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Abstract. We consider some smooth maps on a bouquet of circles. For these maps
we can compute the number of fixed points, the existence of periodic points and
an exact formula for topological entropy. We use Lefschetz fixed point theory and
actions of our maps on both the fundamental group and the first homology group.

1. Introduction and statement of main results

We will consider a particular class of maps on a bouquet of circles. We can charac-
terise the periods of periodic orbits, Lefschetz numbers and entropy for this class.

We first recall the concept of Lefschetz number of period n. Let M be a compact ANR
of dimension n, see [3, 4]. A continuous map f : M → M induces an endomorphism
f∗k : Hk(M,Q) → Hk(M,Q) for k = 0, 1, . . . , n on the rational homology of M . For a
linear operator A, we let Tr(A) denote the trace of A. The Lefschetz number of f is
defined by

L(f) =
n∑

k=0

(−1)kTr(f∗k).

Since f∗k are integral matrices, L(f) is an integer. By the well known Lefschetz Fixed
Point Theorem, if L(f) 6= 0 then f has a fixed point (see, for instance, [3]). We can
consider L(fm) too: L(fm) 6= 0 implies that fm has a fixed point. However, a fixed
point of fm is not necessarily a periodic point of period m. Therefore, a function for
detecting the presence of periodic points of a given period was given in [9]. This is the
Lefschetz number of period m, defined as

l(fm) =
∑

r|m
µ(r)L

(
f

m
r

)
,

where
∑

r|m denotes the sum over all positive divisors of m, and µ is the Moebius
function defined as

µ(m) =





1 if m = 1,
0 if k2|m for some k ∈ N,
(−1)r if m = p1 · · · pr for distinct prime factors.

According to the Moebius Inversion Formula (MIF), see for example [16],

L(fm) =
∑

r|m
l(f r).

Define Fix(fm) to be the set of fixed points of fm for all m ∈ N, and define Perm(f) to
be the set of periodic points of period m. Let Per(f) denote the set of periods of the
periodic points of f .
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We consider maps on graphs. In particular we consider bouquets of circles as follows.
For more details on such maps see [11] and [12]. We consider a set S1, . . . , Sn in the
plane where for 1 ≤ i ≤ n, Si is diffeomorphic to the unit circle. We call each Si

a circle and suppose further that they are nested inside each other and are pairwise
disjoint, except at a single point b where they all touch. We call this set Gn and call
b the branching point. See Figure 1 for a picture of some G3. We give each circle the
anticlockwise orientation. With our graph arranged in such a way, the orientation on
every circle is easy to see. We say that any graph G ⊂ Rn which is homotopic to some
Gn is a bouquet of circles.

Bb

Figure 1. G3

Let x, y ∈ Si where x 6= y. Then let [x, y] denote the closed arc in Si which starts
at x, proceeds anticlockwise, and ends at y. Furthermore, for x ∈ Si and y ∈ Sj , we
consider the connected set [x, y] := [x, b] ∪ [b, y] to be an arc. Also, we consider {x}
to be a degenerate arc. We can extend this definition to the open arc (x, y) and the
half open arcs (x, y] and [x, y) in the natural way. Note that any arc is homotopic to a
point.

Any continuous map f : Gn → Gn induces an action on H1(Gn,Q) =

n︷ ︸︸ ︷
Q⊕ · · · ⊕Q, the

first homology group. We denote this action by f∗1 : H1(Gn,Q) → H1(Gn,Q). f∗1 can
be represented by an n×n integral matrix (mij) such that a generator aj ∈ H1(Gn,Q)
maps by f∗1 to the generator ai, mij times, taking into account orientation. See, for
example, [18] for more details.

For a continuous map f : M → M on a compact ANR M , we define the minimal set
of periods for f to be the set

MPer(f) =
⋂

g'f

Per(g)

where ' denotes homotopy. In [11] and [12] the following was proved for continuous
maps on Gn.

Theorem 1. Let f : Gn → Gn be a continuous map and let f∗1 be the n × n integral
matrix induced on the first homology group of Gn. Then the following statements hold.

(a) If there is some element of the diagonal of f∗1 different from −2,−1, 0, 1, then
MPer(f) = N.
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(b) If all the elements of the diagonal of f∗1 are −2,−1, 0 or 1, and at least one of
them is −2 then MPer(f) = N or N \ {2}.

Any map f : Gn → Gn has a lift to a map f̃ : [0, n] → [0, n] as follows. We identify the
integers 0, 1, . . . , n with b and identify [i−1, i) with Si. We assume that the lifting map
π : [0, n] → Gn is continuous, is orientation preserving and is C1 on each x ∈ (i− 1, i)
for 1 ≤ i ≤ n. Note that π is an example of a covering map (see [18]).

We will consider the following class of maps, for which we can prove more. We let
f be a continuous map f : Gn → Gn which is (1) C1 on Gn \ {b}; (2) for any m ≥ 1,
for x ∈ Fix(fm) \ {b}, |Dfm(x)| > 1; and (3) the sign of the derivative of the lift f̃ ,
sign(Df̃(x)) for x ∈ (0, n) \N is constant. Any such map is monotone and we say that
it is in Mn. If, furthermore, fm(b) 6= b for all m ≥ 1 then we say that f is in Mn

b . Note
that any f ∈Mn

b is either, orientation preserving on all of Gn, or orientation reversing
on all of Gn.

Our first result on maps in this class is the following.

Theorem 2. Suppose that f ∈Mn
b . Then,

(a) for all m ≥ 1, if fm is orientation preserving then L(fm) = −#Fix(fm);
(b) for all m ≥ 1, if fm is orientation reversing then L(fm) = #Fix(fm);
(c) if f is orientation preserving then |l(fm)| = #Perm(f);
(d) if f is orientation reversing and either m is odd or 4|m, then |l(fm)| = #Perm(f).

We next find formulae for the number of fixed points of maps in terms of the action
on the fundamental group. We will find a class of maps Mn

# which have an action on
the fundamental group which corresponds well with maps in Mn.

For each circle Sj for 1 ≤ j ≤ n there exists a corresponding generator in Π(Gn).
We label this generator aj . We may assume that these are all positively oriented (that
is, each aj corresponds to a circle with anticlockwise orientation).

We say that a word b1 . . . bm is allowed by Mn
# if either all bk ∈ {a1, . . . , an} or all

bk ∈ {a−1
1 , . . . , a−1

n }. For a word b1 . . . bm allowed by Mn
#, define

χj(b1 . . . bm) =





#{bk = aj : 1 ≤ k ≤ m} if this set is not null,
−#{bk = a−1

j : 1 ≤ k ≤ m} if this set is not null,
0 otherwise.

