−sf log(1/δ).

The assumption that f has at least 2 full branches allows us to find, for all δ > 0 sufficiently small,
sufficiently many δ-balls centred at a point in Λ which have measure close to Mµ(δ) and are ‘far’
from each other in the sense that there is a good lower bound on the time in between consecutive
visits to these balls. This is enough to provide a sharp lower bound, however we expect that there
are weaker assumptions which would yield the same conclusion.

4To see this, approximate the measure m(B(x, r)) from above and below by the measure of appropriate cylinders
and apply conformality and (a1) (or alternatively using assumption (2.9)).
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In the case where there is a sharp lower bound, one may wonder whether the limit

lim
δ→0

E(τδ)
δ−sf log(1/δ)

exists. In the probability theory literature on cover times of random walks, the existence of the
analogous limit has been established for some specific examples, such as for the expected cover time
of a disk by a random walk in Z2 [DPRZ] and the expected cover time of the binary tree by a simple
random walk [Al3].

We also consider more general measures µ which may not satisfy (2.11). Suppose dimM µ <∞. For
each δ > 0 we denote

Err(δ) :=

∣∣∣∣dimM µ− log (Mµ(δ)))

log δ

∣∣∣∣ . (2.12)

Clearly dimM µ < ∞ implies limδ→0 Err(δ) = 0. Therefore in the case that dimM µ < ∞, one can
think of δ− dimM µ±Err(δ) as being upper and lower bounds on the measure of the ball of minimum
measure at scale δ.

Theorem 2.2. Assume (f, µ) satisfies (a1)-(a6) and (2.8)–(2.10). There exist 0 < c < C <∞ and
ε > 0 such that such that for all δ > 0,

c

Mµ(δ/ε)
⩽ Eµ(τδ) ⩽

C

Mµ(εδ)
log(1/δ). (2.13)

In particular if dimM µ <∞ then

cδ− dimM µ+Err(δ/ε) ⩽ Eµ(τδ) ⩽ Cδ− dimM µ−Err(εδ) log(1/δ). (2.14)

Note that ϵ = t
2T where t, T are given by (U)(a) below. We note that if the measure µ is doubling

(for example, if f is a finite branch Markov map and µ is Gibbs), then the dependence on ε can
be removed from the estimates. For example in (2.13) the denominators appearing in the bounds
could be replaced by Mµ(δ) (the constants coming from the doubling property would be absorbed
in the constants c and C). The upper bound in (2.14) is analogous to the upper bound in Theorem
2.1. The reason that Err(δ) does not appear in Theorem 2.1 is because for a general measure µ, the
measure of the ball of minimum measure at scale δ may take some time to resemble the asymptotic
limit O(δdimM µ), whereas if (2.11) holds then this can already be seen at large scales δ.

In order to obtain a sharper lower bound in Theorem 2.2, roughly speaking we would require an
estimate on the number of balls of measureO(δdimM µ+Err(δ/ε)) seen at scale δ. This is straightforward
in the case (2.11) holds, since all balls of comparable diameter have comparable measure, which
ensures a sharp lower bound in Theorem 2.1. However we note that it is not always true that we
have exponentially many balls of measure O(δdimM µ+Err(δ/ε)) at scale δ (meaning the system can
cover faster than log(1/δ) times the reciprocal of the measure of the ball of minimum measure at
scale δ) see for instance [JM, Theorem 1.1(2)]. In the other hand, in § 7 we provide two examples of
slowly covering systems: systems for which dimM µ = ∞ and provide estimates on the asymptotic
growth of their expected cover times.

2.5. Uniformly large images for family of punctured maps. Suppose (f, µ) satisfies (a1)-
(a4), in particular so that the constants n1 from (2.4) and cm from (a4) are well-defined. The main
result of this section is Lemma 2.5 where we show a uniform large images property for a family of
punctured maps, where each punctured map is obtained from (f, µ) by introducing a ‘hole’ U in
the system. We say that the system (f, µ) satisfies (U) if there exists δ0 > 0 such that for each
0 < δ ⩽ δ0 we can find a finite collection Uδ of closed subintervals of U ⊂ I which satisfy the
following assumptions:
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(U)(a) There exists 0 < t < 1 < T such that for all U ∈ U(δ0) :=
⋃

0<δ⩽δ0

⋃
{U : U ∈ Uδ}, there

exists x ∈ Λ such that B(x, tδ) ⊆ U ⊆ B(x, Tδ);
(U)(b) for any 0 < δ ⩽ δ0 the interiors of the intervals in Uδ are pairwise disjoint;
(U)(c) for each 0 < δ ⩽ δ0, Λ ⊆

⋃
U∈Uδ

U ;
(U)(d) there exists 0 < β̃ < cm such that for all 1 ⩽ i ⩽ n1, Z ∈ Z i and U ∈ U(δ0) either Z ⊆ U

or m(U∩Z)
m(Z) ⩽ β̃

(n1+1)(1+Cd)2
, where n1 comes from (2.4);

(U)(e) for any U ∈ Uδ, U ∩ Λ = Π(
⋃

i∈Pδ
[i]) where Pδ ⊂ Σ∗ is a finite or countable collection of

words i with the property that |i| = O(log(1/δ)) (where the implied constant is uniform
over all 0 < δ ⩽ δ0).

Under the additional assumptions (2.8) and (2.9), (f, µ) satisfies (U). Note that the only place
where (2.8) and (2.9) will be required is in the proofs of the following two propositions, which are
postponed to the appendix.

Proposition 2.3. Suppose (f, µ) satisfies (a1)-(a4), (2.8) and (2.9). Then (f, µ) satisfies (U).

To obtain the sharp lower bound in Theorem 2.1 (in the case (2.11) holds) we will also require the
following proposition.

Proposition 2.4. Suppose (f, µ) is Gibbs-Markov with at least two full branches, and satisfies (2.8)
and (2.9). There exists δ0 > 0 such that for each 0 < δ ⩽ δ0 we can find a finite collection

Vδ ⊂ {Π([wabn3 ]) : w ∈ {a, b}∗}

of pairwise disjoint subsets of Λ where:

(a) a, b ∈ Σ1, a ̸= b are such that fa and fb are full branched and n3 ∈ N is chosen such that
C3
∗ µ̃([ab

n3 ])K < 1;
(b) for all 0 ⩽ i ⩽ n3 and U, V ∈ Vδ, f i(U) ∩ V = ∅;
(c) there exists c, ε > 0 such that #Vδ ⩾ cδ−ε;
(d) there exists T > t > 0 such that for all U ∈ Vδ, there exists x ∈ Λ such that B(x, tδ) ∩ Λ ⊂

U ⊂ B(x, Tδ);
(e) there exists 0 < β̃ < cm such that for all 1 ⩽ i ⩽ n1, Z ∈ Zi and U ∈ U(δ0) either Z∩Λ ⊆ U

or m(U∩Z)
m(Z) ⩽ β̃

(n1+1)(1+Cd)2
, where n1 comes from (2.4);

(f) for any U = Π([wabn3 ]) ∈ Vδ, |w| = O(log(1/δ)) (where the implied constant is uniform
over all 0 < δ ⩽ δ0);

(g) if Π([w1ab
n3 ]),Π([w2ab

n3 ]) ∈ Vδ are distinct, then w1ab
n3 is not a subword of w2ab

n3 .

Proposition 2.4 essentially states that for sufficiently small δ we can find sufficiently many balls of
diameter roughly δ and measure roughly Mµ(δ) (this is (c) and (d)), which are dynamically far
from each other (namely there is a uniform lower bound on the time taken in between visits of any
orbit to any two balls in Vδ - this is (b)). Proposition 2.4 will only be used in the proof of the lower
bound in Theorem 2.1.

The proof of Theorems 2.1 and 2.2 will require us to study a family of punctured dynamical systems
which have a hole at some U ∈ U(δ0). Namely, given U ∈ U(δ0) we define the (punctured) map with
a hole at U by f̊U = f |Λ\U . Then its iterates are given by f̊nU = f |Ůn−1 where Ůn−1 =

⋂n
i=0 f

−i(Λ\U)

(so that Ů0 = Λ \ U). We will require that the transfer operators associated to these holes have a
uniform spectral gap, and this will follow from (U)(d) via the following lemma.
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Lemma 2.5. Assume f and µ satisfy (a1)-(a4), (2.8) and (2.9). Then there exists c0 > 0 such that
for all U ∈ U(δ0),

inf
U∈U(δ0)

inf{m(f̊n1
U J) : J ∈ Zn1 s.t. J ∩ Ůn1 ̸= ∅} ⩾ c0

where n1 comes from (2.4).

Proof. Throughout the proof we’ll assume Λ = I, the more general case follows similarly after taking
intersections with Λ. Fix Z ∈ Zn1 , Z = Π([i0, . . . , in1−1]) and U ∈ U(δ0) such that Z ∩ Ůn1 ̸= ∅.
We want to show there exists c0 which is independent of U ∈ U(δ0) such that m(f̊n1

U (Z)) ⩾ c0.

For each 0 ⩽ j ⩽ n1 either f−j(U)∩Z = ∅ or U ∩Π([ij , . . . , in1 ]) ̸= ∅ and f−j(U)∩Z = f−1
i0...ij−1

(U ∩
Π([ij , . . . , in1−1])), where f−1

i0...ij−1
= f−1

i0
◦ · · · f−1

ij−1
corresponds to the inverse branch of f j which

maps I homeomorphically to Π([i0 . . . ij−1]) (in particular if j = 0 we define f−1
i0...ij−1

= Id). Note
that this means that we cannot have Π([ij . . . in1−1]) ⊂ U as this would imply that f−j(U)∩Z = Z

which is a contradiction since we’ve assumed Z ∩ Ůn1 ̸= ∅.

Hence
m(f−j(U) ∩ Z)

m(Z)
⩽
m(U ∩Π([ij . . . in1−1]))

m([Π(ij . . . in1−1]))

supZ e
Sjϕ

infZ eSjϕ

⩽ (1 + Cd)
m(U ∩Π([ij . . . in1−1]))

m(Π([ij . . . in1−1]))
⩽

β̃

(n1 + 1)(1 + Cd)

where the first inequality follows by conformality, the second by (a1) and the third by Proposition
2.3 and (U)(d). Thus

m(Z \ Ůn1)

m(Z)
=
m(Z ∩

⋃n1
j=0 f

−j(U))

m(Z)
⩽ (n1 + 1)

β̃

(n1 + 1)(1 + Cd)
=

β̃

1 + Cd
. (2.15)

In particular

m(f̊n1
U (Z)) = m(fn1(Z))−m(fn1(Z \ Ůn1)) ⩾ m(fn1(Z))− m(Z \ Ůn1)

m(Z)

supZ e
Sn1ϕ

infZ e
Sn1ϕ

⩾ m(fn1(Z))− m(Z \ Ůn1)

m(Z)
(1 + Cd) ⩾ cm − β̃ > 0

where we have used conformality in the first inequality, (a1) in the second inequality and (2.15) in
the third inequality. The proof follows by setting c0 := cm − β̃. □

2.6. Transfer operators for closed system. We will study the action of the operator L on the
Banach space B of functions ψ : Λ → R with bounded variation norm ∥·∥ = ∥·∥1 + | · |BV , where
∥·∥1 denotes the L1 norm with respect to m and | · |BV := | · |BV,I where for any interval J ⊆ I,

|ψ|BV,J := sup

{
k−1∑
i=0

|ψ(xi+1)− ψ(xi)| : x0 < x1 < · · · < xk, xi ∈ J ∩ Λ, ∀i ⩽ k

}
where the supremum is taken over all finite sets {xi}i ⊂ J ∩ Λ.

Under (a1)-(a4) we have the following.

Lemma 2.6. Assuming (a1)-(a4), for all n ⩾ 0,

(a)
∑

Z∈Zn eSnϕ <∞;
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(b) for each Z ∈ Z, |ϕ|BV,Z ⩽ Cd supZ e
ϕ;

(c) |eSnϕ|BV <∞.

Proof. (a) follows by induction on (2.6). (b) follows from (a1) since |eϕ(xi+1) − eϕ(xi)| ⩽ Cde
ϕ(xi) for

any {xi}ki=1 ⊂ Z. For n = 0, (c) follows from (b) and (2.6). Setting ϕ|D = −∞ only adds a term
bounded by the series in (2.6) to the variation. For n ⩾ 1 the claim follows by induction. □

Using Lemma 2.6 and (2.4), the operator Ln1 satisfies the assumptions of [R, Theorem 1], thus
Ln1 is quasi-compact on B. By [R, Theorem 3] and (a3), Ln1 has a simple eigenvalue at 1 and
no other eigenvalues of modulus 1, in other words Ln1 has spectral gap. By Lemma 2.6, since
L is a bounded operator on B, it also has a spectral gap. We let g ∈ B denote the normalised
(
∫
gdm = 1) eigenfunction of L associated to the leading eigenvalue 1. g is bounded away from 0.

Write dµ = gdm.

2.7. Transfer operators for open systems. Here we use spectral properties of appropriate trans-
fer operators which will later give us information on hitting time statistics. This type of approach
has been used previously, for example in [D], [KL2] and [BDT], but we have to make some ad-
aptations, principally to Proposition 2.8 below in order to get uniform estimates for our setting.
Lemma 2.9 and Corollary 2.10 are then essentially standard, but we include the short proofs for
completeness.

Definition 2.7 (Transfer operators for open systems). For any hole U let L̊U : B → B denote the
transfer operator with a hole at U , given by

L̊U (ψ) :=
∑

y∈f̊−1
U x

ψ(y)eϕ(y) = L(1I\Uψ).

Note that the iterates of L̊U are given by

L̊nUψ(x) =
∑

y∈f̊−n
U x

ψ(y)eSnϕ(y) = Ln(ψ1Ůn−1). (2.16)

By conformality of m, ∫
L̊nUψdm =

∫
Ln(ψ1Ůn−1)dm =

∫
Ůn−1

ψdm. (2.17)

By (U) we have the following set of uniform Lasota-Yorke inequalities for the family of operators
{L̊U}U∈U(δ0).

