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Abstract. We prove a quenched limiting law for random measures on subshifts at
periodic points. We consider a family of measures {µω}ω∈Ω, where the ‘driving space’
Ω is equipped with a probability measure which is invariant under a transformation
θ. We assume that the fibred measures µω satisfy a generalised invariance property
and are ψ-mixing. We then show that for almost every ω the return times to cylinders
An at periodic points are in the limit compound Poisson distributed for a parameter
ϑ which is given by the escape rate at the periodic point.

1. Introduction

For sufficiently mixing deterministic systems the return times are in the limit expo-
nentially distributed almost surely, as shown in [A] and [AS]. Moreover, for φ-mixing
measures it follows from [AV] that for all non-periodic points one obtains in the limit
the exponential distribution for entry and return times, but that at periodic points the
limiting return times distribution have a point mass at the origin. A similar distinction
can be drawn for higher order returns where we know that for ψ-mixing systems return
times at periodic points are in the limit compound Poisson distributed [HV2]. Assuming
the φ-mixing property we can again conclude that higher order return times are in the
limit Poisson distributed ([HP, Corollary 1]).

For random, stochastic dynamical systems, it was shown in [RT] that the entry times
distributions at periodic points show similar behaviour as in the deterministic setting
if one considers a quenched limit (the annealed result then follows easily). In this case
the limiting distribution has a point mass at the origin and is otherwise exponential.
The splitting is determined by the marginal measure and applies to almost all realisa-
tions. It is assumed that the fibred measures are ψ-mixing. In the present paper we
consider the same setting and prove that higher order return times at periodic points
are compound Poisson distributed. Again the parameter for the compound Poissonian
is entirely determined by the marginal measure and applies to almost all realisations.

The perspective taken here and in the works discussed above is to see the system via
dynamically defined cylinder sets, which makes it essentially a ‘symbolic approach’. We
note that outside this context (hits to balls for example for an interval map), much less
is known in the random setting. However, in [AFV], a Poisson distribution was shown
for first hitting times to balls in the setting of certain random dynamical systems. We
note that this was for systems which were all close to a certain well-behaved system, so
the randomness could be interpreted as (additive) noise. Moreover, this was an annealed
law rather than a quenched one.

1.1. Setting and conditions. Let (Ω, θ,P) be an invertible ergodic measure preserving
system, set Σ = NN0 and let σ : Σ→ Σ denote the shift. LetA = {A(ω) = (aij(ω)) : ω ∈ Ω}
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be a random transition matrix, i.e., for any ω ∈ Ω, A(ω) is a N×N-matrix with entries
in {0, 1} such that ω 7→ aij(ω) is measurable for any i ∈ N and j ∈ N. For any ω ∈ Ω
define

Σω = {x = (x0, x1, . . .) : xi ∈ N and axixi+1
(θiω) = 1 for all i ∈ N}

and

E = {(ω, x) : ω ∈ Ω, x ∈ Σω} ⊂ Ω× Σ.

We consider the random dynamical system coded by the skew-product S : E → E given
by S(ω, x) = (θω, σx). While we allow infinite alphabets here, we nevertheless call S
a random subshift of finite type (SFT). Assume that ν is an S-invariant probability
measure with marginal P on Ω. Then we let (µω)ω denote its decomposition on Σω (see
[Ar, Section 1.4]), that is, dν(ω, x) = dµω(x)dP(ω). The measures µω are called the
sample measures. Observe that µω(A) = 0 if A ∩ Σω = ∅. We denote by µ =

∫
µω dP

the marginal of ν on Σ. We note that we may replace the assumption of invertibility of
θ by assuming the existence of sample and marginal measures as above.

We also identify our alphabet A with the partition given by 1-cylinders U(a) = {x ∈
Σ : x0 = a}. The elements of the kth join Ak =

∨k−1
j=0 σ

−jA, k = 1, 2, . . . are called

k-cylinders. Put A∗ for the forward σ-algebra generated by
⋃
j≥1Aj. The length |A|

of a cylinder set A is determined by |A| = k where k is so that A ∈ Ak. Note that
A is generating, i.e. that the atoms of A∞ are single points. If we denote by χA the
characteristic function of a (measurable) set A ⊂ Σ then we can define the counting
function

ζA(z) =
N∑
j=1

χA ◦ σj(z),

z ∈ Σ, where N is the observation time given by the invariant annealed measure µ. To
wit N = [t/µ(A)] for t > 0 a parameter. The value of ζA counts the number of times a
given point returns to A within the time N .