Similarly we define

γj(b1 . . . bm) =





#{bk = aj : 1 < k < m} if this set is not null,
−#{bk = a−1

j : 1 < k < m} if this set is not null,
0 otherwise.

Observe the difference between these two functions: χj counts the number of ap-
pearances of aj or a−1

j in b1 . . . bn, but γj counts the number of appearances of aj or
a−1

j in b2 . . . bn−1. So, for example χj(ajaj+1aj) = 2, but γj(ajaj+1aj) = 0.
Now, for each 1 ≤ j ≤ n, define Aj to be the word f#(aj). We say that f ∈ Mn

# if
all Aj are allowed by Mn

#. Note that Mn ⊂Mn
#. We define dij := χi(Aj).

For 1 ≤ k < ∞, we say that the map f ∈ Mn is in Mn
b,k if fk(b) = b, but there is

no 1 ≤ m < k such that fm(b) 6= b. We say that Mn
b,∞ = Mn

b .
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Proposition 3. If f ∈Mn
b,k for some 1 ≤ k ≤ ∞ then for any m /∈ kN, we have

#Fix(fm) =

∣∣∣∣∣∣
1−

n∑

j=1

χj

(
fm
# (aj)

)
∣∣∣∣∣∣
,

and if k < ∞, then for any m ∈ kN we have

#Fix(fm) = 1 +

∣∣∣∣∣∣

n∑

j=1

γj

(
fm
# (aj)

)
∣∣∣∣∣∣
.

Remark 4. For our maps the action on the fundamental group and that on the first
homology group are very closely related. However, we see by the second part of this
proposition that the fundamental group is particularly useful when studying fixed points
of maps in Mn

b,k for k < ∞. In Theorem 2 we were not able to find an exact formula for
the number of fixed points from the Lefschetz number for maps in this class. In fact,
adding the above result to the formula for the Lefschetz number given by the action
on the first homology group, it is possible to show that for such maps, for m ∈ kN,
L(fm) ≤ #Fix(fm) ≤ 2n− 1 + L(fm).

Next we prove results on periods for maps in Mn
b .

Proposition 5. For f ∈Mn, suppose that either (a) |djj | ≥ 2 for some 1 < j ≤ n; (b)
d11 ≥ 2; (c) d11 < −2; or (d) f ∈Mn

b,1 and d11 = −2. Then Per(f) = N. Furthermore,
if (e) d11 = −2 then Per(f) ⊃ N \ {2}.

This is essentially the same as Theorem 1 for maps in Mn. But we prove it here for
completeness. We can further characterise the set of periods in the following case.

Proposition 6. Suppose that f ∈Mn
b . Then we have the following.

(a) If there exist 1 < i, j ≤ n, i 6= j such that |dij |, |dji| ≥ 1 and |dii| + |djj | ≥ 1,
then Per(f) = N.

(b) If there exists some 1 < i ≤ n such that di1 6= 0,−1, then Per(f) ⊃ N \ {1}.
(c) If there exists some 1 < i ≤ n such that di1 = −1, then for all m ≥ 1 either

m ∈ Per(f) or m + 1 ∈ Per(f).
Now suppose that f ∈Mn

b,1. Then

(d) if there exist 1 ≤ i, j ≤ n, i 6= j such that |dij |, |dji| ≥ 1 and |dii| + |djj | ≥ 1,
then Per(f) = N.

We next use the matrix f∗1 to compute the entropy for maps on Gn. For some similar
results on a different class of maps see the recent preprint [2]. We let the spectral radius
of a linear map L be equal to the largest modulus of the eigenvalues of this map. We
denote this value by σ(L). Let h(f) denote the topological entropy of the map f , see
Section 4 for details. Manning in [13] proved the following: a step towards proving the
well-known entropy conjecture, proposed by Shub in [17].

Theorem 7. For any continuous map f : M → M , for a compact differentiable man-
ifold without boundary M , we have h(f) ≥ log σ(f∗1).

Following the arguments of [15] we can prove the following. Here, given an n × n
matrix M we let ‖M‖ :=

∑
i,j |mij |.
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Theorem 8. For a map f ∈ Mn we have (a) h(f) = limm→∞ 1
m log ‖fm∗1‖; and (b)

h(f) = log σ(f∗1).

Given f ∈ Mn
b , the map f∗1 has eigenvalues λ1, . . . , λd where the eigenvalues are

in order of decreasing modulus |λ1| ≥ · · · ≥ |λd| (when two eigenvalues have the same
modulus, any choice of order suffices). Our final main result is as follows.

Proposition 9. For f ∈Mn where the eigenvalues of f∗1 have |λ1| > 1 and |λ1| > |λ2|,
then there exists some m0 ≥ 1 such that m ≥ m0 implies m ∈ Per(f).

Remark 10. It should be possible to extend these results to maps f : G → G for
graphs G which are homotopic to some Gn. We should also be able to extend some of
the results to some classes of maps on some spaces which are homotopic to some Gn.
For example, some class of maps on the disk punctured n times (for maps on the twice
punctured disk see [7]). However, it is difficult to characterise such maps.

In Section 2 we prove Theorem 2. In Section 3 we show that the action of maps on
this class is well characterised by the action on the fundamental group and so prove
Proposition 3. We then go on to prove Propositions 5 and 6. In Section 4 we prove
Theorem 8. In Section 5 we prove Proposition 9. For examples of maps which we can
apply our results to, see Section 6.

2. Applying Lefschetz numbers to a bouquet of circles

In this section we prove Theorem 2 and explain the problems associated with part
(d) of the theorem.

First we recall that when f : Gn → Gn is C1 and the fixed points of f are isolated,
we can express

L(f) =
∑

f(x)=x

ind(f, x),

where ind(f, x) is the index of f at x. If x 6= b then ind(f, x) = (−1)u+(x), where
u+(x) = 1 whenever Df(x) > 1 and u+(x) = 0 otherwise. For more details see [8] or
[10]. There, the question of the index of f at b when b is a fixed point is also discussed.

Proof of Theorem 2. The first two statements of the theorem are easy to see because,

L(f) =
∑

f(x)=x

ind(f, x) =
∑

f(x)=x

(−1)u+(x)

where u+(x) is defined as above.
So L(f) counts the number of fixed points, giving negative or positive sign if f is

orientation preserving or reversing, respectively. So we have proved (a) and (b).
Next we prove (c). Since f is orientation preserving, the summands for l(fm) are all

negative. Therefore, by the MIF,
∑

r|m
#Perr(f) = |L(fm)|.