Proposition 2.8. There exist C0 > 0 and 0 < α < 1 such that for any φ ∈ B, U ∈ U(δ0) and
n ⩾ 0,

∥L̊nUφ∥ ⩽ C0α
n∥φ∥+ C0

∫
Ůn−1

|φ|dm.

The above is also true when L̊U is replaced by L and Ůn−1 is replaced by Λ.

Proof. Throughout the proof we’ll assume Λ = I, the proof in the more general case is similar. We
begin by noting that our holes U are closed, meaning that each Ůn is relatively open in I, which is
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in contrast to much of the literature where the hole is taken to be open and Ůn is closed. For each
J ∈ Zn there is a unique choice of disjoint intervals {(x1, x2), . . . , (xkJ−1, xkJ )} such that

J ∩ Ůn−1 =

kJ/2⋃
i=1

(x2i−1, x2i).

In particular note that x1 is the left hand end point of J and xkJ is the right hand end point of J .

Given ψ ∈ B,

|L̊nUψ|BV ⩽
∑
J∈Zn

|ψeSnϕ|BV,J + ψ(x1)e
Snϕ(x1) + · · ·+ ψ(xkJ )e

Snϕ(xkJ ).

Note that for all x ∈ {x1, . . . , xkJ},

ψ(x)eSnϕ(x) ⩽
1

m(J ∩ Ůn−1)

∫
m(J∩Ůn−1)

|ψ|eSnϕdm+ |ψeSnϕ|BV,J

yielding

|L̊nUψ|BV ⩽
∑
J∈Zn

(kJ + 1)|ψeSnϕ|BV,J +
kJ

m(J ∩ Ůn−1)

∫
J∩Ůn−1

|ψ|eSnϕdm. (2.18)

Next, note that

|ψeSnϕ|BV,J ⩽ sup
J
ψ|eSnϕ|BV,J + sup

J
eSnϕ|ψ|BV,J

⩽ sup
J
ψCd sup

J
eSnϕ + sup

J
eSnϕ|ψ|BV,J (2.19)

⩽ sup
J
eSnϕ

(
|ψ|BV,J(Cd + 1) +

Cd

m(J ∩ Ůn−1)

∫
J∩Ůn−1

|ψ|dm

)

where in the second line we have used Lemma 2.6(b) and in the last line we have bounded supJ ψ ⩽
1

m(J∩Ůn−1)

∫
J∩Ůn−1 |ψ|dm+ |ψ|BV,J .

Combining with (2.18) we obtain

|L̊nUψ|BV

⩽
∑
J∈Zn

(kJ + 1) sup
J
eSnϕ|ψ|BV,J(Cd + 1) + ((kJ + 1) sup

J
eSnϕCd + kJ)

1

m(J ∩ Ůn−1)

∫
J∩Ůn−1

|ψ|eSnϕdm.

(2.20)

By conformality and (a1), for all x ∈ J ∩ Ůn−1,

eSnϕ(x)m(fn(J ∩ Ůn−1))

m(J ∩ Ůn−1)
⩽ 1 + Cd. (2.21)
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Also, note that kJ ⩽ 2n + 4, since J ∩ Ůn−1 contains at most n + 1 holes corresponding to
U, . . . , f−n(U). Combining these with (2.20) we obtain

|L̊nUψ|BV ⩽ (2n+ 5) sup
I
eSnϕ(Cd + 1)|ψ|BV

+
∑
J∈Zn

((2n+ 5) sup
I
eSnϕCd + 2n+ 4)(1 + Cd)

1

m(fn(J ∩ Ůn−1))

∫
J∩Ůn−1

|ψ|dm

(2.22)

⩽ (2n+ 5) sup
I
eSnϕ(Cd + 1)|ψ|BV + ((2n+ 5) sup

I
eSnϕCd + 2n+ 4)(1 + Cd)

1

c0

∫
Ůn−1

|ψ|dm

(2.23)

where we have used Lemma 2.5 in the final line.

Applying (2.23) with n = n1 we see that for α̃ = (2n1 + 5) supI e
Sn1ϕ(Cd + 1)| < 1 we have

|L̊n1
U ψ|BV ⩽ α̃|ψ|BV + ((2n1 + 5) sup

I
eSn1ϕCd + 2n1 + 4)(1 + Cd)

1

c0

∫
Ůn1−1

|ψ|dm.

We can then iterate this to complete the proof with α = α̃1/n1 . □

By Proposition 2.8, the compactness of the unit ball of B in L1(m) and the conformality of m that
the spectral radius of L̊U acting on B is at most 1 and its essential spectral radius is bounded by
α < 1, for each U ∈ U(δ0) and the same is true for L. Thus L and each L̊U are quasi-compact as
operators on B. Define the following perturbative norm for operators P,Q acting on B:

|||P −Q||| := sup{|Pφ−Qφ|1 : ∥φ∥ ⩽ 1}.

Lemma 2.9. For any U ⊂ I,

|||L − L̊U ||| ⩽ m(U) ⩽ C1µ(U)

where C1 = 1/ ess inf g.

Proof. If φ ∈ B with ∥φ∥ ⩽ 1 then∫
|(L − L̊U )φ|dm =

∫
|L(1Uφ)|dm ⩽ sup

Λ
|φ|m(U) ⩽ m(U)

by conformality. The fact that ess inf g > 0 follows from (a3). □

Corollary 2.10. There exists δ1 ∈ (0, δ0) such that for all U ∈ U(δ1), L̊U and L have uniform
spectral gap. In particular, L and L̊U admits the following spectral decomposition

L = Π+R

L̊U = λUΠU +RU

where

(a) λU is the leading eigenvalue of L̊U for the normalised (
∫
gUdm = 1) eigenfunction gU , i.e.

L̊UgU = λUgU (analogously the leading eigenvalue of L is 1, with normalised eigenfunction
g);

(b) ΠU is the projection onto the eigenspace spanned by gU (analogously Π is the projection onto
the eigenspace spanned by g), moreover L̊∗

UmU = λUmU for the eigenmeasure mU ;
(c) for α < β1 < β2 < 1 we have λU > β2 and the spectral radius σ(RU ) < β1 (also σ(R) < β1);
(d) Π2

U = ΠU and ΠURU = RUΠU = 0 (analogously Π2 = Π and ΠR = RΠ = 0).
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Moreover, there exist constants K1,K2,K3,K4 > 0 and η ∈ (0, 1) such that for all U ∈ U(δ1),

|||ΠU −Π||| ⩽ K1m(U)η (2.24)
∥RnU∥ ⩽ K2β

n
1 (2.25)

|1− λU | ⩽ K3µ(U) (2.26)
∥gU∥ ⩽ K4 (2.27)

Proof. As already discussed in the previous section, L has a spectral gap by [R]. Using Proposition
2.8 and Lemma 2.9 and [KL1, Corollary 1] there exists δ1 ∈ (0, δ0) such that the family {L̊U}U∈U(δ1)

has a uniform spectral gap and the stated eigendecomposition including properties (a)-(d) (note that
although [KL1] studies just one sequence of perturbed operators, we can obtain analogues of the
bounds in [KL1, Corollary 1] (and thus the uniform spectral gap) over our whole family of operators
{L̊U}U∈U(δ1) due to the uniformity of the constants in Proposition 2.8). (2.24) follows from [KL1,
Corollary 1(1)], (2.25) follows from [KL1, Corollary 2(2)] and (2.27) follows from [KL1, Corollary
1(2)] (again the constants are uniform due to the uniformity of the constants in Proposition 2.8.

To see (2.26) note that

|1− λU | =
∣∣∣∣∫ gUdm− λU

∫
gUdm

∣∣∣∣ = ∣∣∣∣∫ LgUdm−
∫

L̊UgUdm
∣∣∣∣

=

∣∣∣∣∫ (L − L̊U )gUdm
∣∣∣∣ ⩽ sup

U∈U(δ1)
∥gU∥|||L − L̊U ||| ⩽ C1K4µ(U)

where the last inequality follows by Lemma 2.9 and (2.27). □

3. Return time estimates

We will estimate the expected hitting times to U ∈ Uδ in terms of the top eigenvalue λU . In order
to then obtain Theorem 2.1 we will need to estimate λU in terms of the measure of U (which will be
done in Proposition 4.3). To this end, we will first require the following estimates on return times
to U , which is the main focus of this section (note that the following proposition, and in particular
in the lemma following it, is the only place we use (2.10)). We denote µU = 1

µ(U)µ|U .

Proposition 3.1. Assume (f, µ) satisfies (a1)-(a6) and (2.8)–(2.11). Then there exist c > 0 and
δ2 ∈ (0, δ1) such that for all U ∈ U(δ2) and n ⩾ 1/µ(U),

µU (τU ⩾ n) ⩾ cλnU .

We will require the following lemma, which allows us to approximate intervals by a pair of well-
understood sets of cylinders. Let d(Z) be the depth of a cylinder Z. Note that given a cylinder
[x0, . . . , xk], for ℓ ⩽ k, its ℓ-prefix is (x0, . . . , xℓ).

Lemma 3.2. Assume (2.10).

(1) If UI ⊂ U ⊂ UO and n ∈ N then

µ(UO)

µ(U)
µUO

(τUO
< n) ⩾ µU (τU < n) ⩾

µ(UI)

µ(U)
µUI

(τUI
< n).
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(2) There exists κ > 0 with the following property. For an interval U , there are depths dL, dR
such that there are UI ⊂ U ∩ Λ ⊂ UO with µ(UI) ⩾ (1− κ)µ(U) and µ(UO) ⩽ (1 + κ)µ(U).
Moreover, UI and UO are each the Π image of (at most) a union of (dL+1)-cylinders {U iL}i
and (dR+1)-cylinders {U iR}i where all the {U iL}i have the same dL-prefix and all the {U iR}i
have the same dR-prefix.

Proof. For the first part,

µU (τU < n) =
1

µ(U)
µ (x ∈ U : τU (x) < n) ⩾

1

µ(U)
µ (x ∈ UI : τUI

(x) < n) =
µ(UI)

µ(U)
µUI

(τUI
< n) ,

and similarly for the upper bound.

For the second part, for an interval U , let UL and UR be the deepest cylinders such that Π(UL) and
Π(UR) are adjacent to each other, Π(UL) to the left, so that U ∩ Λ ⊂ Π(UL ∪ UR).

Claim. There exists B ∈ (0, 1) such that for {U iL}i the depth d(UL) + 1 cylinders contained in
UL ∩Π−1(U) and {U iR}i the depth d(UR) + 1 cylinders contained in UR ∩Π−1(U),

µ

((⋃
i

U iL

)
∪

(⋃
i

U iR

))
⩾ Bµ(U).

Moreover adding in U ℓL ⊂ UL and U rR ⊂ UR, the depth d(UL) + 1 and depth d(UR) + 1 cylinders
respectively so that Π−1(U) ⊂ U ℓL ∪ U rR ∪

(⋃
i U

i
L

)
∪
(⋃

i U
i
R

)
,

µ

(
U ℓL ∪ U rR ∪

(⋃
i

U iL

)
∪

(⋃
i

U iR

))
⩽
µ(U)

B
.

Proof of Claim. This claim follows from the cylinder structure. It is sufficient to show that

µ
(
U ℓL ∪

(⋃
i U

i
L

))
µ
((⋃

i U
i
L

))
is uniformly bounded above (the case for the right-hand cylinder follows similarly). First note that⋃
i U

i
L ̸= ∅ since otherwise UL is not the deepest cylinder we could have chosen. Then since U ℓL

must be adjacent to some U iL, the bound follows directly from (2.10). □

□

Proof of Proposition 3.1. The problems here are when there are multiple overlaps, so the worst case
is when the symbolic model is the full shift, so we will assume this here. Moreover we will assume
that Λ = I: the adaptation to the general case goes through by intersecting intervals with Λ.

We first show what happens for the non-conditional measure case.

Claim. There exist constants 0 < c(U, n) < 1 < C(U, n) <∞ with the property that

c(U, n)λnU ⩽ µ(τU ⩾ n) ⩽ C(U, n)λnU

where c(U, n), C(U, n) → 1 as µ(U) → 0 and n→ ∞.



COVER TIMES IN DYNAMICAL SYSTEMS 15

Proof.

µ(τU ⩾ n) =

∫
1{τU⩾n} · g dm =

∫
L̊nU (g) dm = λnU

(∫
ΠU (g) + λ−nU RnU (g)dm

)
= λnU

(∫
cgU + λ−nU RnU (g)dm

)
= λnU

(
c+ λ−nU

∫
RnU (g)dm

)
for the constant c =

∫
gdmU , by definition of ΠU . Then

|c− 1| =
∣∣∣∣∫ cgU dm−

∫
g dm

∣∣∣∣ = ∣∣∣∣∫ ΠU (g) dm−
∫

Π(g) dm

∣∣∣∣ ⩽ K1µ(U)η∥g∥ ⩽ K1K4µ(U)η

by (2.24) and (2.27). Since also from (2.25),∣∣∣∣∫ RnU (g) dm

∣∣∣∣ ⩽ ∥RnU (g)∥ ⩽ K2β
n
1 ∥g∥ ⩽ K2K4β

n
1 ,

we obtain

µ(τU ⩾ n) ⩾ λnU

(
1−K1K4µ(U)η −K2K4

(
β1
β2

)n)
,

completing the proof of the lower bound, and the upper bound is similar. □

The idea is to ‘add buffers’ of length m so that we lose some of the power coming from λU , but gain
better distortion estimates using ψ-mixing (a6).

Single cylinder case

We start by assuming Π−1(U) is a cylinder, and generalise later on. To simplify notation, we switch
to using the symbolic measure µ̃ and assume U itself is a cylinder.