Let us make the following assumptions:

(i) The measures µω are ψ-mixing: There exists a decreasing function ψ : N → [0,∞)
so that ∣∣µω(A ∩ σ−n−kB)− µω(A)µθn+kω(B)

∣∣ ≤ ψ(k)µω(A)µθn+kω(B)

for all A ∈ σ(An) and B ∈ A∗.
(ii) The marginal measure µ satisfies the α-mixing property:∣∣µ(A ∩ σ−n−kB)− µ(A)µ(B)

∣∣ ≤ ψ(k)

for all A ∈ σ(An) and B ∈ A∗.
(iii) There exist 0 < η0 < 1 so that ηn0 ≤ µ(A) for all A ∈ An, all ω and all large n.
(iv)

sup
ω

sup
A∈A

µω(A) < 1.

Our main result, Theorem 7, is that under these conditions, the return times at periodic

points x are compound Poissonian provided the limit ϑ(x) = limn→∞
µ(An+m(x))
µ(An(x))

exists,
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where m is the minimal period of x and An(x) ∈ An denotes the n-cylinder that contains
x. To be more precise, if we denote by ζxn the counting function

ζxn(z) =
Nn∑
j=1

χAn(x) ◦ σj(z)

with the observation time Nn =
[

t
µ(An(x))

]
(t > 0 is a parameter), then we will show

that µω(ζxn = r) , r = 0, 1, 2, . . . , converges to the Polya-Aeppli distribution as n → ∞
for P-almost every ω.

The first such result was by Hirata [Hi] for the first entry time for Axiom A systems.
For random systems satisfying assumptions (i)–(iv) a similar result was then shown
by Rousseau and Todd [RT] for the first entry time distribution in the quenched case.
Note that, as mentioned above, for systems perturbed by additive noise, which are a
particular case of our systems here, an annealed version of this result is proved in [AFV].
The additivity ‘washes out’ any periodic behaviour.

As in [RT], if we wish to consider shifts on countable alphabets, it is no longer
reasonable to assume condition (iii), but if we drop this and strengthen condition (ii)
to the assumption of the ψ-mixing property for µ, then our results still follow. We close
this section by noting that the conditions on our systems here are the same as those in
[RT], so the main result here also applies to all the applications given there.

1.2. Structure of the paper. In Section 2 we describe the compound Poisson distri-
bution and state an auxiliary limiting result on which the proof of the main result is
based. The main part of the proof of the main result consists of estimating the contribu-
tions made by short returns which are outside the periodicity of the periodic point and
for which the mixing property cannot be well applied. This is done in Section 3. The
compound part is determined by the periodic behaviour near the periodic point where
it generates geometrically distributed immediate returns. For the long returns the mix-
ing property comes into play and results in exponentially distributed returns between
clusters of short returns whose numbers are in the limit geometrically distributed. We
state our main result in Section 4 and provide examples in Section 5.

Acknowledgements. This work was begun at the Conference on Extreme Value Theory
and Laws of Rare Events at Centre International de Rencontres Mathématiques (CIRM),
Luminy and part of it continued at the American Institute of Mathematics (AIM). The
authors thank both institutions for their hospitality.

2. Factorial moments and a limiting result

This section is used to recall a result on the approximation of the compound Poisson
distribution with a geometric distribution, i.e. the Polya-Aeppli distribution. More gen-
eral compound Poisson distributions were considered in [F] and more recently (e.g. [CR,
BCL]) there have been efforts to approach compound Poisson distributions using the
Chen-Stein method. Although the treatment in [CR] applies to more general setting, the
result is far from applicable to our situation. Proposition 1 is the compound analogue
of other theorems for the plain Poisson distribution as for instance in [Se, HV1].
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2.1. Compound Poisson distribution. For a parameter p ∈ [0, 1) define the polyno-
mials

Pr(t, p) =
r∑
j=1

pr−j(1− p)j t
j

j!

(
r − 1

j − 1

)
,

r = 1, 2, . . . , where P0 = 1 (r = 0). The distribution e−tPr(t, p), r = 0, 1, 2, . . . is the
Pólya-Aeppli distribution [JKW] which has the generating function

gp(z) = e−t
∞∑
r=0

zrPr = et
z−1
1−pz .

It has mean t
1−p and variance t 1+p

(1−p)2 . For p = 0: e−tPr(t, 0) = e−t t
r

r!
and one recovers the

Poisson distribution whose generating function g0(z) = et(z−1) is analytic in the entire
plane whereas for p > 0 the generating function gp(z) has an essential singularity at 1

p
.

The expansion at z0 = 1 yields gp(z) =
∑∞

k=0(z − 1)kQk where

Qk(t, p) =
1

(1− p)k
k∑
j=1

pk−j
tj

j!

(
k − 1

j − 1

)
(Q0 = 1) are the factorial moments.