From the definition of l(f), applying the MIF again we have |l(fm)| = #Perm(f).
To prove (d), we first suppose that m is odd. Then the summands for l(fm) are of the

form µ(r)L(f
m
r ) where r|m. Since m

r cannot be even, L(f
m
r ) are either all negative or
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all positive depending on whether f is orientation preserving or reversing, respectively.
Therefore, by the MIF, ∑

r|m
#Perr(f) = |L(fm)|.

Again, a further application of the MIF gives |l(fm)| = #Perm(f).
Now if 4|m then let n be such that m = 4n. Any summand for l(fm) is of one of the

following forms.

(i) µ(r)L(f
4n
r ) where r|4n and r is odd (so r|n). Since 4n

r is even, L(f
4n
r ) is negative

in any case.
(ii) µ(2r)L(f

2n
r ) where r|2n and r is odd (so r|n). Since 2n

r is even, L(f
2n
r ) is

negative in any case.
(iii) µ(4r)L(f

n
r ) where r|n. Since µ(4r) = 0, this term is null.

Thus all of the terms L(f
m
r ) which contribute to l(fm) are negative and so, applying

the MIF as above we see that

|l(fm)| = #Perm(f).

¤
Remark 11. We cannot extend this method directly to maps with attracting periodic
points, even if they are monotone. For example, we can create a monotone C1 map
which has every repelling fixed point followed by an attracting one. So we can have
L(f) = 0, where f has arbitrarily many fixed points. (If f is orientation reversing this
does not make any difference for L(f). But this presents a problem for L(f2).)

Remark 12. We explain why this result cannot be extended to m where 2|m, but
4 - m when f is orientation reversing. Suppose that m = 2p for some p prime (we
obtain similar problems if m = 2p1 . . . pr with pi > 2 prime). Since f is orientation
reversing,

l(f2p) = L(f2p)− L(fp)− L(f2) + L(f)
= − [#Per2p(f) + #Perp(f) + #Per2(f) + #Per1(f)]

− [#Perp(f) + #Per1(f)] + [#Per2(f) + #Per1(f)] + #Per1(f)
= −#Per2p(f)− 2#Perp(f).

So, even when l(fm) 6= 0, we cannot be so sure about the presence of periodic points
of period m. This is seen in the following examples.

It is convenient to construct our examples on the level of homology where we only
have information about f∗1 : H1(Gn,Q) → H1(Gn,Q).

Example 13. Consider the map f ∈ M1 which has action f∗1 on H1(G1,Q) equal to
multiplication by m11 where m11 = −2. Then f2∗1 is multiplication by 4. We calculate
L(f) = 3, L(f2) = −3. So l(f2) = −6. By Remark 12 we have

l(f2) = −#Per2(f)− 2#Per1(f).

So we deduce that Per2(f) = ∅. Therefore, the Lefschetz number for periodic points
does not always detect periodic points of even order when the original map is orientation
reversing.

We can also construct further such examples for any n ≥ 2 as follows. See Figure 2
for an example on G3. Let (mij) be the matrix representing the action of f∗1 on
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H1(Gn,Q). Now suppose that m11 = −2; m1j = −1 for 1 ≤ j ≤ n; and mij = 0 for
0 < i ≤ n, 1 ≤ j ≤ n. Here we obtain the same behaviour on S1 as on G1 above (note
that there are no periodic points outside S1 here). Therefore, we cannot be sure in
such cases that l(fm) 6= 0 implies that there are periodic points of period m.

Ff Ff
2

Figure 2. Lift for a map f ∈M3
b where l(f2) 6= 0, but 2 6∈ Per(f).

3. Finding periods from the action on the fundamental group

In fact, most of the information on periodic points for maps in Mn can be read from
the action on the fundamental group Π(Gn). We will see that there is a one to one
correspondence between maps with a particular type of action on Π(Gn) and homology
classes of maps in Mn. (As we will note later, this is not the case when we consider
the action on first homology.)

3.1. Coding of f on the fundamental group. If a word b1 . . . bm is allowed by Mn
#

and has ({b1}∪{bm})∩
(
{a1} ∪ {a−1

1 }
)
6= ∅ then we say that b1 . . . bm is allowed byMn

#b.
Note that a map with the action f# : aj 7→ aj1 . . . ajnj

for jk ∈ {1, . . . , n} which starts
and finishes at the same point in the circle corresponding to aj1 , is homotopic to a map
with the action f# : aj 7→ aj2 . . . ajnj

aj1 . We can argue analogously in the orientation
reversing case. So for maps in Mn

# with fk(b) 6= b for all k ≥ 1, we may assume that

aj1 ∈
{
a1, a

−1
1

}
for all 1 ≤ j ≤ n. Observe that the action aj 7→ a1aj2 . . . ajnj

gives
an orientation preserving map on Gn which starts at f(b), then covers the arc [f(b), b];
then covers in turn the circles Sj2 , . . . , Sjnj−1 and Sjnj

; finally it covers the arc [b, f(b)].

Lemma 14. Suppose that A1, . . . An are allowed by Mn
#b and if dj1 = 0 for all 1 <

j ≤ n then d11 6= −1. Then there exists a map f ∈ Mn with the action f# : aj → Aj

for 1 ≤ j ≤ n. Furthermore, any g ∈Mn
# with the same action is homotopic to f .

Proof. We will find a piecewise linear lift map g̃ : [0, n] → [0, n] with the required action
and then show that f̃ : [0, n] → [0, n], the lift of f must be homotopic to g̃.

For an interval J , and a linear map g : J → R, let |Dg|J = |Dg(x)| for any x ∈ J .
Given 1 ≤ i ≤ n, we consider the word Ai. We let g̃ : [0, n] → [0, n] be the piecewise
linear map with g̃(j) = 1

2 for 0 ≤ j ≤ n; |Dg̃|(j−1,j) = sign(χ1(a1))nj ; first the map has
g̃(j − 1) = 1

2 ; then it covers half of [0, 1] before covering the intervals [i− 1, i] given in
Aj in the order given by Aj ; finally the map covers

[
0, 1

2

]
where g̃(j) = 1

2 .
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For example if f : G3 → G3 and f# : a1 7→ a1a3a1a2a2 then Dg̃|[0,1] = 5 and has

g̃
([

0, 1
10

))
=

[
1
2 , 1

)
, g̃

([
1
10 , 3

10

))
= [2, 3), g̃

([
3
10 , 5

10

))
= [0, 1), g̃

([
5
10 , 7

10

))
= [1, 2),

g̃
([

7
10 , 9

10

))
= [1, 2), and g̃

([
9
10 , 1

))
=

[
0, 1

2

)
.