Given m ∈ N and assuming n ⩾ 2k + 2m, we write

µ̃U (τU ⩾ n) = µ̃U
(
x = (x0, x1, . . .) ∈ U : [u0, . . . , uk−1] /∈ ∪n−2

i=0 [xi+1, . . . , xi+k]
)

= µ̃U
(
x ∈ U : [u0, . . . , uk−1] /∈ ∪n−2

i=k+m[xi+1, . . . , xi+k]
)

− µ̃U
(
x ∈ U : [u0, . . . , uk−1] ∈ ∪k+m−1

i=0 [xi+1, . . . , xi+k]

& [u0, . . . , uk−1] /∈ ∪n−2
i=k+m[xi+1, . . . , xi+k]

)
.

We refer to these terms as (I) and (II)

For (I), using ψ-mixing (a6),

µ̃U
(
x ∈ U : [u0, . . . , uk−1] /∈ ∪n−2

i=k+m[xi+1, . . . , xi+k]
)

=
1

µ̃(U)
µ̃
(
x ∈ U : [u0, . . . , uk−1] /∈ ∪n−2

i=k+m[xi+1, . . . , xi+k]
)

⩾ (1− γ(m))µ̃
(
x ∈ Σ : [u0, . . . , uk−1] /∈ ∪n−k−m−2

i=0 [xi+1, . . . , xi+k]
)
∼ λn−k−m−2

U ,

where the final step follows from the claim since

µ
(
x ∈ Σ : [u0, . . . , uk−1] /∈ ∪n−k−m−2

i=0 [xi+1, . . . , xi+k]
)
= µ (x ∈ Σ : τU (x) ⩾ n− k −m− 2) .

Then for (II) we look at the larger value

µ̃U

(
x ∈ U : [u0, . . . , uk−1] ∈ ∪k+m−1

i=0 [xi+1, . . . , xi+k] & [u0, . . . , uk−1] /∈ ∪n−2
i=2k+2m[xi+1, . . . , xi+k]

)
.

There are three conditions here: being in U as well as the two conditions on the cylinders. By
ψ-mixing (a6) these are almost independent. The problematic part here, the short returns, is dealt
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with by the following claim. We note that the arguments here are similar to those in [AL], but here
we have more general systems (our measures need not be Bernoulli) and ultimately have to deal
with more than one cylinder.

Claim. There is θ̃ < 1 independent of U such that

µ̃U

(
x ∈ U : [u0, . . . , uk−1] ∈ {[xi+1, . . . , xi+k]}k+m−1

i=0

)
⩽ θ̃.

Proof of Claim. We first estimate

µ̃U

(
x ∈ U : [u0, . . . , uk−1] ∈ {[xi+1, . . . , xi+k]}k−1

i=0

)
⩽ θ̃,

so we are interested in estimates of the form

µ̃U ([u0, u1, . . . , ui, u0, . . . , uk−1]) =
1

µ̃(U)
µ̃ ([u0, . . . , uk−1] ∩ [u0, u1, . . . , ui, u0, . . . , uk−1]) .

We can deal with this case by case: if the intersection here is non-empty and i = 0 then uj = u0
for all 1 ⩽ j < k and then

µ̃U ([u0, u0, . . . , uk−1]) = µ̃U ([u0, . . . , uk−1, uk−1]) = 1− 1

µ̃(U)
µ̃
(
∪u′k−1 ̸=uk−1

[u0, . . . , uk−1, u
′
k−1]

)
⩽ 1− 1

C∗
µ̃
(
∪u′k−1 ̸=uk−1

[u′k−1]
)
= 1− 1

C∗
(1− µ̃([uk−1])) < 1

by (a5). Crucially here we do not have to consider any further overlaps, since in this case they are
accounted for by the first one.

Similarly, if the relevant intersection is non-empty for i = 1 with u0 ̸= u1 but u0 = u2, then in fact
ui = uj if and only if i = j mod 2. So

µ̃U ([u0, u1, u0, . . . , uk−1]) = µ̃U ([u0, . . . , uk−1, uk−2, uk−1])

= 1− 1

µ̃(U)
µ̃
(
∪(u′k−2,u

′
k−1) ̸=(uk−2,uk−1)[u0, . . . , uk−1, u

′
k−2, u

′
k−1]

)
⩽ 1− 1

C∗
µ̃
(
∪(u′k−2,u

′
k−1 )̸=(uk−2,uk−1)[u

′
k−2, u

′
k−1]

)
= 1− 1

C∗
(1− µ̃ ([uk−2, uk−1])) < 1.

(Again, we only have to consider one overlap here.)

We can proceed in the same way to deal with all possible periods up to length ⌊k−1
2 ⌋ within U since

if there is a non-empty overlap of [u0, . . . , uk−1] ∩ [u0, u1, . . . , ui, u0, . . . , uk−1], but not for smaller
i, then this argument says that the jth coordinate of U determines the (i + j + 1)st coordinate
of U for any i. But this uniquely determines all possible overlaps if i ⩽ ⌊k−1

2 ⌋, and indeed all
subsequent overlaps are accounted for by the first one. On the other hand, if there an overlap for
some i > ⌊k−1

2 ⌋, but not before this, there may also be multiple overlaps for subsequent ℓ > i
which are not already accounted for at time i. However, in this case we can use the quasi-Bernoulli
property (a5) to give

µ̃U

(
x ∈ U : [u0, . . . , uk−1] ∈ {[xi+1, . . . , xi+k]}k−1

i=⌊ k−1
2

⌋

)
⩽ C∗

(
µ̃[u0, . . . , u⌊ k−1

2
⌋] + · · ·+ µ̃[u0, . . . , uk−2]

)
⩽
C∗e

−(⌊ k−1
2

⌋)

1− e−α
.

Since for k large, this estimate is very small, we see that the the worst estimate is essentially for
the first case we dealt with here, from which we would derive our new θ̃ < 1.
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However, we also need to deal with the cases

µ̃U

(
x ∈ U : [u0, . . . , uk−1] ∈ {[xi+1, . . . , xi+k]}k+m−1

i=k−1

)
.

But since these cases consist of estimates of the form

µ̃U
(
∪b0,...,bℓ−1∈I [u0, . . . , uk−1, b0, . . . , bℓ−1, u0, . . . , uk−1]

)
⩽ C∗µ̃(U)

for 0 ⩽ ℓ ⩽ m− 1, which sum to C∗mµ̃(U). So for U small, this doesn’t affect θ̃ very much, so we
abuse notation and keep this the same. □

Putting together the estimates for (II) we obtain λn−2−2k−2m
U (1+γ(m))2θ̃. Here we have used that(

x ∈ Σ : [u0, . . . , uk−1] /∈ ∪n−2
i=2k+2m[xi+1, . . . , xi+k]

)
is just a preimage of the set {x ∈ Σ : τU (x) ⩾ n− 2− 2k − 2m}. Therefore the overall asymptotic
estimate is

λn−2−2k−2m
U

(
λm+k
U (1− γ(m))− (1 + γ(m))2θ̃

)
.

Since λn−2−2k−2m
U ⩾ λnU , it is sufficient to prove

(
λm+k
U (1− γ(m))− (1 + γ(m))2θ̃

)
> 0. This

follows since we can fix some large enough m so that γ(m) is sufficiently small, and then use (2.26)
which, since also µ̃(U) ⩽ Ce−ωk, implies λU ⩾ 1−K3µ̃(U), so λm+k

U → 1 as µ̃(U) → 0.

Approximating intervals by cylinders

Now in the case that U is not a cylinder, but Π(U) is an interval, Lemma 3.2 implies that it is
enough to prove for certain unions of cylinders. We will simplify the situation by just looking at a
union of two cylinders, but notice that since the lemma tells us that we only have two families of
cylinders, of depths dL + 1 and dR + 1 respectively, where the dL-th (or dR-th) prefix is the same
for all members of the family, the proofs will go through for these unions too.

Suppose that U and V are cylinders of depth kU and kV respectively, so U = [u0, . . . , ukU−1] and
V = [v0, . . . , vkV −1]. Assume kU ⩾ kV . To make similar estimates to the single cylinder case, we
will replace k with kU in (I) and (II). The estimate for (I) follows as in the single cylinder case,
so we focus on (II). To estimate the short returns we will be dealing with estimates of the form

(i) µU∪V ([u0, . . . , ui, u0, . . . , ukU−1]) for i ⩽ kU − 1;
(ii) µU∪V ([u0, . . . , ui, v0, . . . , vkV −1]) for i ⩽ kU − 1;
(iii) µU∪V ([v0, . . . , vi, u0, . . . , ukU−1]) for i ⩽ kV − 1;
(iv) µU∪V ([v0, . . . , vi, v0, . . . , vkV −1]) for i ⩽ kV − 1;
(v) µU∪V

(
∪bp∈A[v0, . . . , vkV −1, b0, . . . , bj−1, u0, . . . , ukU−1]

)
and kV ⩽ i ⩽ kU − 1;

(vi) µU∪V
(
∪bp∈A[v0, . . . , vkV −1, b0, . . . , bj−1, v0, . . . , vkV −1]

)
and kV ⩽ i ⩽ kU − 1.

As in the single cylinder case, for i small we have to make careful estimates, but for i large a rough
estimate suffices (in particular, the idea for dealing with i around k +m − 1 is the same as in the
single cylinder case, so we will not deal with that here). Indeed the estimates (v) and (vi) the
estimates are ⩽ CC∗µ(U)µ(V )e−jω

µ(U)+µ(V ) , which is very small, and sum nicely. Estimates for (i) and (iv)
follow as in the simple cylinder case. It remains to consider (ii) and (iii).

As in the single cylinder case, the naive estimate takes over for i large, so let us assume:

i ⩽
kV
2

⩽
kU
2

(3.1)
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We give some details for Case (iii). The first i with non-empty overlap is [v0, . . . , vi, u0, . . . , ukU−1] ⊂
U ∪ V with i ⩽ kV − 1.

• First assume [v0, . . . , vi, u0, . . . , ukU−1] ⊂ V .
Then u0 = vi+1, u1 = vi+2, . . . , uj = vi+j+1, . . . , ukV −i−2 = vkV −1.

Now suppose [v0, . . . , vi, vi+1, u0, . . . , ukU−1] ̸= ∅. Then if this set is in V then u0 =
vi+2 = u1 = vi+1, . . . , uj = vi+2+j = uj+1 = vi+j+1 for j ⩽ min{kU − 1, kV − 2 − i},
i.e., vi+1 = · · · = vi+j+1 = u0. Hence any relevant non-empty intersection will already be
contained in [v0, . . . , vi, u0, . . . , uj ] for j = min{kU − 1, kV − 2− i} ⩾ kV

2 − 2.
If instead we consider ∅ ≠ [v0, . . . , vi, vi+1, u0, . . . , ukU−1] ⊂ U then this also forces

uj+i+1 = uj = uj+i+1 for j ⩽ kU − i − 2, i.e., u0 = u1 = · · · = ukU−i−2. Hence any
relevant non-empty intersection will be contained in [v0, . . . , vi, u0, . . . , ukU−i−2].

We can proceed as before to cover intersections [v0, . . . , vi, vi+1, . . . , vi+j , u0, . . . , ukU−1]

for i+ j ⩽ kV
2 : we can always cover all the resulting intersections with [v0, . . . , vi, u0, . . . , uℓ]

for ℓ ⩾ kV
2 .

• Now, instead, start by assuming [v0, . . . , vi, u0, . . . , ukU−1] ⊂ U , then u0 = ui+1, . . . , ukU−i−2 =
ukU−1.

If also ∅ ̸= [v0, . . . , vi, vi+1, u0, . . . , ukU−1] ⊂ U then as above all further relevant non-
empty intersections will already be contained in [v0, . . . , vi, u0, . . . , ukU−i−3]

If instead we assume ∅ ̸= [v0, . . . , vi, vi+1, u0, . . . , ukU−1] ⊂ V then we can deduce that
ui+j = vi+j for 0 ⩽ j ⩽ kV − 1− i (we already had uj = vj for 0 ⩽ j ⩽ kU − 1). This again
puts us in the single cylinder case for the first kV

2 − 1 intersections.
Again we can proceed as before to cover all other intersections

[v0, . . . , vi, vi+1, . . . , vi+j , u0, . . . , ukU−1] for i+ j ⩽ kV
2 .

Case (ii) follows similarly. □

4. Hitting times estimates

In this section, we obtain the following estimates on the expected hitting times.

Theorem 4.1. Assume (f, µ) satisfies (a1)-(a5), (2.8) and (2.9), so that by Proposition 2.3 we
can choose U(δ3) which satisfies (U). There exist 0 < c < C < ∞, δ∗3 ∈ (0, δ3) such that for all
U ∈ U(δ∗3),

c

µ(U)
⩽ E(τU ) ⩽

C

µ(U)
.

In order to obtain uniform estimates on E(τU ) we write E(τU ) =
∑

n⩾1 µ(τU ⩾ n) and observe that

µ(τU ⩾ n) =

∫
1{τU⩾n} · g dm =

∫
L̊nU (g) dm

and so it will be sufficient to obtain uniform estimates on
∫
L̊nU (g) dm.

Lemma 4.2. There exist constants 0 < c < C < ∞ and 0 < δ∗2 ⩽ δ1 such that for all U ∈ U(δ∗2)
and n ∈ N,

cλnU ⩽
∫

L̊nU (g) dm ⩽ CλnU .
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Proof. By Corollary 2.10, for all U ∈ U(δ1).∫
L̊nU (g)dm = λnU

(∫
ΠU (g) + λ−nU RnU (g)dm

)
= λnU

(∫
cUgU + λ−nU RnU (g)dm

)
= λnU

(
cU + λ−nU

∫
RnU (g)dm

)
where we have used that

∫
gUdm = 1. By (2.25),∣∣∣∣∫ RnU (g)dm

∣∣∣∣ ⩽ ∥RnU (g)∥ ⩽ K2β
n
1 ∥g∥.