2.2. Return times patterns. LetM andm < M be given integers (typicallym << M)
and let N ∈ N be some (large) number. For r = 1, 2, 3, . . . we define the following:
(I) Gr(N): We denote by Gr(N) the simplex of r-vectors ~v = (v1, . . . , vr) ∈ Nr for
which 1 ≤ v1 < v2 < · · · < vr ≤ N .
(II) Gr,j(N): We write Gr as the disjoint union

⋃
j Gr,j where Gr,j consists of all ~v ∈ Gr

for which we can find j indices i1, i2, . . . , ij ∈ {1, 2, . . . , r}, i1 = 1, so that vk−vk−1 ≤M
if k 6= i2, . . . , ij and so that vk − vk−1 > M for all k = i2, . . . , ij.

For ~v ∈ Gr,j the values of vi will be identified with returns; returns that occur within
less than time M are called immediate returns and if the return time is ≥ M then we
call it a long return (i.e. if vi+1 − vi < M then we say vi+1 is an immediate return and
if vi+1 − vi ≥ M the we call vi a long return). That means that Gr,j consists of all
return time patterns ~v which have r − j immediate returns that are clustered into j
blocks of immediate returns and j − 1 long returns between those blocks. The entries
vik , k = 1, . . . , j, are the beginnings (heads) of the blocks (of immediate returns). We
assume from now on that all short returns are multiples of m. (This reflects the periodic
structure around periodic points as in condition (b) of Proposition 1.)
(III) Gr,j,w(N): For ~v ∈ Gr,j the length of each block is vik+1−1 − vik , k = 1, . . . , j −
1. Consequently let us put wk = 1

m
(vk − vk−1) for the individual overlaps, for k 6=

i1, i2, . . . , ij. Then
∑ik+1−1

`=ik+1 w` = 1
m

(vik+1−1 − vik) is the overlap of the kth block and
w = w(~v) =

∑
k 6=i1,i2,...,ij wk the total overlap of ~v. If we put Gr,j,w = {~v ∈ Gr,j : w(~v) =

w} then Gr,j is the disjoint union
⋃
wGr,j,w.

(IV) ∆(~v): For ~v in Gr,j we put

∆(~v) = min {vik − vik−1 : k = 2, . . . , j}

for the minimal distance between the ‘tail’ and the ‘head’ of successive blocks of imme-
diate returns.
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2.3. Compound Poisson approximations. We shall use the following result:

Proposition 1. Let m be as above and assume that there are sequences {M(n) :
n}, {, N(n) : n} and 0, 1-valued random variables ρj,n for j = 1, . . . , N(n), on some
Σ. For ~v ∈ Gr(n) put ρ~v =

∏
i ρvi,n. Choose δ(n) > 0 and define the ‘rare set’

Rr(n) =
⋃r
j=1Rr,j, where Rr,j = {~v ∈ Gr,j : ∆(~v) < δ}. Let µ be a probability measure

on Σ which satisfies the following conditions:
(a) ∑

~v∈Gr\Rr

µ(ρ~v)→ Qr(t, p)

as n→∞ for some p ∈ (0, 1].
(b) ∑

~v∈Rr

µ(ρ~v)→ 0

as n→∞.
Then for every r

µ(ζn = r)→ e−tPr(t, p)

as n→∞, where ζn =
∑N(n)

j=1 ρj,n.

Proof. The result follows by the moment method (see for example [Bi, Section 30]) that

µ(ζ
(r)
n ) converges to Qr(t, p) for each r, where ζ

(r)
n = ζn(ζn − 1) · · · (ζn − r + 1) is the

factorial moment. Since µ(ζ
(r)
n ) =

∑
~v∈Gr µ(ρ~v) we obtain by assumptions (a) and (b)

that
µ(ζ(r)

n ) =
∑

~v∈Gr\Rr

µ(ρ~v) +
∑
~v∈Rr

µ(ρ~v)→ Qr(t, p)

since the second term goes to zero and the first term converges to Qr.

In the following we will apply this proposition to situations that typically arise in dy-
namical systems. There the stationarity condition (a) of the proposition is implied by
the invariance of the measure. The random variables ρj will be the indicator function
of a cylinder set pulled back under the jth iterate of the map. Condition (a) is then
implied by the mixing property. The more difficult condition to satisfy is (b) because
it involves ‘short range’ interaction over which one has little control and which requires
more delicate estimates (see Lemma 4 below).