We now show that g̃ is homotopic to f̃ . We first may assume that f̃ has been ‘pulled
tight’. That is, we choose a homotopy which results in a local homeomorphism, i.e.
given any 0 ≤ j ≤ n, for all x ∈ (j − 1, j) there exists a neighbourhood U of x such
that f̃ |U is a homeomorphism. This means that the graph of f has no null homotopic
loops.

Suppose that f is orientation preserving. For 1 ≤ j ≤ n, let Ij1 be the minimal
interval in [0, 1] such that f̃ : Ij1 → [f̃(0), 1] is a surjection. Let Îj1 be the equivalent
interval for g̃. Since f̃ is assumed to be a local homeomorphism, f̃Ij1 is a homeo-
morphism. Since f̃Ij1 and g̃Îj1

are both homeomorphisms on intervals with the same
orientation then they are homotopic.

Now for any small enough interval U adjacent and to the right of Ij1 we claim that
f̃(U) ⊂ [j2 − 1, j2]. If not then there is some i 6= j2 such that f̃(U) ⊂ [i − 1, i]. But
since f̃ is a local homeomorphism, we can extend U so that f̃(U) = [i − 1, i]. But
then aj2 = ai which is a contradiction. As above, we can show that f̃Ij2 and g̃Îj2

are

homotopic. We may continue this process up to nj to prove that f̃ and g̃ are homotopic.
Next we need to show that g̃ gives a map g : Gn → Gn which is in Mn. We need to

show that for any fixed point x of g̃m, we have |Dg̃m(x)| > 1. We fix some 1 ≤ j ≤ n
and consider (j − 1, j). We have the following cases.

Case 1: There exists some i 6= 1 such that |dij | ≥ 1. Then |Dg̃|(j−1,j) ≥ 2.
Case 2: Suppose that we are not in Case 1.
Case 2a: Suppose j 6= 1. Then since we are not in Case 1, there are no fixed points

of g̃ in [j, j − 1]. The only way to obtain fixed points is to take some iterate g̃m which
passes through some interval [i − 1, i] which has [j − 1, j] in its image. The interval
(i− 1, i) must be in Case 1, so we have |Dg̃|[i−1,1] ≥ 2. Therefore, |Dg̃m|(j−1,j) ≥ 2.

Case 2b: Suppose j = 1. If d11 = 1 and d1i = 0 for all 1 < i ≤ n then we proceed
similarly to Case 2a since we do not have any fixed points in [0, 1].

If d11 = −1 and di1 ≤ 1 for some 1 ≤ i ≤ n then again we have |Dg̃|[0,1] ≥ 2.
Therefore, in all cases for x ∈ Fix(g̃m), |Dg̃m(x)| > 1.
Letting g := πg̃π−1, we are finished. ¤
Note that we can often find some homotopic map f which is also in Mn

b .

Remark 15. Suppose that f ∈ Mn
#b, fk(b) 6= b for all k ≥ 1, d11 = −1 and, contrary

to Lemma 14, dj1 = 0 for all 1 < j ≤ n. Then f has two fixed points x1, x2 in S1. It
is easy see that a piecewise linear version on f |S1 would have |Df(x1)|, |Df(x2)| = 1,
so this map could not be in Mn. It is possible in some cases to perturb so that
|Df(x1)|, |Df(x2)| > 1, but this will always create some points y ∈ S1 with |Df(y)| < 1
which could mean that there are points x ∈ Gn with fm(x) = x and |Dfm(x)| < 1, i.e.
f /∈Mn.

Proof of Proposition 3. We first suppose that f ∈ Mn
b . We consider the lift f̃ . If f is

orientation preserving then

(1) #Fix(f) = −1 +
n∑

j=1

χj(Aj).
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(We will explain this in our case, but it can also be seen for G2 by looking at the
proof of Proposition 2 of [10]). The reason for this is that for 1 < j ≤ n, the image
of f̃([j − 1, j]) will start at f̃(b) and, if there is some i such that ajk

= aj , then this
image must start below the diagonal {(x, x) : 0 ≤ x ≤ n} and cross it in order to cover
[j − 1, j]. This gives a fixed point every time this crossing happens.

When we are dealing with f̃ on [0, 1] we note that our map must miss the diagonal
following the first appearance of a1 in A1. But for every subsequent appearance of a1

there is a corresponding fixed point (the −1 term in (1) accounts for this).
If f is orientation reversing then

(2) #Fix(f) = 1−
n∑

j=1

χj(Aj).

This is essentially the same as the orientation preserving case except that any image
f̃([0, 1]) must cross the diagonal as many times as a1 occurs in A1, plus 1. See for
example Figure 2.

Clearly, given any m ≥ 1, we can replace Aj with fm
# (aj) in (1) or (2) to find

#Fix(fm) as required.
For f ∈ Mn

b,k where k < ∞ and m ∈ N \ kN then the proof is the same as above.
Now suppose that m ∈ kN. For any 1 ≤ j ≤ n, if fm

# (aj) has first or last element equal
to aj then the graph of f̃ on (j − 1, j) has no corresponding crossing of the diagonal.
However, if aj appears anywhere else in fm

# (aj) there is a corresponding crossing of the
diagonal. Hence there are |γj(fm

# (aj))| fixed points of fm in Sj \ {b}. By assumption,
there is also a fixed point of fm at b, so

#Fix(fm) = 1 +
n∑

j=1

|γj(fm
# (aj))|

as required. ¤
By Proposition 3 the set of fixed points of f ∈ Mn are completely determined by

the action on the fundamental group.

3.2. Finding periodic points from the fundamental group action.

Proof of Proposition 5. In all cases, |djj | ≥ 2 for some 1 ≤ j ≤ n, and so f has a
fixed point in Sj . We will show that in cases (a), (b), (c) and (d), when m ≥ 1,
#Fix(fm+1|Sj ), the number of fixed points of fm+1 in Sj , is greater than #Fix(fm|Sj ),
the number of fixed points of fm. Therefore, there must be some new fixed point of
fm+1, which has not been counted before as a fixed point for any fp where p ≤ m.
Hence we must have a periodic point of period m + 1 in Sj . Since this will be true for
any m ≥ 1, we have Per(f) = N. In case (e) this argument will follow for any m ≥ 2
and so Per(f) ⊃ N \ {2}.