By (2.24),

|1− cU | =
∣∣∣∣∫ Π(g)dm−

∫
ΠU (g)dm

∣∣∣∣ ⩽ K1m(U)η∥g∥.

Now, we can choose N ∈ N so that K2∥g∥(β1/β2)N < 1. Now choose δ∗2 ⩽ δ1 such that M :=
supU∈U(δ∗2)

K1∥g∥m(U)η < 1−K2∥g∥(β1/β2)N . Then for all n ∈ N and U ∈ U(δ∗2),∫
L̊nU (g)dm ⩽ λnU (1 +M +K2(β1/β2)

n∥g∥)

⩽ λnU (1 +M +K2∥g∥) .

Moreover, since ess inf g = 1
C1

> 0 and |gU |∞ ≤ K4, one has g ≥ 1
C1K4

gU so that for any n ≥ 0,∫
L̊nU (g)dm =

∫
Ůn−1

gdm ≥ 1

C1K4

∫
Ůn−1

gUdm =
1

C1K4

∫
L̊nUgUdm =

1

C1K4
λnU .

□

Therefore, to complete the proof of Theorem 4.1, we require estimates on λU . This is provided by
the following result.

Proposition 4.3. There exist constants 0 < c < C <∞ and δ3 ∈ (0, δ2) such that for all U ∈ U(δ3),
cµ(U) ⩽ 1− λU ⩽ Cµ(U).

Proof. The upper bound follows from (2.26). For the lower bound we adapt some arguments from
[KL2]. In [KL2] and [BDT] the limit limδ→0

1−λUδ
µ(Uδ)

is computed for
⋂
δ>0 Uδ = {z}. We require

something less precise (only a lower bound on the ratio 1−λUδ
µ(Uδ)

), but it needs to be uniform over
U ∈ U(δ3) for some δ3 > 0.

We begin by verifying that uniform versions of (A1)-(A6) from [KL2] hold over our family of
operators {L̊U}U∈U(δ1). (A1)-(A2) is precisely the spectral decomposition from Corollary 2.10.
(A3) requires that

∞∑
n=0

sup
U∈U(δ1)

∥RnU∥
λnU

<∞

which holds by (2.25). (A4) requires that
∫
gUdm = 1, which we have, and that

sup
U∈U(δ1)

∥gU∥ <∞

which follows from (2.27). (A5) requires that supU∈U(r) ηU → 0 where

ηU := sup
∥ψ∥=1

∣∣∣∣∫ (Lψ − L̊Uψ)dm
∣∣∣∣ , (4.1)
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which holds by Lemma 2.9 since ηU ⩽ m(U). Finally (A6) requires that

ηU∥(L − L̊U )(g)∥ ⩽ C ′µ(U)

for some constant C ′ which doesn’t depend on U ∈ U(δ1). Since

∥(L − L̊U )(g)∥ = ∥L(1Ug)∥ ⩽ ∥L∥∥1Ug∥ ⩽ ∥L∥∥g∥

we indeed have
ηU∥(L − L̊U )(g)∥ ⩽ m(U)∥L∥∥g∥ ⩽ C1∥L∥∥g∥µ(U)

as desired.

The above implies that [KL2, Lemma 6.1] holds for a uniform constant C. In particular, defining
for each n ∈ N

κn := K2

∞∑
k=n

(
β1
β2

)n
, (4.2)

there exists C > 0 such that for all U ∈ U(δ1),

(a) |1−
∫
gdmU | ⩽ Cm(U) where mU is given by Corollary 2.10(a),

(b) ∥Rn
Ug∥
λnU

⩽ Cκn(∥(L − L̊U )(g)∥+ |1− λU |).

Following the proof of Theorem 2.1 in [KL2] now yields that for any n ∈ N,

1− λU
µ(U)

=

(
1−

∑n−1
k=0 λ

−k
U qk,U

)
+ κ′n

(1 +O(ηU ))(1 + nO(ηU ))
(4.3)

where κ′n = O(κn) and

qk,U =
m((L − L̊U )L̊kU (L − L̊U )g)

m((L − L̊U )g)
=
µ(EkU )

µ(U)

for
EkU := {x ∈ U : f i(x) /∈ U, i = 1, . . . , k, fk+1(x) ∈ U},

see [BDT].

Recall that by κ′n = O(κn) we mean that for some constant C ′′ > 0 which is independent of n (and
U), |κ′n| ⩽ C ′′|κn|. Let C be any constant such that

|κ′n| ⩽ C(β1/β2)
n

for all n ∈ N. Choose δ′2 ∈ (0, δ2] such that

ρ :=
β1

β2 infU∈U(δ′2)
λU

< 1,

which is possible by (2.26), and such that infU∈U(δ′2)
λU ⩾ β2. Let c be given by Proposition 3.1.

Let N be sufficiently large that CρN < cβ2. We claim that there exists c′ > 0 and 0 < δ′2 ⩽ δ2 such
that for all U ∈ U(δ′2) with NU := 1/µ(U) > N ,

1−
NU−1∑
k=0

µ(EkU )

µ(U)
+ κ′NU

⩾ c′. (4.4)
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To see this note that the left hand side of (4.4) equals

1−
NU−1∑
k=0

µ(EkU )

µ(U)
+ κ′NU

= 1− µ(x ∈ U : τU (x) ⩽ NU )

µ(U)
+ κ′NU

= 1− µU (τU ⩽ NU ) + κ′NU

= µU (τU ⩾ NU + 1) + κ′NU
.

By Proposition 3.1, µU (τU ⩾ NU + 1) ⩾ cλNU+1
U therefore

µU (τU ⩾ NU + 1) + κ′NU
⩾ cλNU+1

U + κ′NU
⩾ λNU

U (cλU − C (β1/β2λU )
NU ).

All of this implies that for all U ∈ U(δ′2),

1−
NU−1∑
k=0

qk,U + κ′NU
⩾ λNU

U (cβ2 − CρNU ) > 0,

proving (4.4). Finally, we choose 0 < δ3 ⩽ δ′2 sufficiently small that the denominator in (4.3),

inf
U∈U(δ3)

(1 +O(ηU ))(1 +NUO(ηU )) > 0

(possible since ηU ⩽ 1/m(U) and noting that it is clearly uniformly bounded above too) and such
that the numerator

inf
U∈U(δ3)

(
1−

NU−1∑
k=0

λ−kU qk,U

)
+ κ′NU

> 0

which is possible by (4.4) and (2.26). By (4.3) this completes the proof of the proposition. □

Proof of Theorem 4.1. Since

E(τU ) =
∑
n⩾1

µ(τU ⩾ n) =
∑
n⩾1

∫
L̊nU (g) dm,

it follows from Lemma 4.2 that for all r ∈ (0, δ2] and U ∈ U(δ∗2),
c

1− λU
⩽ E(τU ) ⩽

C

1− λU

for some uniform constants 0 < c < C. Take δ∗3 = min{δ∗2 , δ3} where δ3 is given by Proposition 4.3.
The proof now follows from Proposition 4.3. □

5. Expected cover time: uniformly hyperbolic case

In this section we prove Theorems 2.1 and 2.2. This will be done by generalising the ‘Matthews
method’ for Markov chains (see [M] or [LP, Chapter 11]) which will establish a relationship between
the expected cover time and the expected hitting times, at which point we can apply our estimates
from §4. Recall from §2 that there exists a subshift σ : Σ → Σ and a projection Π : Σ → I such
that f ◦ Π = Π ◦ σ. Further recall that there exists a quasi-Bernoulli measure µ̃ on Σ such that
Π∗µ̃ = µ. In this section we will primarily work with symbolic versions of cover and hitting times,
which we describe below.

Let P be a finite set of subsets of Σ where (a) for each P ∈ P, there exists a finite or countable set
of words P ∗ ⊂ Σ∗ such that P =

⋃
i∈P ∗ [i], and (b) for distinct P,Q ∈ P, P ∩ Q = ∅.5 Note that

P is not necessarily a partition of Σ since there is no requirement that
⋃
P∈P P = Σ. We will call

P a subpartition of Σ if it satisfies (a) and (b). For i ∈ Σ we let τP(i) denote the first time n that

5Note that here we only require disjointness as subsets of Σ, rather than disjointness of their Π-projections to R.
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{i, σ(i), . . . , σn(i)} has visited every element in P. For P ∈ P we let τP : Σ → N0 ∪ {∞} be defined
as

τP (i) = inf{n ≥ 0 : σn(i) ∈ P}

i.e. the first n ≥ 0 such that σn(i) begins with a word in P ∗.

Remark 5.1. Since τP may take the value 0, strictly speaking τP is not a hitting time in the same
sense as (1.4). Let us briefly write τ̃P (i) = inf{n ≥ 1 : σn(i) ∈ P}. Then

{i ∈ Σ : τ̃P (i) = n} = σ−1({i ∈ Σ : τP (i) = n− 1}),

implying in particular that Eµ̃(τP ) = Eµ̃(τ̃P ). Hence, slightly abusing notation, we will still refer
to τP as the hitting time throughout this section. The fact that the expectations coincide along with
the fact that Π∗µ̃ = µ, Π ◦ σ = f ◦ Π and non-uniquely coded points have zero measure, we have
Eµ̃(τP ) = Eµ(τΠ(P )).

We need to set up some notation and obtain some preliminary results. Let P = {P1, . . . , PN} be a
subpartition of Σ and given a permutation s of {1, . . . , N} and 2 ⩽ k ⩽ N , let As,k ⊂ Σ be the set
of points which visit Ps(k) for the first time after Ps(1), . . . , Ps(k−1) have all been visited. That is,
denoting τs(k) ≡ τPs(k)

and τ
s(k−1)
s(1) to be the first time n ∈ N0 that Ps(1), . . . , Ps(k−1) have all been

visited by {i, σ(i), . . . , σn(i)}, we have

τs(k)(i) > τ
s(k−1)
s(1) (i)

for i ∈ As,k.

Let P be the uniform measure on the set of all permutations s ∈ SN of {1, . . . , N}.

Lemma 5.2. Let P be a subpartition of Σ and As,k and P be as above. Then∫
µ̃(As,k)dP =

1

k
. (5.1)

Proof. Fix 2 ⩽ k ⩽ N . For each s ∈ SN consider the unordered set {s(1), . . . , s(k)}. Note that
there are N(N−1)···(N−(k−1))

k! possible values. For each possible value {i1, . . . , ik} ⊂ {1, . . . , N} that
this set can take, let SN ({i1, . . . , ik}) denote the set of all s for which {s(1), . . . , s(k)} = {i1, . . . , ik},
thinking of these as unordered sets.

Next, we can further separate each SN ({i1, . . . , ik}) into k subsets SijN ({i1, . . . , ik}), (1 ⩽ j ⩽
k), which determines the set of all s ∈ SN ({i1, . . . , ik}) for which s(k) = ij . Note that each
S
ij
N ({i1, . . . , ik}) contains (N−k)!(k−1)! permutations, corresponding to (N−k)! ways to order the

lastN−k terms and and (k−1)! ways to arrange the first k−1 terms. Over each s ∈ S
ij
N ({i1, . . . , ik}),

the set As,k is constant. If for each 1 ⩽ j ⩽ k we choose a representative sj ∈ S
ij
N ({i1, . . . , ik})

then since the sets in P are pairwise disjoint, it follows that {Asj ,k}kj=1 are pairwise disjoint and⋃k
j=1Asj ,k = Σ.

Hence for any choice of {i1, . . . , ik} ⊂ {1, . . . , N},∫
SN ({i1,...,ik})

µ̃(As,k)dP =

k∑
n=1

(k − 1)!(N − k)!

N !
µ̃(Asj ,k), (5.2)
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where the factor 1
N ! comes from the fact that P is uniformly distributed. Now, since

⋃k
j=1Asj ,k = Σ

and {Asj ,k}kj=1 are pairwise disjoint we have

µ̃(Ask,k) = 1−
k−1∑
j=1

µ̃(Asj ,k)

and substituting this into (5.2) we obtain∫
SN ({i1,...,ik})

µ̃(As,k)dP =
k−1∑
j=1

(k − 1)!(N − k)!

N !
µ̃(Asj ,k) +

(k − 1)!(N − k)!

N !

(
1−

k−1∑
j=1

µ̃(Asj ,k)
)

=
(k − 1)!(N − k)!

N !
.

Therefore, ∫
SN

µ̃(As,k)dP =
N(N − 1) · · · (N − (k − 1))

k!
· (k − 1)!(N − k)!

N !
=

1

k
.

□

We are now ready to prove Theorems 2.1 and 2.2. Note that the upper bound in Theorem 2.1 is
just a special case of the upper bounds in Theorem 2.2 (by using (2.11) and that g = dµ/dm is
strictly positive on Λ), hence it suffices to prove the upper bound in Theorem 2.2.

Proof of upper bound in Theorem 2.2. For each δ > 0 consider the set of closed intervals Uδ given
by (U). Recall that for any U ∈ Uδ, there exists x ∈ Λ such that B(x, tδ) ⊆ U ⊆ B(x, Tδ) for some
uniform constants t and T . Let Pδ be the subpartition

Pδ =
{
int(Π−1(U)) : U ∈ Uδ

}
(5.3)

where int is taking the interior inside Σ. This ensures Pδ is a subpartition (by ensuring a set in Pδ
cannot contain any isolated points in the cylinder sets topology and guarantees pairwise disjointness
of sets in Pδ).