3. ψ-mixing measures and the rare set

In this section we only assume Assumption (i), that is the measures µω are ψ-mixing
i.e. satisfy ∣∣µω(U ∩ σ−m−nV )− µω(U)µθm+nω(V )

∣∣ ≤ ψ(m)µω(U)µθm+nω(V )

for all U ∈ σ(An), V ∈ σ(A∗) and for all m,n ≥ 0, where ψ(m)→ 0.
For instance equilibrium states for Hölder continuous potentials on Axiom A systems

(which include subshifts of finite type) or on the Julia set of hyperbolic rational maps
are ψ-mixing.

For r ≥ 1 and (large) τ ∈ N let as above Gr(N) be the r-vectors ~v = (v1, . . . , vr) ∈ Zr
for which 1 ≤ v1 < v2 < · · · < vr ≤ N . Let t be a positive parameter, W ⊂ Σ and
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put τ = [t/µ(W )] be the normalised time. Then the entries vj of the vector ~v ∈ Gr(N)
are the times at which all the points in C~v =

⋂r
j=1 σ

−vjW hit the set W during the

time interval [1, N ]. The following lemma, a random version of [HV1, Lemma 4], is
immediate.

Lemma 2. Let (σ, µω) be ψ-mixing. For r > 1 let ni ≥ 1, i = 1, . . . , r − 1, be given
numbers and ~n = (n1, . . . , nr−1). Let Wi ∈ σ(Ani) and assume that ~v ∈ Gr(N) is such
that vi+1 − vi ≥ ni (i = 1, . . . , r − 1). Then∣∣∣∣µω (

⋂r
i=1 σ

−viWi)∏r
i=1 µθviω(Wi)

− 1

∣∣∣∣ ≤ (1 + ψ(d(~v, ~n)))r−1 − 1,

and d(~v, ~n) = min1≤i≤r−1(vi+1 − vi − ni).

Remark 3. As in [RT, Lemma 2.1], and similarly to the above lemma, under conditions
(i) and (iv) there exists 0 < η1 < 1 so that for all large n

µω(A) ≤ ηn1

for all A ∈ An, and P-a.e. ω.

3.1. Estimate of the rare set. Next we will estimate the size of the rare set. As
before we put C~v =

⋂r
k=1 σ

−vkW for ~v ∈ Gr(N) where W ∈ σ(An) for some n. Let
δ ≥ 0 and put

Rr,j(N) = {~v ∈ Gr,j(N) : min
k

(vik+1 − vik − n) < δ},

where the values vi1 , . . . , vij are the beginnings of the j blocks of immediate returns
(notation as in section 2.2 (II)). Then we put Rr =

⋃
j Rr,j.

Lemma 4. Let the class of measures µω be ψ-mixing. Let {An ∈ An : n} be a sequence of
cylinders and {Mn < n : n} a sequence of integers so that for all large n, An∩σ−`An 6= ∅
for ` < M = Mn implies that ` is a multiple of some given integer m.

Then there exists a constant K1 so that∑
~v∈Rr

µω(C~v) ≤ K1γ
r−1

r∑
j=2

j−1∑
s=1

(
j − 1

s− 1

)
(δηM1 )j−s

µω(ζxn)s

s!

(
r − 1

j − 1

)
(α′ηm1 )r−j,

for δ = δn > n and Rr as above, where C~v =
⋂r
k=1 σ

−vkAn, γ = 1 + ψ(δ − n) and
α′ > 1 + ψ(0).

Proof. Put Rs
r,j for those ~v ∈ Rr,j for which vi+1 − vi ≥ δ for s − 1 indices i1, . . . , is−1

and is = r (s ≤ j − 1) indicate the tails of the blocks which are followed by a large
gap. Similarly we put Rs

r,j,u for the set Rs
r,j ∩ Rr,j,u. We consider two separate cases:

(A) s ≥ 2 and (B) s = 1.
(A) Assume s ≥ 2 and i′1, i

′
2, . . . , i

′
j be the j tails of blocks (i′j = r) which are charac-

terised by vi′k+1−vi′k ≥M for k = 1, . . . , j−1 (and vi′j = vr). We have {ik : k} ⊂ {i′k : k}
where the j − s many indices in {i′k : k} \ {ik : k} mark the gaps which are ≥ M and
smaller than δ. Moreover, the remaining r− j return times are immediate short returns
of lengths ∈ [m,M). Let us put

Wi′k
= Am ∩ σ−mAn ∩ σ−2mAn ∩ · · · ∩ σ−(uk−1)mAn ∩ σ−ukmAn
= Am ∩ σ−mAm ∩ σ−2mAm ∩ · · · ∩ σ−(uk−1)mAm ∩ σ−ukmAn,
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where uk is the overlap for the kth block. The ψ-mixing property yields the following
estimate

µω(Wi′k
) ≤ αukm2

(
uk∏
`=0

µθ`mω(Am)