Case 1: First suppose that f ∈ Mn
b,k where k = 1, i.e. f(b) = b and we are in case

(d). Then we can see from the proof of Proposition 3 that the number of fixed points
of fp in Sj is 1 + |γj(f

p
#(aj))| (note that the 1 counts the fixed point at b). Therefore

if we can show that

(3) 1 + |γj(fm+1
# (aj))| > 1 + |γj(fm

# (aj))|
then #Fix(fm+1|Sj ) > #Fix(fm|Sj ) and there must be a periodic point of period m+1
in Sj .
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Every element aj in the word fp
#(aj) gives rise to two occurrences of aj in fp+1

# (aj).
Therefore, |γj(f

p+1
# (aj))| ≥ 2|γj(f

p
#(aj))|, so (3) is satisfied whenever |γj(f

p
#(aj))| > 1.

Since |djj | ≥ 2 this is true for any p > 1, so Per(f) ⊃ N \ {2}. For p = 1 we have
three cases: (i) if γj(f#(aj)) = 0 then |γj(f2

#(aj))| ≥ 2, so #Fix(f2|Sj ) > #Fix(f |Sj );
(ii) if |γj(f#(aj))| = 1 then |γj(f2

#(aj))| ≥ 3, so #Fix(f2|Sj ) > #Fix(f |Sj ); (iii) if
|γj(f#(aj))| = 2 then |γj(f2

#(aj))| ≥ 4, so #Fix(f2|Sj ) > #Fix(f |Sj ). Therefore, in all
these cases, Per(f) = N.

From now on we will assume that k > 1.
Case 2: We consider m < k−1. The proof here also follows when f ∈Mn

b . We can
see from the proof of Proposition 3 that for p ≤ m,

−1 + |χj(f
p
#(aj))| ≤ #Fix(fp|Sj ) ≤ 1 + |χj(f

p
#(aj))|.

Since |djj | ≥ 2, |χj(f
p+1
# (aj))| ≥ 2|χj(f

p
#(aj))| for any p ≥ 1. Hence, we have

#Fix(fm+1|Sj ) ≥ −1 + 2|χj(fm
# (aj))| ≥ #Fix(fm|Sj ) + |χj(fm

# (aj))| − 2.

Therefore, #Fix(fm+1|Sj ) > #Fix(fm|Sj ) whenever |χj(fm
# (aj))| > 2. This is always

the case for m ≥ 2.
For m = 1 we have

(4) #Fix(f2|Sj ) ≥ −1 + 2|χj(f#(aj))|.
If we are in case (a) then we have #Fix(f |Sj ) = |χj(f#(aj))|, so by (4), #Fix(f2|Sj ) >
#Fix(f |Sj ) and we are finished. For cases (b), (c) and (e), we have j = 1. If we are
in case (b) then #Fix(f |S1) = |χ1(f#(a1))| − 1, so by (4), #Fix(f2|S1) > #Fix(f |S1)
and we are finished. If we are in case (c) then #Fix(f |S1) = |χ1(f#(a1))| + 1 and
|χ1(f#(a1))| > 2, so by (4), #Fix(f2|S1) > #Fix(f |S1) and we are finished. Note that
case (d) is covered in Case 1. In case (e) it is possible that #Fix(f2|S1) = #Fix(f |S1),
so we can’t be sure if 2 is a period or not.

This proof also follows for the rest of the set N \ {p : p = lk or p = lk− 1 for l ∈ N}.
Case 3: We consider m = lk − 1 for any l ∈ N where k < ∞. Considering the

formulas for the number of fixed points of fp in Sj , it is sufficient to show that

(5) 1 + |γj(fm+1
# (aj))| > |χj(fm

# (aj))|+ 1.

We compute that for a word b1 . . . bn allowed by Mn
#, γj(b1 . . . bn) ≥ |χj(b1 . . . bn)| − 2.

Therefore,
|γj(fm+1

# (aj))| ≥ 2|χj(fm
# (aj))| − 2.

Hence, if |χj(fm
# (aj))| > 2 then (5) is satisfied. Since |χj(fm

# (aj))| ≥ 2m, (5) holds for
case (c), or whenever m > 1. For m = 1, we compute that in case (a), j = 1 and

#Fix(f2|S1) = 1 + |γ1(fm+1
# (a1))| ≥ −1 + |χ1(f2

#(a1))|
≥ −1 + 2|χ1(f#(a1))| = #Fix(f |S1)− 1 + |χ1(f#(a1))|.

Since |χ1(f#(a1))| ≥ 2 we are finished. In case (b), j = 1

#Fix(f2|S1) = 1 + |γ1(fm+1
# (a1))| ≥ −1 + |χ1(f2

#(a1))|
≥ −1 + 2|χ1(f#(a1))| = #Fix(f |S1) + |χ1(f#(a1))|.

Since |χj(f#(aj))| ≥ 2 we are finished.
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Case 4: We consider m = lk for any l ∈ N where 1 < k < ∞. Similarly to above, it
is sufficient to show that

(6) |χj(fm+1
# (aj))| − 1 > |γj(fm

# (aj))|+ 1.

We have

|χj(fm+1
# (aj))| ≥ 2|χj(fm

# (aj))| ≥ |χj(fm
# (aj))|+ |γj(fm

# (aj))|.
Therefore, (6) is satisfied whenever |χj(fm

# (aj))| > 2. But this is always true when
k > 1. ¤
Remark 16. As mentioned above, any map f ∈ Mn has a matrix action (mij) on
the first homology which has either all entries positive or all entries negative. Here the
terms mij take the place of dij . This was considered in [12] and with b fixed in [11].
There the proof of the final part of Theorem 2 was proved applying Bolzano’s Theorem
to subgraphs.

Note that it is not the case that any map with such an action is homotopic to a
map in Mn. This is because the action on the first homology abelianises the action on
the fundamental group. So, in particular, there exist homotopy classes with this action
on the first homology, for which every map in the class has positive local degree at
some point and negative local degree at some other point. (We say a map has positive
(negative) local degree if the map is locally orientation preserving (reversing).)