By (U)(a) and (U)(c), if {i, σ(i), . . . , σn(i)} has visited each element in Pδ/2T then {x, f(x), . . . , fn(x)}
is δ-dense, hence

Eµ(τδ) ⩽ Eµ̃(τPδ/2T
). (5.4)

Now, fix δ and fix P = Pδ/2T . Let L = maxi∈P |i|, so that L = O(log(1/δ)) by (U)(e). We order
P = {P1, . . . , PN} and let P be the uniform measure on the set of permutations SN . We have

∫
τPdµ̃ =

∫ ∫
τ
s(N)
s(1) dµ̃dP =

∫ ∫
τs(1)dµ̃dP+

N∑
k=2

∫ ∫
τ
s(k)
s(1) − τ

s(k−1)
s(1) dµ̃dP

=

∫ ∫
τs(1)dµ̃dP+

N∑
k=2

∫ ∫
As,k

τs(k) − τ
s(k−1)
s(1) dµ̃dP. (5.5)

Fix s ∈ SN . Let A∗
s,k denote the set of all finite words i = i0 . . . in ∈ Σ∗ for which (a) for all 1 ⩽ j ⩽

k− 1, i contains at least one word from Ps(j), and we let 0 ⩽ nj ⩽ n−L denote the index at which
the first word from Ps(j) begins (so that inj is the first digit of this word) (b) for ℓ ⩽ max1⩽j⩽k−1 nj ,
i does not contain any word from Ps(k) beginning at iℓ and (c) |i| = L+max1⩽j⩽k−1 nj . Note that
As,k =

⋃
i∈A∗

s,k
[i]. For i ∈ A∗

s,k let Bi,s,k denote the set of all finite words j ∈ Σ∗ for which ij ∈ Σ∗
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and j ends in the first occurrence of a word from Ps(k). Given j ∈ Bi,s,k let js(k) ∈ Ps(k) denote the
word that j ends in. Also, let Bs,k denote the set of all finite words j ∈ Σ∗ which end in the first
occurrence of a word from Ps(k). Then∫

As,k

τs(k) − τ
s(k−1)
s(1) dµ̃ ⩽

∑
i∈A∗

s,k

∑
j∈Bi,s,k

µ̃([ij])(|j|+ L− |js(k)|).

Then by the quasi-Bernoulli property (a6) we have∑
i∈A∗

s,k

∑
j∈Bi,s,k

µ̃([ij])(|j|+ L− |js(k)|) ⩽ C∗
∑

i∈A∗
s,k

∑
j∈Bi,s,k

µ̃([i])µ̃([j])(|j|+ L− |js(k)|)

⩽ C∗µ̃(As,k)
∑

j∈Bs,k

µ̃([j])(|j|+ L− |js(k)|)

⩽ Cµ̃(As,k)(Eµ̃(τs(k) + 2L)).

To see the final inequality, we use that |τ ′′s(k)−τs(k)| ⩽ L where, denoting τ ′s(k)(i) to be the first time
n ∈ N that i|n ends in a word from Ps(k), τ ′′s(k)(i) denotes the time n′ ⩽ n that this word from Ps(k)
begins. Putting back into (5.5) and using L = O(log(1/δ)) we get∫

τPdµ̃ ⩽ C(log(1/δ) + max
1⩽m⩽N

Eµ̃(τm))

(
1 +

N∑
k=2

∫
µ̃(As,k)dP

)

= C

(
log(1/δ) + max

1⩽m⩽N
Eµ(τΠ(Pm))

)
(1 + 1/2 + · · ·+ 1/N)

by Lemma 5.2 and Remark 5.1. Note that N ⩽ C/δ. Using this, we obtain that

Eµ(τδ) ⩽ C

(
max

U∈Uδ/2T

1

µ(U)
log (1/δ) + (log(1/δ))2

)
⩽ C

(
1

minx∈Λ µ(B(x, tδ/2T ))
log (1/δ) + (log(1/δ))2

)
⩽

C

Mµ(tδ/2T )
log (1/δ)

where in the first inequality we have used (5.4), Theorem 4.1 and the fact that µ is non-atomic, and
in the second we have used (U)(a). In the specific setting that (2.11) holds, similarly

Eµ(τδ) ⩽ C

(
max

U∈Utδ/2T

1

µ(U)
log (1/δ) + (log(1/δ))2

)
⩽

C

δsf
log (1/δ)

where again we have used (U)(a) to conclude that maxU∈Uδ/2T

1
µ(U) ⩽ maxx∈Λ

1
µ(B(x,tδ/2T )) and

(2.11) for the second inequality. □

Now we prove the lower bounds in Theorems 2.1 and 2.2. The lower bound in the first displayed
equation in Theorem 2.1 is a special case of the lower bound in Theorem 2.2. Therefore, we will
first prove the lower bound from Theorem 2.2 and then proceed to prove the lower bound from the
second displayed equation in Theorem 2.1.

Proof of lower bounds in Theorem 2.1 and 2.2. We begin by proving the lower bound from Theorem
2.2. Define Pδ as in (5.3). Note that if {x, f(x), . . . , fn(x)} is δ-dense then it necessarily visits every
ball centred at a point in Λ of radius greater than or equal to δ hence {i, σ(i), . . . , σn(i)} has visited
each element in P2δ/t by (U)(a) and (U)(b). Hence

Eµ(τδ) ⩾ Eµ̃(τP2δ/t
).
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Moreover, for each P ∈ P2δ/t,

Eµ̃(τP2δ/t
) ⩾ Eµ̃(τP ) = Eµ(τΠ(P )) ⩾

c

µ(Π(P ))

where we have used Remark 5.1 to justify the equality of expectations. Since some U = Π(P ) ∈ U2δ/t

must belong to the ball of minimum measure at scale 2Tδ/t we have

Eµ(τδ) ⩾
c

minx∈Λ µ(B(x, 2Tδ/t))
=

c

Mµ(2Tδ/t)

proving the lower bound from Theorem 2.2.

Next, we prove the lower bound which appears in the second displayed equation in Theorem 2.1.
In particular, we are now additionally assuming (2.11) holds, f is Markov and f has at least 2 full
branches, moreover Proposition 2.4 is applicable. Since f is Markov, it is useful to keep in mind
that for i, j ∈ Σ∗ the legality of concatenations ij will be equivalent to the legality of concatenating
the last digit of i with the first digit of j. For each δ sufficiently small consider the set Vδ given by
Proposition 2.4. Define

Qδ = {[wabn3 ] : Π([wabn3 ]) ∈ Vδ} ⊂ {[wabn3 ] : w ∈ {a, b}∗}
noting that Qδ is a subpartition since sets in Vδ are pairwise disjoint. Note that if {x, f(x), . . . , fn(x)}
is δ-dense then it necessarily visits every ball centred at a point in Λ of radius greater than or equal
to δ hence by (U)(a) and (U)(c) {i, σ(i), . . . , σn(i)} has visited each element in Q2δ/t. Hence

Eµ(τδ) ⩾ Eµ̃(τQ2δ/t
). (5.6)

Now, fix δ and fix Q = Q2δ/t. Write Q = {[i1], . . . , [iM ]} and let P be the uniform measure on the
set of permutations SM . Let As,k ⊂ Σ be the set of points which visit [is(k)] for the first time after
[is(1)], . . . , [is(k−1)] have all been visited. For brevity we write τs(k) ≡ τ[is(k)] and τ

s(k−1)
s(1) to be the

first time that [is(1)], . . . , [is(k−1)] have all been visited. Then as in (5.5)∫
τQdµ̃ =

∫ ∫
τs(1)dµ̃dP+

M∑
k=2

∫ ∫
As,k

τs(k) − τ
s(k−1)
s(1) dµ̃dP. (5.7)

Fix s ∈ SM . Let A∗
s,k denote the set of all finite words i ∈ Σ∗ for which (a) i contains every word

in {is(1), . . . , is(k−1)} (b) i does not contain the word is(k) and (c) for some 1 ⩽ i ⩽ k − 1, i ends in
the first occurrence of the word is(i). In particular, As,k =

⋃
i∈A∗

s,k
[i] by Proposition 2.4(g).

Let Bi,s,k denote the set of all finite words j ∈ Σ∗ for which ij ends in the first occurrence of the word
is(k). Note that since i ends with a digit in {a, b} and the system is Markov, necessarily ij ∈ Σ∗.
Then by the (lower) quasi-Bernoulli property (a6),∫

As,k

τs(k) − τ
s(k−1)
s(1) dµ̃ =

∑
i∈A∗

s,k

∑
j∈Bi,s,k

µ̃([ij])(|is(i)|+ |j| − |is(k)|)

⩾ 1/C∗
∑

i∈A∗
s,k

∑
j∈Bi,s,k

µ̃([i])µ̃([j])(|is(i)|+ |j| − |is(k)|)

⩾ µ̃(As,k)/C∗ inf
i∈A∗

s,k

∑
j∈Bi,s,k

µ̃([j])(|is(i)|+ |j| − |is(k)|). (5.8)

Note that

Eis(i)(τs(k)) =
∑

j∈Bi,s,k

µ̃([is(i)j])

µ̃([is(i)])
(|is(i)|+ |j| − |is(k)|) ⩽ C∗

∑
j∈Bi,s,k

µ̃([j])(|is(i)|+ |j| − |is(k)|), (5.9)
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where we are using Eis(i) to denote the expectation (with respect to µ̃) conditioned to [is(i)].

Let L = maxi∈Q |i|, noting that L = O(log(1/δ)) by Proposition 2.4(f). Consider the function

ws(k),n(x) := inf{m ⩾ n : σm(x) ∈ [is(k)]}.

Denote ws(k),s(i) = ws(k),|is(i)|. Observe that on [is(i)],

ws(k),s(i) ⩽ τs(k) +
L∑
ℓ=1

1{τs(k)=|is(i)|+ℓ−|is(k)|}(ws(k),|is(i)|+ℓ + ℓ),

therefore

Eis(i)(ws(k),s(i)) ⩽ Eis(i)(τs(k)) +
L∑
ℓ=1

Eis(i)(1{τs(k)=|is(i)|+ℓ−|is(k)|}(ws(k),|is(i)|+ℓ + ℓ)). (5.10)

Let Cs(i),s(k),ℓ ⊂ Σℓ be the set of words k such that is(i)k ends with the first occurence of the word
is(k) (note that necessarily is(i)k ∈ Σ∗ since is(i) ∈ {a, b}∗) and let Cs(i),s(k) =

⋃L
ℓ=1Cs(i),s(k),ℓ. Let

Ds(k) denote the set of words j such that j ends with the first occurrence of the word is(k). Define

Ps(i),s(k) =
∑

k∈Cs(i),s(k)

µ̃([k]) and Ps(i),s(k),ℓ =
∑

k∈Cs(i),s(k),ℓ

µ̃([k])

Note that for any choice of permutation s, Ps(i),s(k) ⩽ C∗µ̃[ab
n3 ]K. To see this, write is(k) =

u1 . . . unab
n3 , thus

Ps(i),s(k) ⩽ µ̃[abn3 ] + µ̃[unab
n3 ] + · · ·+ µ̃[u1 . . . unab

n3 ] ⩽ C∗µ̃[ab
n3 ]K.

In particular r := C3
∗Ps(i),s(k) < 1 by Proposition 2.4(a).

Eis(i)

(
1{τs(k)=|is(i)|+ℓ−|is(k)|}(ws(k),|is(i)|+ℓ + ℓ)

)
=

∑
k∈Cs(i),s(k),ℓ

∑
j∈Ds(k)

µ̃([is(i)kj])

µ̃([is(i)])
(ℓ+ |j| − |is(k)|)

⩽ C3
∗

∑
k∈Cs(i),s(k),ℓ

µ̃([k])
∑

j∈Ds(k)

µ̃([is(i)j])

µ̃([is(i)])
(ℓ+ |j| − |is(k)|)

⩽ C3
∗Ps(i),s(k),ℓEis(i)(ws(k),s(i) + L).

So by (5.10)

Eis(i)(τs(k)) ⩾ Eis(i)(ws(k),s(i))(1− C3
∗Ps(i),s(k))− C3

∗Ps(i),s(k)L. (5.11)

Moreover

Eis(i)(ws(k),s(i)) =
∑

j∈Ds(k)

µ̃([is(i)j])

µ̃([is(i)])
(|j| − |is(k)|)

⩾
1

C∗

∑
j∈Ds(k)

µ̃([j])(|j| − |is(k)|) =
1

C∗
Eµ̃(τs(k)). (5.12)
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So by (5.9), (5.11) and (5.12),∑
j∈Bi,s,k

µ̃([j])(|is(i)|+ |j| − |is(k)|) ⩾
1

C∗
Eis(i)(τs(k))

⩾
1

C∗
Eis(i)(ws(k),s(i))(1− C3

∗Ps(i),s(k))− C2
∗Ps(i),s(k)L

⩾
1

C2
∗
Eµ̃(τs(k))(1− C3

∗Ps(i),s(k))− C2
∗Ps(i),s(k)L ⩾

1− r

C2
∗

Eµ̃(τs(k))− rL.

Finally, substituting this into (5.8) and applying (5.7),

Eµ(τδ) ⩾
(
1− r

C2
∗

min
1⩽m⩽M

Eµ̃(τm)− rL

)
(1 + 1/2 + · · ·+ 1/M)

⩾ c min
U∈V2δ/t

1

µ(U)
log(1/δ) =

c

δsf
log(1/δ)

where in the first line we have used (5.6) and Lemma 5.2 and in the second we have used Remark
5.1, the fact that L = O(log(1/δ)), Proposition 2.4(c) to bound M ⩾ cδ−ε as well as Theorem 4.1,
(2.11), Proposition 2.4(d) and the fact that |g|∞ = |dµ/dm|∞ <∞ on Λ.

□

6. Expected cover time: non-uniformly hyperbolic case

In this section we consider some cases where the system f : I → I does not satisfy our standard
assumptions (a1)-(a6),(2.8)-(2.10). By considering a first return map (to a subset of I) which
satisfies (a1)-(a6), (2.8)-(2.10), we will be able to recover results on the expected cover time for the
original system.