)
µθukmω(An) ≤ (α2η

m
1 )ukµθukmω(An),

where α2 = 1 +ψ(0) and where we used that (see the Remark 3) µω′(Am) ≤ ηm1 for any
ω′. By Lemma 2

µω (C~v) ≤ µω

(
j⋂
i=k

σ
−(vi′

k
−uk)

Wi′k

)

≤ γs−1αj−s2

j∏
i=1

µ
θ
v
i′
k
−uk

ω
(Wi′k

)

≤ γs−1αj−s2 (ηM1 )j−s(α2η
m
1 )u

s∏
k=1

µθvik ω(An),

where γ = 1 + ψ(δ − n), and the components of ~n = (n1, . . . , nr) as in Lemma 2 are
given by nik = n for k = 1, . . . , s (for the long returns between clusters, i.e., > δ) and
ni = M for i 6= ik, k = 1, . . . , s, where u =

∑
i ui is the total overlap. We have used

that µω(AM) ≤ ηM1 for any ω.
To count the number of return times vectors, note that there are

(
r−1
j−1

)
many possi-

bilities to choose the j positions i′1, . . . , i
′
j of the returns > M . Out of those we can pick

in
(
j−1
s−1

)
many ways the long return (≥ δ) positions i1, . . . , is. Moreover, each choice

allows for < δj−s many ways to fill in the actual j − s many intermediate return times
(between M and δ).

For every fixed set of j returns larger than M and for a fixed value of overlaps u
there are

(
u−1
r−j−1

)
many ways to distribute the u overlaps into the remaining r− j many

returns which are shorter than M .
For each fixed set of long (≥ δ) return times vi1 , . . . , vis and given value of overlaps u

there are consequently (
j − 1

s− 1

)(
r − 1

j − 1

)
δj−s

(
u− 1

r − j − 1

)
many possibilities. We thus obtain:∑
~v∈Rsr,j,u

µω(C~v)

≤
(
j − 1

s− 1

)(
r − 1

j − 1

)
δj−s

(
u− 1

r − j − 1

)
γs−1(ηM1 )j−s(α2η

m
1 )u

∑
vi1<···<vis≤N

s∏
k=1

µθvik ω(An)

≤
(
j − 1

s− 1

)(
r − 1

j − 1

)
δj−s

(
u− 1

r − j − 1

)
γs−1(ηM1 )j−s(α2η

m
1 )u

1

s!

(
N∑
i=1

µθiω(An)

)s

.
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Therefore, since µω(ζxn) =
∑N

i=1 µθiω(An),∑
~v∈Rsr,j,u

µω(C~v) ≤ γs−1

(
j − 1

s− 1

)(
r − 1

j − 1

)
(δηM1 )j−s

(
u− 1

r − j − 1

)
(α2η

m
1 )u

µω(ζxn)s

s!
.

(B) If s = 1 then all returns between blocks are less than δ for all k. In the same way
as above we obtain∑

~v∈R1
r,j,u

µω(C~v) ≤ (δηM1 )j−1

(
r − 1

j − 1

)(
u− 1

r − j − 1

)
(α2η

m
1 )uµω(ζxn).

Summing over s and using the estimates from (A) and (B) yields∑
~v∈Rr

µω(C~v) =
∑
j

j−1∑
s=1

∞∑
u=r−j

∑
~v∈Rsr,j,u

µω(C~v)

≤
r∑
j=2

γs−1

j−1∑
s=1

(
j − 1

s− 1

)
µω(ζxn)s

s!
(δηM1 )j−s

(
r − 1

j − 1

) ∞∑
u=r−j

(
u− 1

r − j − 1

)
(α2η

m
1 )u

≤
r∑
j=2

γs−1

j−1∑
s=1

(
j − 1

s− 1

)
µω(ζxn)s

s!
(δηM1 )j−s

(
r − 1

j − 1

)(
α2η

m
1

1− α2ηm1

)r−j
(as

∑∞
u=q

(
u−1
q−1

)
xu =

(
x

1−x

)q
). The lemma now follows since

α2ηm1
1−α2ηm1

≤ α′ηm1 with an α′

slightly larger than α2.

4. Distribution near periodic points for ψ-mixing measures

We will also need the almost sure convergence of ζxn =
∑Nn

j=1 χAn ◦ σj (where Nn =

[t/µ(An(x))]) which is proved in [RT]. The following lemma requires the Assump-
tion (iii). The proof follows as in [RT, Lemma 4.5], the main difference being that
we’re considering An rather than An \ An+m, so we do not yet require that the limit in
(1) below exists.

Lemma 5. If there is q > 2 log η1
log η0

such that ψ(k)kq → 0 as k →∞, then µω(ζxn)→ t for

P-almost every ω.