Proof of Proposition 6. Suppose first that we are in case (a). We suppose that |djj | ≥
1. Since we also have |dij |, |dji| ≥ 1, we have |χj(fm

# (aj))| ≥ 1 for all m ≥ 0 and
|χj(fm

# (ai))| ≥ 1 for all m ≥ 1. Note that in particular, f has a fixed point in Sj .
Let Aj 7→ a1ajai. (This is the simplest case for j > 1, and, in terms of creating

periodic points, the worst since aj only appears once in Aj .) Then we prove that every
application of f# to fm

# (aj) creates a new fixed point in Sj . We will use the fact that
f# is a homomorphism repeatedly.

We have fm+1
# (aj) = fm

# (a1)fm
# (ai)fm

# (aj). The function χj counts the number of
times aj appears in a given word. Thus, |χj(fm+1

# (aj))| = |χj(fm
# (a1)fm

# (ai)fm
# (aj))| ≥

|χj(fm
# (aj))| + 1 since |χj(fm

# (ai))| ≥ 1 for all m ≥ 0. Therefore, the application of
f# generates a new fixed point in Sj . Whence m ∈ Per(f) for all m ≥ 1. Note that
if Aj is a longer word, we obtain the same result (in that case, the number of fixed
points created by each iteration could be even greater). Furthermore, if f is orientation
reversing we can apply the same proof. The proof of (d) follows similarly.

If we are in case (b) and not in case (a) or a case covered by Proposition 5 then
we are in the orientation preserving case. The simplest form for A1 is a1ai. We have
fm+1
# (a1) = fm

# (a1)fm
# (ai). So again the fact that |χ1(fm

# (ai))| ≥ 1 for all m ≥ 1 means
that we have found a new fixed point in S1. Whence m ∈ Per(f) for all m > 1.

If we are in case (c), then we find our new fixed points in Si. We may suppose that
A1 = a−1

1 a−1
i and Ai = a−1

1 . Then

fm+1
# (ai) = fm

#

(
a−1

1

)
= fm−1

# (a1ai) = fm−1
# (a1) fm−1

# (ai) .

Since
∣∣∣χi

(
fm
# (a1)

)∣∣∣ ≥ 1 for m ≥ 1, we find a new fixed point in Si after the application
of f2. Furthermore, each subsequent application of f2 yields a new fixed point. ¤

See Example 29 for an application of this. The following is an easy corollary of
Proposition 6.
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Proposition 17. Suppose that there exists some m > 1 such that for f ∈ Mn
#, re-

placing dij with χi(fm
# (aj)) and Mn

b,1 by Mn
b,m in (d), we satisfy the conditions of

Proposition 6. Then we have the same conclusions when we replace N with mN (in (b),
the conclusion is replaced by Per(f) ⊃ m(N \ {1})).

See Example 31 for an application of this.

Remark 18. Note that given a map f ∈ Mn
b , this map has the minimal number of

periodic points within the class of maps which are homotopic to f and which have b
non–periodic (it is shown in [11] that the maps which minimise the number of fixed
points within this homotopy class have b fixed). For example, if a1 7→ a1a3a1a2a2, then
f must cross the diagonal the number of times a1 appears in the action minus 1 (minus
one because f(b) ∈ S1 implies that we go from f(b) to f(b) in S1 without crossing the
diagonal exactly once). But this is precisely what our maps do, and no more. We can
argue similarly for f ∈Mn

b,k.

4. Periodic points and entropy

The main aim of this section is to prove Theorem 8. This involves showing that
the eigenvalues of the matrices fm∗1 give us a lot of information about periodic points
and about entropy. We first give entropy in terms of a limit involving fm∗1, proving
Theorem 8(a) and then, for part (b), we give entropy in terms of the spectral radius of
f∗1.

We will give some basic definitions for entropy, see, for example [1] for more details.
Let X be a compact Hausdorff metric space. We say that the set A is an open cover
for X if

⋃
A∈AA ⊃ X and all A are open sets. A subcover of X from A is a subset of A

which is also a cover of X. When it is clear what X is, we simply refer to covers and
subcovers.

Let A be an open cover of X . For a continuous map f : X → X, we define f−i(A) :=
{f−i(A) : A ∈ A}, ∨m−1

i=1 Ai := {A1 ∩ . . . ∩ Am−1 : Ai ∈ Ai, and A1 ∩ . . . ∩ Am−1 6= ∅}
and Am :=

∨m−1
i=0 f−i(A). Also let N (A) be the minimal cardinality of any subcover

from A.
Let

h(f,A) := lim
m→∞

1
m

logN (Am).

Then we define the topological entropy of f to be

h(f) := suph(f,A)

where the supremum is taken over all open covers of X.
Here we will let X be some bouquet Gn. We say that A is a cover of Gn by arcs if⋃

A∈AA ⊃ Gn, each A ∈ A is an arc of Gn and all A ∈ A are pairwise disjoint. These
arcs can be open or closed or half open and half closed or even degenerate. (This notion
is similar to ‘a cover by intervals’ when the phase space is the interval, see Chapter 4.2
of [1].)

Let A be a cover of Gn. We call A an f–mono cover if for all Ai ∈ A there is some
circle Sj such that f : Ai → Sj is an injective homeomorphism. Note that if A is an
f–mono cover then Am is an fm–mono cover.

The following results will allow us to prove Theorem 8(a). Propositions 19 and 21
are adapted versions of the theory of [15]. We follow the exposition of this theory in
[1].
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Proposition 19. For f ∈ Mn, h(f) = sup(f,A) where the supremum is taken over
finite covers by arcs.

For the proof of this see Proposition 4.2.2 of [1] which proves that this is so for
interval maps and finite covers by intervals.

Lemma 20. Suppose that f ∈ Mn. Suppose that M is the matrix f∗1. Then there is
a natural f–mono cover by arcs with cardinality ‖A‖.
Proof. We construct the cover as follows. Considering the lift f̃ : [0, n] → [0, n], let
P = f̃−1(b) = {p1, . . . pm} where p1 < · · · < pm. For 1 ≤ i < m, let Pi = [pi, pi+1).
Also, let Pm = [pm, n] ∪ [0, p1). Let Ai = π(Pi) (note that π(Pm) is an arc) and let
A = {A1, . . . , Am}.

Since #(A) = #(f̃−1(b)), we have #(A) = ‖A‖ as required. ¤
The following is Proposition 4.2.3 of [1] with minor adaptations so that it applies to

our case (we must adapt the situation for interval maps to the situation for maps on
bouquets). We include a proof for completeness.

Proposition 21. For f ∈Mn, if A is a mono–cover of Gn then h(f) = h(f,A).