Let f : I → I with a conformal measure m and invariant probability measure µ which is absolutely
continuous with respect to m. Given an interval Y ⊂ I with µ(Y ) > 0 we define F = f τY : Y → Y
be the first return map to Y and define µY = 1

µ(Y )µ|Y . We let Y = {Yi}i be the intervals on which
τY is constant, write τi = τY |Yi , and assume F : Yi → Y is monotone: correspondingly, let Yn be
the set of n-cylinders.

For x ∈ Y let Rn(x) =
∑n−1

i=0 τY ◦ F i(x) denote the nth return time of x to Y . By Kac theorem,
for µY almost every x ∈ Y ,

Rn(x)

n
=

1

n

n−1∑
k=0

τY (F
kx)

n→∞−−−→
∫
Y
τY dµY = 1/µ(Y ).

Let Zn denote the set of n-cylinders for f , which are defined just as in §2. We will require the
following property: there exists N1 ∈ N such that

(a)
N1⋃
n=0

fn(Y ) = Y and (b) ZN1 is finite in Y . (6.1)

We note that (6.1)(b) implies that sup1≤n≤N1
supx∈Y |(fn)′(x)| <∞.

As in §2 we begin by stating our result in the special case that (2.11) holds.
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Theorem 6.1. Let f,m, µ be as above, in particular we assume (2.11). Suppose there exists Y ⊂ I
such that f satisfies (6.1). Moreover assume that the first return map F : Y → Y equipped with
the measure µY satisfies (a1)-(a6), (2.8)-(2.11), with partition Y replacing Z there. Additionally
assume that µY (τY > n) = O(n−γ) for some γ > 2. There exist 0 < c < C < ∞ such that for all
δ > 0,

cδ−sf ⩽ Eµ(τδ) ⩽ Cδ−sf log(1/δ).

Moreover, if F has at least 2 full branches, we have a sharp lower bound

cδ−sf log(1/δ) ⩽ Eµ(τδ) ⩽ Cδ−sf log(1/δ).

Next we state our result for general measures.

Theorem 6.2. Let f,m, µ be as above. Suppose there exists Y ⊂ I such that f satisfies (6.1).
Moreover assume that the first return map F : Y → Y equipped with the measure µY satisfies (a1)-
(a6),(2.8)-(2.10). Additionally, assume that µY (τY > n) = O(n−γ) for some γ > 2. There exist
0 < c < C <∞ such that for all δ > 0,

c

Mµ(δ)
⩽ Eµ(τδ) ⩽

C

Mµ(δ)
log(1/δ).

In particular if dimM µ <∞ then there exists ε > 0 such that

cδ− dimM µ+Err(δ/ε) ⩽ Eµ(τδ) ⩽ Cδ− dimM µ−Err(εδ) log(1/δ).

We denote
τYδ (x) := inf{n ⩾ 1 : {x, f(x), . . . , fn(x)} is δ-dense in Y } (6.2)

and
Tδ(x) := inf{n ⩾ 1 : {x, F (x), . . . , Fn(x)} is δ-dense in Y }. (6.3)

Fix ε > 0 and consider the sets of large deviations

Au = Au,ε := {x ∈ Y : ∃n ⩾ u, |Rn(x)/n− 1/µ(Y )| > ε}.

Lemma 6.3. Under (a6), µY (τY > n) = O(n−γ) implies
∑∞

u=1 µY (Au) <∞.

Proof. By [G1, Theorem 2.2], see also [G2, Theorem 4], ψ-mixing and µY (τY > n) = O(n−γ) implies
µ(Au) = O(n1−γ). □

Using Lemma 6.3 we will show that under the assumption that µY (τY > n) = O(n−γ) for some
γ > 2, it follows that Eµ(τδ) is proportional to EµY (Tδ), and the proof of Theorems 6.1 and 6.2 will
follow by applying Theorem 2.1 to F .

The following lemma allows us to estimate τδ from above in terms of τYδ , whose expectation can be
more easily related to E(Tδ).

Lemma 6.4. There exists κ > 0 such that for all sufficiently small δ > 0 and all x ∈ Y , τδ(x) ⩽
τYκδ(x).

Proof. By (6.1)(b) there exists C < ∞ such that sup1≤n≤N1
supx∈Y |(fN1)′(x)| ⩽ C and we set

κ := 1/(2CN1(N1 + 1)). Let P be a partition of Y into sets of length at most δ
CN1(N1+1) and at

least δ
2CN1(N1+1) with the property that each set in P is contained inside a single element of ZN1 .

Denote
A := {fn(J) : J ∈ P, 1 ⩽ n ⩽ N1, f

n(J) ∩ (I \ Y ) ̸= ∅}
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and note that for each fn(J) ∈ A, diam(fn(J)) ⩽ Cdiam(J) = δ
N1(N1+1) ⩽ δ

2 . Moreover, by
definition of N1, ⋃

U∈A
U = I \ Y (6.4)

Fix x ∈ Y and let k = τYκδ(x). Note that since each set J ∈ P has diameter at least δ
2CN1(N1+1) = κδ,

this implies that each set in P is visited by the orbit segment {x, f(x), . . . , fk(x)}. Let J ⊆
{1, . . . , k} be the set of indices i for which f i(x) ∈ Y . For each i ∈ J let Ji ∈ P denote the
partition element that f i(x) belongs to. Note that each fn(J) ∈ A must be visited by the orbit
segment {x, . . . , fk(x)} except possibly the following sets:

B := {f j(Ji) : i ∈ J , 1 ⩽ j ⩽ N1 s.t. i+ j > k}.

(This is because any set in B might only be visited after time k). There are at most 1+2+. . .+N1 =
N1(N1+1)/2 distinct sets in B. By continuity of fN1 on ZN1 , each set in B is necessarily an interval
of length at most δ/N1(N1 +1). Therefore, the largest interval contained in

⋃
J ′∈B J

′ has length at
most δ/2. In particular by (6.4) {x, . . . , fk(x)} must be δ dense in I \ Y . □

We are almost ready to estimate EµY (τδ) in terms of EµY (Tδ). We will require the following simple
but useful lemma.

Lemma 6.5. Suppose x ∈ Acu. Then

τYδ (x) >
u

µ(Y )
⇒ Tδ(x) >

u

1 + εµ(Y )

and
Tδ(x) >

u

1− εµ(Y )
⇒ τYδ (x) >

u

µ(Y )
.

Proof. Note that for any x ∈ Y , RTδ(x)(x) = τYδ (x).

From our definitions
RTδ(x)(x)

Tδ(x)
=
τYδ (x)

Tδ(x)
=

1

µ(Y )
+ s

where |s| < ε since x ∈ Acu. Therefore if τYδ (x) > u
µ(Y ) then

Tδ(x) =
τYδ (x)

1/µ(Y ) + s
>

u/µ(Y )

1/µ(Y ) + ε
=

u

1 + εµ(Y )

which proves the first part. On the other hand if Tδ(x) > u
1−εµ(Y ) then

τYδ (x) =
Tδ(x)
µ(Y )

+ sTδ(x) >
u

1− εµ(Y )
(1/µ(Y )− ε) =

u

µ(Y )

which proves the second part. □

The following proposition allows us to estimate EµY (τδ) in terms of EµY (Tδ).

Proposition 6.6. Assume that
∑∞

u=1 µY (Au) <∞. There exist constants c < 1 < C such that for
all δ > 0,

cEµY (Tδ) ⩽ EµY (τδ) ⩽ CEµY (Tκδ).
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Proof. Since µY is supported on Y , by Lemma 6.4

EµY (τ
Y
δ ) ⩽ EµY (τδ) ⩽ EµY (τ

Y
κδ)

so it is enough to obtain lower and upper bounds on EµY (τYδ ) in terms of EµY (Tδ). To this end

EµY (τ
Y
δ ) =

∑
n∈N

µY (τ
Y
δ ⩾ n) =

∑
n∈N

(
µY (τ

Y
δ ⩾ n ∧Acnµ(Y )) + µY (τ

Y
δ ⩾ n ∧Anµ(Y )

)
⩽
∑
n∈N

µY

(
Tδ ⩾

nµ(Y )

1 + εµ(Y )

)
+
∑
n∈N

µ(Anµ(Y ))

=
∑
n∈N

µY

(
Tδ(1 + εµ(Y ))

µ(Y )
⩾ n

)
+
∑
n∈N

µ(Anµ(Y ))

= EµY

(
Tδ(1 + εµ(Y ))

µ(Y )

)
+
∑
n∈N

µY (Anµ(Y ))

=
1 + εµ(Y )

µ(Y )
EµY (Tδ) +

∑
n∈N

µY (Anµ(Y ))

where to get the inequality we have used Lemma 6.5. Note that since
∑

n∈N µY (Anµ(Y )) <∞, it is
just a constant which is independent of δ, therefore we have the upper bound.

Similarly for the lower bound,

EµY (τ
Y
δ ) ⩾

∑
n∈N

µY (τ
Y
δ ⩾ n ∧Acnµ(Y )) ⩾

∑
n∈N

µY

(
Tδ ⩾

nµ(Y )

1− εµ(Y )

)
= EµY

(
Tδ(1− εµ(Y ))

µ(Y )

)
=

(
1− εµ(Y )

µ(Y )

)
EµY (Tδ)

where again we have used Lemma 6.5. □

Proposition 6.6 will allow us to obtain a lower bound on Eµ(τδ) since Eµ(τδ) ⩾ µ(Y )EµY (τδ). Next
we will obtain an upper bound on Eµ(τδ) in terms of EµY (τYδ ).

For this we will view the system as a tower (∆, f∆, µ∆) built over (Y, F = f τY , µY ), recalling we
denote the domains of F by Y = {Yi}i and τY |Yi = τi. We will borrow the language of Young Towers,
but we do not assume any structure other than that assumed in Theorems 6.1 and 6.2, for example
we do not assume the return map to the base is Markov. We call the base, which corresponds to
Y , ∆0, and we’ll use notation ∆i,j for domains in ∆, where ∆i,0 ⊂ ∆0, corresponding to Yi; and
f j∆(∆i,0) = ∆i,j for j ⩽ τi− 1 and f τi∆ (∆i,0) ⊂ ∆0 (corresponding to F (Yi) ⊂ Y ). Points in ∆i,j are
denoted (x, j) for x ∈ Y . Then f τY∆ on ∆0 corresponds to F on Y . We let π : ∆ → I be the natural
projection π(x, j) = f j(x). Note that since F is a first return map, π|∆0 : ∆0 → Y is bijective. We
define µ∆ to be the measure µ∆(∆i,j) = µ∆(∆i,0) = µ(Yi). Then π∗µ∆ = µ and f ◦π = π ◦ f∆. Let
µ∆0 = µ∆|∆0 - we will similarly restrict µ∆ to ∆i,j to get µ∆i,j . We will also consider the symbolic
coding for F as in §2; in this setup Σ can be taken to be the set of all i = (i0, i1 . . .) such that for
some x ∈ Y , x ∈ ∆i0,0, F (x) ∈ ∆i1,0 and so on. Moreover, in this case Π(i) = x. Let µ̃Y be the
measure on Σ such that Π∗µ̃Y = µY , which by our assumptions is quasi-Bernoulli. The relationship
between µ̃Y and µ∆0 is the following: µ∆0 = µ(Y )Π∗µ̃Y .

We can also extend the cover time function to ∆0 in the natural way:

τ∆0
δ (x, j) := inf{n ∈ N : {π(x, j), . . . , π(fn∆(x, j))} is δ dense in ∆0},
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where the metric on ∆0 is the one induced from Y . Since f ◦ π = π ◦ f∆ and by definition of µ∆,
we have Eµ(τYκδ) = Eµ∆(τ

∆0
κδ ).

Proposition 6.7. Suppose F and µY , with partition Y, satisfy (a1)-(a4), (a6), (2.8) and (2.9) and
that µY (τY > n) = O(n−γ) where γ > 2. Then for some ε > 0, and C > 0

Eµ(τδ) ⩽ CEµY (τ
Y
εδ).

Proof. By Lemma 6.4 we have

Eµ(τδ) ⩽ Eµ(τYκδ) = Eµ∆(τ
∆0
κδ ).

For any x ∈ ∆i,0,
τ∆0
κδ ((x, j)) ⩽ τ∆0

κδ (F (x), 0) + τi − j.

Hence
Eµ∆i,j

(
τ∆0
κδ

)
⩽ Eµ∆i,0

(
τ∆0
κδ ◦ F + τi − j

)
.

Summing over the column (i.e. summing over j) we obtain
τi−1∑
j=0

Eµ∆i,j

(
τ∆0
κδ

)
⩽ τiEµ∆i,0

(
τ∆0
κδ ◦ F

)
+ µ∆(∆i,0)

τi−1∑
j=0

(τi − j).

Now summing over i we obtain

Eµ∆(τ
∆0
κδ ) =

∑
i

τi−1∑
j=0

Eµ∆i,j
(τ∆0
κδ ) ⩽

∑
i

τiEµ∆i,0
(τ∆0
κδ ◦ F ) +R (6.5)

where R :=
∑

i µ∆(∆i,0)
∑τi−1

j=0 j =
∑

n nµY (τY > n) < ∞ since we have assumed µY (τY > n) =

O(n−γ) for some γ > 2.

Now, let Pδ be defined as in (5.3) for the system F : Y → Y (which is possible by our assumptions
on F and µY ). Put P = Pκδ/T . By definition of µ∆i,0 ,

Eµ∆i,0
(τ∆0
κδ ◦ F ) = µ(Y )EµY |Π([i])(τ

Y
κδ ◦ F ) ⩽ µ(Y )Eµ̃Y |[i](τP ◦ F ) = µ(Y )

∑
j∈P

µ̃Y ([ij])

(∑
k

τjk

)

⩽ C∗µ(Y )µ̃Y ([i])
∑
j∈P

µ̃Y ([j])

(∑
k

τjk

)
= C∗µ∆0(∆i,0)Eµ̃Y (τP)

⩽ C∗µ∆0(∆i,0)EµY (τ
Y
tκδ/3T ) =

C∗
µ(Y )

µ∆0(∆i,0)Eµ∆0
(τ∆0

tκδ/3T )

where the first inequality follows by (5.4), the second inequality by the quasi-Bernoulli property
(a5) of µY and the final inequality follows by (5.6).