Let us put ζxn,u =
∑N

k=0 χAn+mu ◦ σk, where N = t
µ(An)

. We will assume that the limit

ϑ(x) = lim
n→∞

µ(An+m(x))

µ(An(x))
(1){eq:vartheta}

exists. Then µ(ζxn,u) = Nµ(An+mu) = µ(An+mu)
µ(An)

t converges to ϑut as n → ∞. By the

same argument as in Lemma 5 we conclude the following result of which Lemma 5 is
the special case u = 0.

Corollary 6. If ψ(k)kq → 0 as k → ∞ for some q > 2 log η1
log η0

and the limit ϑ(x) =

limn→∞
µ(An+m(x))
µ(An(x))

exists, then

µω(ζn,u)→ ϑut

as n→∞ for P-almost every ω.
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Although for a periodic point x with (minimal) periodm the limit lim`→∞
1
`
|log µ(A`m(x))|

always exists, we cannot necessarily conclude that the limit ϑ = limn→∞
µ(An+m(x))
µ(An(x))

exists.

For t > 0 and integers n we put ζtn for the counting function
∑Nn

j=0 χAn(x))◦σj with the

observation time Nn = [t/µ(An(x))] (where x is periodic with minimal period m). For
equilibrium states for Hölder continuous potentials f (with zero pressure) on Axiom A
systems, Hirata [Hi] has shown that ϑ(x) = exp

∑m
j=1 f(σjx) for periodic points x with

minimal period m, see Example 5.3.

In order to satisfy the assumptions of Proposition 1 we put γ = α, γ1 = αδnη
M and

γ2 = αηm

Theorem 7. Suppose that we have a random SFT driven by an invertible ergodic mea-
sure preserving system (Ω, θ,P) with marginal measure µ and satisfying conditions (i)–
(iv), where the function φ is such that there is q > 2 log η1

log η0
with ψ(k)kq → 0 as k → ∞.

Let x ∈ Σ a periodic point with minimal period m and assume the limit defining ϑ exists
and let Θ = 1− ϑ.

Then

µω(ζxn = r) −→ e−tPr(Θt, ϑ)

as n→∞ for P-a.e. ω.

Proof. We use Proposition 1 and have to verify conditions (a) and (b).
Let ~v ∈ Gr,j \ Rr,j and let vi1 , vi2 , . . . , vij be the heads of the blocks of short returns,

that is i1 = 1 and vik − vik−1 ≥ δ for k = 2, . . . , j. Moreover v` − v`−1 ≤ M for
` 6∈ {i1, . . . , ij}. By Lemma 2 (∆ is as defined in section 2.2)∣∣∣∣∣µω(C~v)−

j∏
k=1

µθvik ω(An+muk)

∣∣∣∣∣ ≤ ((1 + ψ(∆(~v)− n))j − 1)

j∏
k=1

µθvik ω(An+muk),

where uk is the overlap of the kth block beginning with vik . One can also write

An+muk =

ik+1−1⋂
`=ik

σ−v`An.

Then, summing over the total overlaps (see (III)) yields

Sr(n) :=
∑

~v∈Gr\Rr

µω(C~v) =
r∑
j=1

(1 +O(jψ(δ)))
∑
u≥r−j

∑
~v∈Gr,j,u\Rr,j,u

j∏
k=1

µθvik ω(An+muk)

and, as there are
(
r−1
j−1

)
many ways to choose the indices i1, . . . , ij, we can now write

∑
~v∈Gr,j,u\Rr,j,u

j∏
k=1

µθvik ω(An+muk) =

(
r − 1

j − 1

) ∑
u1+···+uj=u

∑
~w∈Gj

j∏
k=1

µθwiω(An+muk) + Er,j,u,

where the error splits into two parts: Er,j,u = E ′r,j,u + E ′′r,j,u. The summation over
u1, . . . , uj is such that the total overlap u has been divided into r−j non-empty sections
for the short returns and then are clustered into the j clusters where some of the uk
might be zero which happens when there is no short return in the associated cluster (i.e.
ik+1 = ik + 1).
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The first part of the error term E ′r,j,u accounts for the overcounting of those combi-
nations that do not occur since not all uk are always assumed. Since every overlap uk
has to be generated by at least one of the r − j short returns each of which in its turn
is bounded by M we obtain for Er,j(n) =

∑
j E
′
r,j,u the following upper bound

|E ′r,j(n)| ≤
∑
u≥r−j

∑
u1+···+uj=u
mink uk≥Mm

1

j!

j∏
k=1

µω(ζxn,uk)

≤
∑
u≥M

m

∑
u1+···+uj=u

1

j!

j∏
k=1

µω(ζxn,uk)

≤ c1t
j
∑
u≥M

m

(
u+ j − 1

j − 1

)
ϑu

for n large enough. Hence E ′r(n) =
∑

j

(
r−1
j−1

)
E ′r,j −→ 0 as n → ∞ (as M

m
> n

2m
→ ∞)

for almost every ω.
The second part is given by E ′′r,j,u =

∑
~v∈Rr,j,u

∏j
k=1 µθwiω(An+muk). For n large enough

we obtain as at the end of the proof of Lemma 4,

|E ′′r | ≤ c2

r∑
j=2

(
r − 1

j − 1

) j−1∑
s=1

(
j − 1

s− 1

)
ts

s!