Proof. Let B̃ be a finite cover of Gn by arcs. Let B = B̃ ∨ A. Let C be a cover chosen
from Am. Take A ∈ C. The map fk|A is a homeomorphism for k = 1, . . . , m. Therefore,
for any B ∈ B, the set A∩f−k(B) is an arc (unless it is empty). Each arc has at most 2
endpoints (note that a degenerate arc has only one endpoint). Let x be an endpoint of
an element B ∈ Bm. Then there exists A ∈ C such that A ∩B 6= ∅ and x is a endpoint
of A ∩ B. Since B =

⋂m−1
k=0 f−k(Bk) for some B0, . . . , Bm−1 ∈ B and each of the sets

f−k(Bk) is a union of a finite number of arcs, x is an endpoint of some component of
f−k(Bk) for some k ∈ {0, . . . , m− 1}. Hence x is an endpoint of A∩ f−k(B) for this k.
In each A ∈ C there are at most 2m#(B) such endpoints. The number of possible arcs
with endpoints in a given set is not larger than 4 times the square of the cardinality of
this set (we multiply by 4 because arcs with given endpoints may or may not contain
them). Therefore, #(Bm|A) ≤ 4(2m#(Bm))2. Hence, N (Bm) ≤ 4(2m#(Bm))2#(C).
Since C was arbitrary, we obtain

N (Bm) ≤ 4(2m#(Bm))2N (Am).

In the limit we get
h(f, B̃) ≤ h(f,B) ≤ h(f,A).

By Proposition 19, in calculating the entropy we need only consider finite covers by
arcs, so we have h(f) ≤ h(f,A), and consequently h(f) = h(f,A). ¤

The following is proved in the appendix of [14].

Lemma 22. For a matrix of complex numbers M , the limit limm→∞ log ‖Mm‖ 1
m exists.

Proof of Theorem 8(a). Consider the f–mono cover A of Gn constructed in Lemma 20.
We let M be the action of f∗1 on the first homology. Then #(A) = ‖M‖. Furthermore,
#(Am) = ‖Mm‖. Therefore, by Proposition 21,

h(f) = h(f,A) = lim
m→∞

1
m

log ‖Mm‖.
Since, by Lemma 22 this limit exists (we could also refer to Section 4.1 of [1] to show
that any such limit of the cardinality of the pullback of covers exists), Theorem 8(a) is
proved. ¤
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The proof of Theorem 8(b) is a simple corollary of Theorem 8(a) and the following
result: Theorem A.3 of [14]. The proof also follows from [2].

Theorem 23. The spectral radius of any real or complex n× n matrix M is given by

σ(M) = lim
k→∞

‖Mk‖ 1
k = lim sup

k→∞
‖Tr(Mk)‖ 1

k .

For applications of Theorem 8, see any of the examples in Section 6.

5. Computing periods from eigenvalues of f∗1

As above, the spectral radius of f∗1 can be computed as lim supk→∞ ‖Tr(Mk)‖ 1
k .

However, if limk→∞ ‖Tr(Mk)‖ 1
k exists then we can say more. We first state a result of

[6] (in fact, there the theorem also extends to maps with higher homologies than we
consider here). We need the following definition. A C1 map f : M → M of a compact
C1 differentiable manifold is called transversal if f(M) ⊂ M and for all m ∈ N, for all
x ∈ Fix(fm) we have det(I − dfm(x)) 6= 0, i.e. 1 is not an eigenvalue of dfm(x).

Theorem 24. Let M be a compact manifold with Hi(M,Q) = 0 for i > 1. Suppose
that f : M → Int(M) is a C1 transversal map. Further, assume that the limits

lim
m→∞ |Tr (fm

∗1)|
1
m

and

lim
m→∞

∣∣∣∣∣∣
∑

d|m
µ(d)Tr (f∗1)

∣∣∣∣∣∣

1
m

exist. If there is an eigenvalue different from a root of unity or zero then there exists
m0 ≥ 1 such that

(a) for all m ≥ m0 odd we have that m ∈ Per(f);
(b) for all m ≥ m0 even we have that {m

2 ,m} ∩ Per(f) 6= ∅.

Remark 25. Suppose that |λ1| > 1 and |λ1| > |λ2|.Then we claim that the limit
limm→∞ |Tr (fm∗1)|

1
m exists and is equal to |λ1| since

|λ1|k − (d− 1)|λ2|k < |Tr
(
fk
∗1

)
| < |λ1|k + (d− 1)|λ2|k.

Taking limits we prove the claim.
In a similar way we are able to show that

lim
m→∞

∣∣∣∣∣∣
∑

d|m
µ(d)Tr (f∗1)

∣∣∣∣∣∣

1
m

exists. This is because it can be shown that there exists some C > 0 such that

|λ1|k − 1
C

m|λ1|
k
2 <

∣∣∣∣∣∣
∑

d|m
µ(d)Tr (f∗1)

∣∣∣∣∣∣
< |λ1|k + Cm|λ1|

k
2 .

(For a calculation of this type, see the proof of Proposition 9.) Letting k →∞ we again
obtain |λ1| as the limit. Therefore we have the conclusions of Theorem 24 for our map.
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In fact, in our class, we can improve this result to obtain Proposition 9. For our
proof, we need to show that if a particular growth condition on the number of fixed
points is satisfied then we can be sure of the existence of some periodic points. To give
an idea of this approach we state the following easily proved claim.

Claim 26. Suppose that f : M → M is some map on some space M . If we have

#Fixm(f) >
∑

r|m,r 6=m

#Perr(f)

then
#Per(fm) = #Fixm(f)−

∑

r|m,r 6=m

#Perr(f) > 0.

Now we give the main tool for the proof of Proposition 9.

Proposition 27. Suppose that f : M → M is some map on some space M . If for
some m ≥ 1,

#Fix(fm) >
∑

m
k

prime,k 6=m

#Fix(fk)

then Perm(f) 6= ∅.
Proof. We have

#Fix(fm) =
∑

r|m
#Perr(f).

Now supposing that Perm(f) = ∅,

#Fix(fm) =
∑

r|m,r 6=m

#Perr(f).