Now putting back into (6.5) and using that
∑

i τiµ∆0(∆i,0) = 1 we obtain

Eµ(τδ) ⩽ Eµ∆(τ
∆0
κδ ) ⩽

C∗
µ(Y )

∑
i

τiµ∆0(∆i,0)Eµ∆0
(τ∆0

tκδ/3T ) +R

=
C∗
µ(Y )

Eµ∆0
(τ∆0

tδ/12T ) +K = C∗EµY (τ
Y
tκδ/3T ) +R

which completes the proof. □



32 N. JURGA AND M. TODD

Proof of Theorems 6.1 and 6.2. By our assumption, there exists Y ⊂ I such that the first return
map F : Y → Y equipped with the induced measure µY satisfies the assumptions of Theorem 2.1.
Since Lemma 6.3 implies

∑∞
u=1 µY (Au) <∞,

Eµ(τδ) ⩾ µ(Y )EµY (τδ) ⩾ cµ(Y )EµY (Tδ)

where in the second inequality we have used Proposition 6.6. Now, in the setting for general µ
(ie. proof of Theorem 6.2) the lower bound is obtained by applying Theorem 2.1 to deduce that
EµY (Tδ) ⩾ c

Mµ(δ/ε)
. In the setting where (2.11) holds (ie. proof of Theorem 6.1) observe that (2.11)

holds on Y , thus we can again apply Theorem 2.1 to deduce that EµY (Tδ) ⩾ cδ−sf log(1/δ).

For the upper bound we have

Eµ(τδ) ⩽ CEµY (τ
Y
δ ) ⩽ CEµY (τδ) ⩽ CEµY (Tκδ)

where in the first inequality we have used Proposition 6.7, in the third we have used Proposition
6.6. In the case for general µ (ie. proof of Theorem 6.2) we obtain the upper bound by applying
Theorem 2.1 to get EµY (Tκδ) ⩽ C

Mµ(εκδ)
log(1/δ). In the setting where (2.11) holds we can again

apply Theorem 2.1 to deduce that EµY (Tκδ) ⩽ Cδ−s log(1/δ). □

7. Examples

7.1. Full branched interval maps with acip. Let f be a full branched map of an interval I (i.e.
Λ = I) and assume each of the branches f |Z is C1+Lip, such that there is a uniform bound on the
Lipschitz constants of the derivatives. Assume |Df | ⩾ γ−1 > 1 on each Z ∈ Z and |Z|

|Z′| is uniformly
bounded for adjacent intervals Z,Z ′ ∈ Z. The potential ϕ = − log |Df | gives rise to an acip µ for
f .

Since f is full-branched, it is Markov and satisfies BIP. The potential ϕ is Lipschitz with uniform
Lipschitz constants, hence satisfies (2.9). Moreover µ is necessarily Gibbs for the potential ϕ =
− log |Df |, so by the discussion in §2.2 the system (f, µ) satisfies (a1)-(a6). In this case the conformal
measure m is Lebesgue measure, hence (2.8) is satisfied for s = 1. For (2.10), this follows from the
uniform bounds on the density and the bound on |Z|

|Z′| . In particular Theorem 2.1 applies.

We note that if there is α > 0 such that each of the branches f |Z is C1+α with uniform α-Hölder
constants and uniformly expanding, then Theorem 2.1 is also applicable to this system, by making
some small adjustments to the proof, similar to what is described in the following section.

7.2. Gauss map. The Gauss map f : (0, 1] → (0, 1] is defined by f(x) = 1
x mod 1, so defining

our partition Z as {Zn}n = {( 1
n+1 ,

1
n)}n, f is continuously differentiable on each element of Z. We

set ϕ = − log |Df | and m be Lebesgue measure on (0, 1]. Then we have an invariant density is
g(x) = 1

log 2
1

1+x defining an acip µ: call ((0, 1], f, ϕ, µ) the Gauss system.

(a1) fails for this system, however as in [BDT, Section 2.6.3] the potential satisfies the following
weaker Hölder distortion control on the cylinder sets and the system can be shown to satisfy our
theory as below.

Lemma 7.1. There exists Cd > 0 such that |eSnϕ(x)−Snϕ(y)− 1| ⩽ Cd|fnx− fny|1/2 whenever f i(x)
and f i(y) lie in the same element of Z for each i = 0, . . . , n− 1.

Proof. See [BDT, Lemma 2.9]. □
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We’ll show that Lemma 7.1 suffices to prove Proposition 2.3 and Proposition 2.8, so that Theorem
2.1 holds for the Gauss system.

First we verify that the remainder of our assumptions hold for the Gauss system. For (a2) notice
that |eϕ|∞ ⩽ 1 while |eS2ϕ|∞ < 1 thus |eSnϕ|∞ converges to 0 exponentially fast in n, while Ln1
converges to g which is bounded away from 0 on [0, 1]. (a3) holds since f is full branched and the
potential satisfies Lemma 7.1. (a4) holds since f is full branched. (a5) and (a6) hold since µ is
Gibbs. (2.8) and (2.11) hold for s = sf = 1 since m is Lebesgue measure. (2.9) follows from Lemma
7.1. (2.10) holds since 1 ⩽ µ(Zn−1)

µ(Zn)
⩽ n+1

n−1 for all n ⩾ 2. Instead of (2.4) we choose n1 such that
2n1+5

2 supI e
Sn1ϕ|ϕ|BV < 1 (the reason for this will be made clear later).

We note that Proposition 2.3 still holds for the Gauss system since the only time (a1) is used in the
proof is in (A.1), where (2.9) can be used instead, to obtain the same conclusion.

We also verify that Lemma 2.6 holds: (a) holds by induction on (2.6), (b) holds with Cd = 1 since
eϕ is monotonic on each Z ∈ Z so |ϕ|BV,Z ⩽ supZ e

ϕ and (c) holds by induction on (b), using (a).

Finally, we are ready to demonstrate that the uniform Lasota-Yorke inequalities hold in Pro-
position 2.8. (a1) is used in two places in the proof: in (2.19) and (2.21). (2.19) holds with
Cd = 1 by Lemma 2.6(b). (2.21) holds using (2.9). Hence the contracting term in (2.23) becomes
2n+5

2 supI e
Sn1ϕ|ϕ|BV , which is the same expression, just with Cd = 1, hence since n1 was chosen

such that 2n1+5
2 supI e

Sn1ϕ|ϕ|BV < 1, the proof of Proposition 2.8 is complete. Hence we have shown
that Theorem 2.1 holds for the Gauss system.

7.3. Manneville-Pomeau maps. For α ∈ (0, 1), we will study the class of Manneville-Pomeau
maps defined by

f = fα : x 7→

{
x(1 + 2αxα) if x ∈ [0, 1/2),

2x− 1 if x ∈ [1/2, 1].

(This is the simpler form given by Liverani, Saussol and Vaienti, often referred to as LSV maps.)
We let Z = {[0, 1/2), [1/2, 1]}. These maps all have an acip µ = µα, which is an equilibrium state
for the potential ϕ = − logDf . Our first returns will be taken to the set Y = [1/2, 1]. The induced
system (Y, F = f τY ) is a full-branched Gibbs-Markov map with respect to the induced potential
− logDF : letting Yi denote the interval on which τY = i, F |Yi = f i|Yi is a diffeomorphism. This
full-branched property implies 6.1 holds: in fact since f([3/4, 1]) = Y , it holds with N1 = 1. We
write Y = {Yi}i. Adjacent intervals, Yi and Yi−1 can be shown (see for example [S1, Corollary

1]) to have µY (Yi−1)
µY (Yi)

∼
(

i
i−1

) 1
α
+1

, so (2.10) holds. Moreover, the conformal measure is Lebesgue,
so (2.11) holds with sf = 1, and the induced system is ψ-mixing, which we used in the proof of
Proposition 3.1 (though in fact we only require ϕ-mixing, which is a weaker condition). Thus to
apply Theorem 6.1, it is sufficient that µ(τY > n) = O(n−γ) for some γ > 2. It is well known that
for fα, µ(τY > n) = O(n−1/α) (again, see for example [S1, Corollary 1]), so our results apply to the
case α ∈ (0, 1/2).

Remark 7.2. Hitting Time statistics results hold for all α ∈ (0, 1) at all points, see [FFTV], so it
is a natural question to ask if the results here should also hold in that generality. However, in this
setting we are required to take expectations, which means summing over more quantities, so it is not
clear if the restriction to (0, 1/2), which is used twice in our argument, is an artefact of our proof
method or is intrinsic for this problem. It may be relevant to note that the range α ∈ (0, 1/2) is the
range of parameters for which the Central Limit Theorem holds: for α ∈ (1/2, 1) it fails (this is also
seen in the i.i.d. case with observables outside L2).
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7.4. Systems with slow covering. In previous related studies of the cover time [JM, BJK],
the leading term for the expected cover time Eµ(τδ) always obeyed a power law in 1/δ, that is,
dimM µ < ∞ and Eµ(τδ) ≈ (1/δ)dimM µ. However, our setup presents natural examples of systems
in which average orbits become dense in the state space at a much slower rate. In these examples
dimM µ = ∞, therefore the formula for the expected cover time can no longer be expressed as a
power law in 1/δ.

Example 7.3. Let f : [0, 1] → [0, 1] be the Manneville-Pomeau map

f(x) =

{
f1(x) = x(1 + 2αxα), x ∈ [0, 1/2)

f2(x) = 2x− 1, x ∈ [1/2, 1]

although this time we equip it with the measure µ which is given as the pushforward of the (1/2, 1/2)
Bernoulli measure on {1, 2}N through the coding map Π : {1, 2}N → [0, 1],

Π(i0 . . . in−1 . . .) = lim
n→∞

f−1
i0

◦ · · · ◦ f−1
in−1

([0, 1)).

Another way of viewing this is that µ is the measure of maximal entropy, the equilibrium state for
the constant potential − log 2.

Exactly as in §7.3, we write Z = {[0, 1/2), [1/2, 1]} and we can take a first return map F to
Y = [1/2, 1] with domains Y = {Yi}i. The induced potential now is ϕ(x) = −τY (x) log 2, we see that
this system satisfies the conditions in Section 2.1. Moreover, since we can compute µY (Yi) = 1/2i

(note that the conformal measure and the invariant measure coincide here), (2.10) clearly holds
with C = 2 and (2.8) holds since the diameters of Yi are polynomial in k, while the µ-measures are
exponential. Theorem 6.2 therefore applies.

Then for each n ∈ N, µ(Π([1n])) = 1/2n whereas diam(Π([1n])) ∼ 1
2(αn)

−1/α. In particular
Mµ(δ) ⩽ (21/δ

α
)−1/(α2α) so by Theorem 6.2, Eµ(τδ) ⩾ (21/δ

α
)1/(α2

α). The key point here is that it
is very difficult for this system to cover a neighbourhood of 0, which drives the expected cover time
up.

Example 7.4. Let a0 = 0 and for k ⩾ 1, let ak =
∑k

j=1
1
ck2

where c = π2

6 . Then let f : [0, 1) → [0, 1)
be the map

f(x) = ck2(x− ak−1) for x ∈ [ak−1, ak) := Zk

equipped with the measure µ which is the equilibrium state (and conformal measure) for the po-
tential ϕ|Zk

= −k log 2, for which the conditions in Section 2.1 hold. Moreover, for Z = {Zk}k,
(2.10) holds with C = 2 and (2.8) holds since the diameters of Zk are polynomial in k, while the
µ-measures are exponential.

This is a Gibbs-Markov system so Theorem 2.2 applies. Then for each k ∈ N, µ(Zk) = 1
2k

whereas

diam(Zk) =
1
ck2

. In particular for δ = 1
ck2

, Mµ(δ) ⩽ 1

2
√

1/cδ
so by Theorem 2.2, Eµ(τδ) ≳ 2

√
1/cδ.

In this example, it is very difficult for the system to cover a neighbourhood of 1, which drives the
expected cover time up.

Appendix A. Proof of Propositions 2.3 and 2.4

In this section we prove Propositions 2.3 and 2.4, and we begin with the former. We start with the
simpler case where Λ = I. Following this, we will describe how the proof can be adapted to hold
for more general Λ.
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A.1. Proof of Proposition 2.3 for interval maps. The proof in the case that f has finitely
many branches is trivial, therefore we focus our attention on the case where f has infinitely many
branches.

Throughout the proof, given an interval J we’ll denote its diameter by |J |. The rough idea is the
following. For each small r we will partition I into intervals of diameter roughly r in an iterative
way. If a union of neighbouring 1-cylinders can be taken of the correct length then this union forms
a ball in Uδ. For all 1-cylinders which are too large, we split it into 2-cylinders and consider unions
of these which have both the correct diameter and whose diameter comprises a small proportion
of the diameter of the 1-cylinder. On the other hand, for all 2-cylinders which are too large we
iterate the process by splitting them into 3-cylinders. This is continued until we reach n1-cylinders,
at which point any n1-cylinder which is too large is split into arbitrary intervals (not necessarily
unions of (n1+1)-cylinders) which have the correct diameter and whose diameter comprises a small
proportion of the n1-cylinder.

For any interval J let ℓ(J) and r(J) denote the left and right end points of J respectively. Beginning
from ℓ(I) we can uniquely choose a (possibly infinite) union of 1-cylinders ∪J1∈α1J1 which forms an
interval such that ℓ(∪J1∈α1J1) = ℓ(I), |∪J1∈α1 J1| ⩾ δ/2 and such that for any subcollection α′

1 ⊂ α1

for which ∪J1∈α′
1
J1 is an interval starting at ℓ(I), we have | ∪J1∈α′

1
J1| < δ/2. If | ∪J1∈α1 J1| < 3δ/2

then we add ∪J1∈α1J1 to U1. Otherwise, there exists J∗
1 ∈ α1 such that r(J∗

1 ) = r(∪J1∈α1J1) and
| ∪J1∈α1 J1| − |J∗

1 | < δ/2, in particular |J∗
1 | ⩾ δ. In this case we add ∪J1∈α1J1 to V1.