(
δt

N

)j−s ∞∑
u=r−j

(
u− 1

r − j − 1

)
ϑu

≤ c2

r∑
j=2

(
r − 1

j − 1

) j−1∑
s=1

(
j − 1

s− 1

)
ts

s!

(
δt

N

)j−s(
ϑ

1− ϑ

)r−j
.

Since j − s ≥ 1 we get that Er = E ′r + E ′′r → 0 as n→∞ provided δ/N → 0.
We thus obtain

Sr(n) =
∑
j

(
r − 1

j − 1

)
(1 +O(jψ(δ)))

∑
u≥r−j

∑
u1+···+uj=u

1

j!

j∏
k=1

(
N∑
w=1

µθwω(An+muk)

)
+ Er,

and let δ →∞ with n→∞. Hence we obtain for almost every ω the innermost sum is
µω(ζxn,uk)→ tϑuk and consequently

Sr(n) −→
∑
j

(
r − 1

j − 1

) ∑
u≥r−j

(
u− 1

r − j − 1

)
1

j!
tjϑu =

∑
j

tj

j!

(
r − 1

j − 1

)(
ϑ

1− ϑ

)r−j
=

1

(1− ϑ)r

∑
j

(Θt)j

j!

(
r − 1

j − 1

)
ϑr−j.

The combinatorial factor
(
u−1
r−j−1

)
expresses the number of ways in which u overlaps are

distributed into r − j short returns ≤ M (and which are then clustered into j clusters
where some of them might be empty). This implies

Sr(n) −→ Qr(Θt, ϑ)

and thus verifies condition (a) of Proposition 1.
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To verify assumption (b) we obtain∑
~v∈Rr

µω(C~v) ≤ K1α
r−1

r∑
j=2

j−1∑
s=1

(
j − 1
s− 1

)
(δηM)j−s

µω(ζxn)s

s!

(
r − 1
j − 1

)
(αηm)r−j,

where α = 1 + ψ(0). Hence condition (II) of Proposition 1 is satisfied since j − s ≥ 1.

5. Examples

Since here we focus on the recurrence properties around periodic points we do not
require the entropy to be finite (which is necessary in order to get finite entropy or the
theorem of Shannon-McMillan-Breiman).

5.1. Two-element Bernoulli shifts. Some classes of examples of random SFTs to
which our results apply was given in [RT, Section 6], including examples in the infinite
alphabet case. However, to give the reader some idea of systems to which our methods
apply, we first give an elementary example (this is a simple version of [RSV, Example
19]).

Let Ω = Σ = {0, 1}N0 and let P be a Gibbs measure on Ω (i.e., P need not be Markov).
Then fixing α, β ∈ (0, 1), for ω = (ω0, ω, . . .) ∈ Ω, let

p(ω) =

{
α if ω0 = 0,

β if ω0 = 1.

Then we can define a random Bernoulli measure by

µω[x0, . . . , xn] = px0(ω)px1(θω) · · · pxn(θnω)

where

pxi(ω) =

{
p(ω) if xi = 0,

1− p(ω) if xi = 1.

As shown in [RSV, Example 19], this system satisfies conditions (i)–(iv). Moreover,
if x ∈ Σ is a periodic point of period m, the Bernoulli property of our sample measures
and θ-invariance of P allow us to compute that

ϑ(x) =

∫
px0(ω)px1(θω) · · · pxm−1(θ

m−1ω) dP(ω).

5.2. i.i.d. infinite alphabet systems. Let I be a measurable space with a measure m
and let Ω = IN0 be equipped with the product measure P. Let Σ = NN0 with the left shift
map σ be the full shift over a countable alphabet and ~p : Ω → (0, 1)N a function that
depends only on the zeroth coordinate, i.e. p(ω) = p(ω0), and satisfies

∑∞
n=1 pn(ω0) = 1

for all ω0, where pn are the components of ~p. Assume that supω0,n pn(ω0) < 1. For every
ω = (ω0, ω1, . . .) ∈ Ω we thus obtain a Bernoulli measure µω on Σ defined by

µω(x0, . . . , xn) = px0(ω)px1(θω) · · · pxn(θnω).