So if we prove that
∑

m
k

prime,k 6=m

#Fix(fk) ≥
∑

r|m,r 6=m

#Perr(f),

then the proposition will follow.
Note that we can write m as a product of prime factors m = p1 . . . pn. Thus, if m

k is
prime and k 6= m then k = p1...pn

pi
for some 1 ≤ i ≤ n. So

#Fix(fk) = #Fix
(

f
p1...pn

pi

)
=

∑
#Perr(f)

where the sum runs over all combinations r = pj1 · · · pjnr
where j1 < · · · < jq and all

jk ∈ {1, . . . , n} \ {i}.
We can express any r|m which has r 6= m as prime factors: r = pj1 . . . pjnr

where

1 ≤ nr < n. Therefore, the term #Perr(f) is counted
(

n− 1
nr

)
(≥ 1) times by the

sum on the left, but only once by the sum on the right. So the proposition is proved. ¤
Proof of Proposition 9. First suppose that f ∈ Mn

b . We assume that for some m > 1,
Perm(f) = ∅. Otherwise we are finished. From Proposition 27, to prove that we
contradict this assumption on periodic points, it is sufficient to show that

(7) #Fix(fm) >
∑

m
k

prime,k 6=m

#Fix(fk).
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By Theorem 2, for any m ≥ 1, #Fix(fm) = |L(fm)| = |1− (λm
1 + · · ·+λm

d )|. Clearly,
for m ≥ 2,

m
(
|λ1|

m
2 + · · ·+ |λd|

m
2 − 1

)
>

∑
m
k

prime, k 6=m

|1− (λk
1 + · · ·+ λk

d)|.

But if m is large enough then,

(8) |λm
1 + · · ·+ λm

d | − 1 > m
(
|λ1|

m
2 + · · ·+ |λd|

m
2 + 1

)

which is sufficient to give (7). For example we have the inequalities |1−(λm
1 +· · ·+λm

d )| >
|λ1|m−(d−1)|λ2|m−1 and m

(
1 + |λ1|m2 + · · ·+ |λd|

m
2

)
< m(d|λ1|m2 +1), so whenever,

|λ1|m − (d− 1)|λ2|m − 1 > m
(
d|λ1|

m
2 + 1

)

then (8) is satisfied and the proposition is proved for f ∈ Mn
b . When f ∈ Mn

b,k for
k < ∞ and m ∈ kN then Remark 4 gives L(fm) ≤ #Fix(fm) ≤ 2n− 1 + L(fm). Since
when m is large, the 2n− 1 term becomes insignificant in terms of the size of |λ1|m, we
see that we can apply the same proof as above to this case too. ¤

See Examples 29 and 32 for applications of this. Note that there are many examples
where the condition |λ1| > 1 and |λ1| > |λ2| is not satisfied, but we still have Per(f) =
N. For example, consider a map in M2

b which has the action on the first homology of
a matrix with 2’s on the diagonal and zeros elsewhere.

Note that in Example 31 we have a situation where there are eigenvalues of f∗1 which
are strictly greater than 1, but Per(f) = 3N. So there are limits to how far we can
extend this result.

Remark 28. We would like to estimate m0 for f ∈ Mn
b . From the above proof, we

require that m0 is the infimum of all m such that

|λ1|m > d
[
m

(
|λ1|

m
2 + 1

)
+ |λ2|m

]
+ 1.

6. Examples

We may apply our results to the following examples.

Example 29. Suppose that f ∈M3
b and f∗1 has matrix



1 1 1
0 0 0
1 0 1


 .

This is a matrix satisfying the conditions of Proposition 6 and so has Per(f) = N.
Indeed, for m > 1,

fm
∗1 =




2m−1 2m−2 2m−1

0 0 0
2m−1 2m−2 2m−1




so we have exponential growth of the trace. Furthermore, the eigenvalues of f∗1 are
0, 0 and 2. So by Theorem 8, the entropy is log 2.

The following example has entropy zero.
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Example 30. Suppose that f ∈M4
b where f∗1 has action




1 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0


 .

Then we look at the first six iterates of this matrix:




1 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0


 ,




1 2 2 2
0 0 1 0
0 0 0 1
0 1 0 0


 ,




1 3 3 3
0 1 0 0
0 0 1 0
0 0 0 1


 ,




1 4 4 4
0 0 0 1
0 1 0 0
0 0 1 0


 ,




1 5 5 5
0 0 1 0
0 0 0 1
0 1 0 0


 ,




1 6 6 6
0 1 0 0
0 0 1 0
0 0 0 1


 .

In fact, we see that if m = 3k for k ≥ 1, then

fm
∗1 =




1 m m m
0 1 0 0
0 0 1 0
0 0 0 1


 .

and if 3 - m then the only non–zero entry on the diagonal is the top left corner. Thus
L(fm) = 0. If 3|m then L(fm) = −3. L(f), L(f2) = 0. If m = 3 then l(f3) = 2. But
when m > 3,

l(fm) =
∑

r|m
3|m

r

µ(r)L(f
m
r ).

So clearly, if 3 - m then l(f) = 0, and if 3|m then

L(fm) = −3
∑

r|m
3

µ(r) = 0.

(For more details of this last calculation, see for example Section 3 of [7].) Therefore,
Per(f) = {3}.

Also, we calculate that the eigenvalues of this matrix are 1,−1, e
iπ
3 , e−

iπ
3 , and find

l(fm) this way. By Theorem 8, the entropy of this system is zero (which we would
expect since there is no growth of periodic points).

We see in the next two examples that a small change to the matrix in Example 30
can alter the entropy and the growth of periodic points.

Example 31. Now instead consider the matrix in Example 30, but with any one of
the entries mij for i, j > 1 which equalled 1, replaced by 2. Then the eigenvalues of
this matrix are 1,−

∣∣∣2 1
3

∣∣∣ ,
∣∣∣2 1

3

∣∣∣ e iπ
3 ,

∣∣∣2 1
3

∣∣∣ e− iπ
3 . By Theorem 8, the entropy is log 2

3 and
Per(f) = 3N. We can see this, for example, by applying Proposition 17 to f3 (since we
can compute that the entry in the bottom right–hand corner of the matrix f3∗1 is 2).
We could also show this by direct calculation.

Note that we cannot apply Proposition 9 here since |λ1| = |λ2|.
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Example 32. Consider f ∈M4
b with action

f∗1 =




1 1 1 1
0 0 0 1
0 1 0 0
0 0 1 1




We calculate that

f2
∗1 =




1 2 2 3
0 0 1 1
0 0 0 1
0 1 1 1


 , f3

∗1 =




1 3 4 6
0 1 1 1
0 0 1 1
0 1 1 2




It is easy to see from these matrices that Per(f) = N \ {2}. Note that we have m0 = 3
in the statement of Proposition 9. However, note that since the eigenvalues for f∗1 are
λ1 = 1.47, λ2 = 1, λ3 = 0.23 + i0.79, λ4 = 0.23 − i0.79, the calculation in Remark 28
gives m0 = 10; which is far from optimal.
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