We then repeat the above, replacing ℓ(I) by r(∪J1∈α1J1), and continue the process until either
U1 ∪ V1 cover I or we are left with one interval with right hand end point r(I) and diameter less
than δ/2. In this case we add this interval to R1.

Recall that cm is given by (a4) and Cm is given by (2.8). Now, let 0 < β̃ < cm and put

β =
β̃cm

CmCsbd(n1 + 1)(1 + Cd)3
.

Next, for each A ∈ V1 we take the final 1-cylinder J∗
1 contained in A and beginning from ℓ(J∗

1 ) we
can uniquely choose a union of 2-cylinders ∪J2∈α2J2 which forms an interval such that ℓ(∪J2∈α2J2) =
ℓ(J∗

1 ), | ∪J2∈α2 J2| ⩾ βδ/4 and such that for any subcollection α′
2 ⊂ α2 for which ∪J2∈α′

2
J2 is an

interval starting at ℓ(J∗
1 ), we have | ∪J2∈α′

2
J2| < βδ/4. If | ∪J2∈α2 J2| < βδ/2 then we add ∪J2∈α2J2

to U2. Otherwise, there exists J∗
2 ∈ α2 such that r(J∗

2 ) = r(∪J2∈α2J2) and |∪J2∈α2 J2|−|J∗
2 | < βδ/4,

in particular |J∗
2 | ⩾ βδ/4. In this case we add ∪J2∈α2J2 to V2. We then repeat the above, replacing

ℓ(J∗
1 ) by r(∪J2∈α2J2), and continue the process until either U1 ∪U2 ∪ V2 ∪R1 cover I or we are left

with a finite number of intervals (all of which appear on the left or right hand sides of intervals in
V1). The ones on the left will have length at most δ/2 and will be made up of a union of 1-cylinders,
and we put these into L1. The ones on the right will have length at most βδ/4 and these will be
put into R2.

We can continue the above process inductively for each 2 ⩽ n ⩽ n1 − 1. For each A ∈ Vn we
take the final n-cylinder J∗

n contained in A and beginning from ℓ(J∗
n) we can uniquely choose a

union of n + 1-cylinders ∪Jn+1∈αn+1Jn+1 which forms an interval such that ℓ(∪Jn+1∈αn+1Jn+1) =
ℓ(J∗

n), | ∪Jn+1∈αn+1 Jn+1| ⩾ δ(β/4)n and such that for any subcollection α′
n+1 ⊂ αn+1 for which

∪Jn+1∈α′
n+1

Jn+1 is an interval starting at ℓ(J∗
n), we have |∪Jn+1∈α′

n+1
Jn+1| < δ(β/4)n. If |∪Jn+1∈αn+1

Jn+1| < δ(β/2)(β/4)n−1 then we add ∪Jn+1∈αn+1Jn+1 to Un+1. Otherwise, there exists J∗
n+1 ∈ αn+1

such that δ(J∗
n+1) = r(∪Jn+1∈αn+1Jn+1) and | ∪Jn+1∈αn+1 Jn+1| − |J∗

n+1| < δ(β/4)n, in particular
|J∗
n+1| ⩾ δ(β/4)n. In this case we add ∪Jn+1∈αn+1Jn+1 to Vn+1. We then repeat the above, replacing

ℓ(J∗
n) by r(∪Jn+1∈αn+1Jn+1), and continue the process until either U1∪· · ·∪Un+1∪Vn+1∪L1∪· · ·∪
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Ln−1 ∪ R1 ∪ · · · ∪ Rn cover I or we are left with a finite number of intervals (all of which appear
on the left or right hand sides of intervals in Vn+1). The ones on the left will have length at most
δ(β/4)n−1 and will be made up of a union of n-cylinders, and we add this to Ln. The ones on the
right will have length at most δ(β/4)n, which we put into Rn+1.

Let Lδ be the smallest integer for which any n1 + Lδ cylinder has diameter at most δ
3(
β
4 )
n1 . Since

f is uniformly expanding, Lδ = O(log(1/δ)). For each A ∈ Vn1 we take the final n1-cylinder J∗
n1

contained in A and split it up into intervals of length at least (β/4)n1 δ
3 and at most (β/4)n1δ, in

such a way that each interval is determined as a union of n1 + Lδ cylinders. We call this collection
Un1 .

Append each interval in the set
⋃n1
i=1 Li to the nearest interval to its right belonging to

⋃n1
i=1 Ui,

and name the new collection
⋃n1
i=1 U

′
i . Then, append each interval in the set

⋃n1
i=1Ri to the nearest

interval to its left belonging to
⋃n1
i=1 U

′
i . We define this new collection to be Uδ. (U)(b) and (U)(c)

follow from construction. (U)(e) holds since each U ∈ Uδ is given by a finite or countable collection
of n1 + Lδ cylinders. To see (U)(d), note that for any U ∈ Uδ and any Z ∈ Z i where U ∩ Z ̸= ∅, if
Z is not a subset of U then |Z| ⩾ δ(β/4)i−1 and |U ∩ Z| ⩽ δ(β/4)i + δ(β/2)(β/4)i−1 hence

m(U ∩ Z)
m(Z)

⩽
supZ e

Siϕ

infZ eSiϕ

m(f i(U ∩ Z))
m(f i(Z))

⩽
Cm(Cd + 1)

cm
diam(f i(U ∩ Z))s (A.1)

⩽
Cm(Cd + 1)Csbd

cm

(
diam(U ∩ Z)

diam(Z)

)s
⩽
Cm(Cd + 1)Csbd

cm

(
δ(3β/4)(β/4)i−1

δ(β/4)i−1

)s
<
Cm(Cd + 1)Csbdβ

cm
=

β̃

(n1 + 1)(1 + Cd)2

where the first inequality is conformality, the second is by (2.8), (a1) and (2.5), the third is by (2.9)
and the fact that diam(fn(Z)) ⩽ 1. Finally, to see (U)(a), notice that since f is an interval map,
by (a3) suppm = I and so it is enough to show that the diameter of any set in Uδ can be bounded
above and below by a constant times δ, where the constants are independent of δ. The maximum
length any interval in Uδ can be is max{3δ/2+ δ/2, δ/2+ δβ/4+ · · ·+ δ(β/4)n1−1+(β/4)n1δ}. The
minimum length is (β/4)n1 δ

3 . This proves (U)(a).

Proof of Proposition 2.3 for maps f : Λ → Λ

The proof of Proposition 2.3 for more general maps f : Λ → Λ (where Λ is not an interval) follows
similarly to above, with some small changes, which we discuss here. Let I be the closed interval
beginning at infx∈Z infZ∈Z x and ending at supx∈Z supZ∈Z x.

In the interval map setting we had that
⋃
Z∈Zn+1 Z =

⋃
Z′∈Zn Z ′, whereas more generally we only

have
⋃
Z∈Zn+1 Z ⊂

⋃
Z′∈Zn Z ′. We Hn be the set of intervals for which⋃

H∈Hn

H ∪
⋃

Z∈Zn

Z =
⋃

Z′∈Zn−1

Z ′.

Note that for any H ∈ Hn, H∩Λ = ∅. Now we broadly follow the method from the previous section
replacing Zn by Zn ∪ Hn for each level 1 ⩽ n ⩽ n1. Namely, at the first step instead of taking
minimal unions of intervals from Z1 whose length exceeds δ/2, we take minimal unions of intervals
from Z1 ∪ H1 whose length exceeds δ/2. If the length of the union is less than 3δ/2 we add this
interval to U1 as before. If it exceeds 3δ/2 but the last interval added was an interval H from H1,
we simply take a smaller proportion of the interval H so that the union has total length less than
3δ/2 and add this interval to U1. Finally, analogously to before if the length of the union exceeds
3δ/2 and the last interval added was an interval Z from Z1, then it is added to V1.
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Let

β =
β̃cm

2CmCsbd(n1 + 1)(1 + Cd)3
.

At the next stage, for each set in V 1, we take the rightmost cylinder from Z1 contained in the set
and consider it as a union of intervals belonging to Z2 ∪H2. We will take a union of these intervals
whose length exceeds βδ/4 and add it to U2 if its length is less than βδ/2, add it to V2 if its length
exceeds βδ/2 and the last interval added was from Z2 and if its length exceeds βδ/2 but the last
interval added was from H2 then we simply remove the last part of this interval from the union so
that the total union has length less than βδ/2, and add it to U2.

Once the algorithm is finished, as before we end up with a partition Uδ of I. After removing any
intervals which do not intersect Λ we obtain U ′

δ which satisfies (U)(b)-(U)(d). In particular, the
minimum length of any set in U ′

δ is δ
2(β/4)

n1 . Note that regarding (U)(d), for any U ∈ U ′
δ and

Z ∈ Zi (1 ⩽ i ⩽ n1) where U ∩ Z ̸= ∅ and Z is not a subset of U we have

m(U ∩ Z)
m(Z)

⩽
β̃

2(n1 + 1)(1 + Cd)2
(A.2)

i.e. we have gained an extra factor of 1/2. However U ′
δ does not necessarily satisfy (U)(a) (we have

upper and lower bounds on the diameter and since each U ∈ U ′
δ intersects Λ then Uδ satisfies the

assumption involving T in (U)(a) but not necessarily the assumption involving t since for instance
an interval in Uδ may only intersect Λ close to its boundary). We obtain a new family U ′′

δ from U ′
δ

which additionally satisfies this property. For each U ∈ U ′
δ choose the leftmost point xU ∈ Λ ∩ Uδ

and fix an interval [xU − aU , xU + bU ] where

(β/4)n1
δ

3
⩽ aU , bU ⩽ (β/4)n1

2δ

3

and such that [xU − aU , xU + bU ] is equal to a union of n1 + Lδ cylinders. Let

Wδ = {[xU − aU , xU + bU ]}.

For any two intervals in Wδ whose interiors intersect we take their union, giving a new collection of
closed intervals W ′′

δ with pairwise disjoint interiors. Finally we enlarge each interval in W ′′
δ so that

their interiors remain pairwise disjoint, each interval intersects at most two intervals from U ′
δ, each

interval in U ′
δ is covered and so that any new interval formed is still given by a union of n1 + Lδ

cylinders. We call this new collection U ′′
δ . (U)(a)-(U)(c) holds for U ′′

δ by construction. (U)(d) holds
since any U ∈ U ′′

δ can contain at most two intervals from U ′
δ and by (A.2). (U)(e) holds since for

each U ∈ U ′′
δ , U ∩ Λ is given by a finite or countable collection of n1 + Lδ cylinders.

A.2. Proof of Proposition 2.4. We now assume f has at least 2 full branches. Choose a, b ∈ Σ1

and n3 ∈ N to satisfy Proposition 2.4(a) and define

V ′
δ =

{
Π([wabn3 ]) : w ∈ {a, b}∗ s.t. sup

x
|Df−1

w (x)| ⩽ δ < sup
x

|Df−1
w−(x)|

}
,

where w− denotes the word w with the last digit removed and the suprema are taken over Λ (since
fa and fb are full branches). By definition, any two sets in V ′

δ can may intersect at most at one
point, thus by removing at most half of the sets in V ′

δ we obtain a collection V ′′
δ ⊂ V ′

δ of pairwise
disjoint sets. Proposition 2.4(c) must be satisfied for V ′′

δ since the dimension of the repeller of
{fa, fb} is positive and each V ∈ V ′′

δ has diameter C−1
bd δ ⩽ |V | ⩽ C−1

bd δ by (2.9). To see Proposition
2.4(d) for V ′′

δ , note that there exists t′ > 0 and x ∈ Π[abn3 ] such that B(x, t′) ∩ Λ ⊂ Π([abn3 ]).
By (2.9) given any Π([wabn3 ]) ∈ V ′′

δ , B(f−1
w (x), Cbdt

′δ) ∩ Λ ⊂ Π([wabn3 ]). The other part is
similar. Proposition 2.4(e) holds for V ′′

δ provided δ0 is taken sufficiently small since we are only
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considering the finite branched system {fa, fb}. Proposition 2.4(f) holds for V ′′
δ by uniform hyper-

bolicity. Proposition 2.4(g) holds for V ′
δ (therefore also for V ′′

δ ) since if Π([w1ab
n3 ]),Π([w2ab

n3 ]) ∈
V ′
δ are distinct and w1ab

n3 is a subword of w2ab
n3 this contradicts that Π([w1ab

n3 ]) ∈ V ′
δ (the

bounds on the derivative Df−1
w1

cannot hold). However, Proposition 2.4(b) may not hold for
V ′′
δ since supx |Df−1

w0...wn
(x)| ⩽ δ < supx |Df−1

w0...wn−1
(x)| does not exclude the possibility that

supx |Df−1
w1...wn

(x)| ⩽ δ < supx |Df−1
w1...wn−1

(x)|. However, if we let k ∈ N be sufficiently large
that

infxmin{Df−1
a (x), Df−1

b (x)}(
supxmin{Df−1

a (x), Df−1
b (x)}

)k < 1

noting that this is possible since f is uniformly expanding, then whenever supx |Df−1
w0...wn

(x)| ⩽
δ < supx |Df−1

w0...wn−1
(x)| we have supx |Df−1

wk...wn
(x)| > δ. In particular wℓ . . . wnabn3 /∈ V ′′

δ for any
ℓ ⩾ k. Therefore, we can find Vδ ⊂ V ′′

δ , where #Vδ ⩾ 1
k#V ′′

δ , so that Proposition 2.4(b) holds for
Vδ. Moreover, the remaining parts of Proposition 2.4 also hold for Vδ.
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