Clearly, µω satisfies the Assumptions (i) and (iv). The marginal measure µ is Bernoulli
with weights p̄n =

∫
Ω
pn(ω0) dP(ω) and consequently ψ-mixing. Assumption (iii) there-

fore need not be met.
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If x ∈ Σ is a periodic point of minimal period m then, as before,

ϑ(x) =

∫
Ω

px0(ω)px1(θω) · · · pxm−1(θ
m−1ω) dP(ω) =

m−1∏
j=0

p̄xj = µ(x0x1 · · ·xm−1)

by θ-invariance of P and since P(ω0ω1 · · ·ωm−1) =
∏m−1

j=0 P(ωj). Equivalently, if Ns =

|{j ∈ {0, . . . ,m − 1} : xj = s}| denotes the number of times the symbol s ∈ N occurs
during a period of x, then

ϑ(x) =
∏
s

p̄Nss .

5.2.1. Two-element Bernoulli revisited. In the special case above when the two element
alphabet {0, 1} is used we can equip Ω = {0, 1}N0 with the Bernoulli measure with
weights p, q = 1 − p, p, q > 0. Then p̄0 = αp + βq and p̄1 = (1 − α)p + (1 − β)q and
consequently

ϑ = (αp+ βq)`((1− α)p+ (1− β)q)m−`,

where ` is the number of times the symbol 0 occurs on the period string x0 · · ·xm−1. In
the deterministic case when α = β we obtain ϑ = α`(1− α)m−` which is in accordance
with Hirata’s result.

5.2.2. Infinite entropy system. Let us now choose I = [ε, 1] with the normalised Lebesgue
measure and ε ∈ (0, 1). One can then define a family of probability vectors {~p(ω)}ω∈Ω

by

pn(ω) =
G(ω0)

n log1+ω0 n
,

if n ≥ 3, and equal to 0 if n = 1, 2, where G(ω0) ∈ R+ is a normalising constant for

every ω0 ∈ I. The marginal measure µ is Bernoulli with weights p̄n =
∫ 1

ε
G(t)

n log1+t n
dt

1−ε
where G(t) ∼ 1

t
. Its entropy is infinite since

h(µ) = −
∑
n

∫ 1

ε

G(t)

n log1+t n

dt

1− ε
log

∫ 1

ε

G(t)

n log1+t n

dt

1− ε

≥
∑
n

∫ 1

ε

G(t)

n log1+t n

dt

1− ε

(
log n+ log log n− log

∫ 1

ε

G(t)
dt

1− ε

)
≥

∑
n

∫ 1

ε

G(t)

n logt n

dt

1− ε
− c1

∑
n

∫ 1

ε

G(t)

n log1+t n

dt

1− ε
=∞

as the second term converges, where we used that 1
log1+t n

≤ 1
logn

and c1 = log
∫ 1

ε
G(t) dt

1−ε .

Again, if x ∈ Σ is periodic with minimal period m then ϑ(x) = p̄x0 p̄x1 · · · p̄xm−1 .

5.3. Equilibrium states for Axiom A systems. It is standard to code Axiom A
dynamical systems to understand their ergodic properties, see [Bo]. In this case, a
Hölder potential gives rise to a Gibbs state. Here we briefly discuss the random case,
going directly to the symbolic setting, and show how our results apply here.

Let Ω be equipped with an invertible transform θ and an invariant measure P. We
assume Σ is a topologically mixing subshift of finite type and {fω}ω∈Ω a family of
Hölder continuous functions on Σ whose Hölder norms are uniformly bounded. For
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some κ̂ ∈ (0, 1), the κ̂-Hölder norm of a function f : Σ → R is given by ‖f‖ =
|f |∞ + supn κ̂

−nvarnf , where varnf = supxi=yi:|i|<n |f(x)− f(y)| is the n-variation of f .
By [K] there exist random equilibrium states µω that satisfy the generalised in-

variance property σµω = µθω. The fibred measures µω are Gibbs with respect to
fω. We can assume that the functions fω have zero pressure. We conclude from the
Gibbs property that the fibred measures are ψ-mixing where ψ decays exponentially
at some rate κ < 1. Recall that (see e.g. [Bo]) µω = hωνω where hω are the nor-
malised eigenfunction for the largest eigenvalue of the transfer operator and νω are the
associated eigenfunctionals which are e−fω -conformal, i.e. if σ is one-to-one on a set
A ⊂ Σ then νω(σA) =

∫
A
e−fω dνω(x). If we replace f by the normalised function

f̃ω = fω + log hω − log hω ◦ σ then µω is e−f̃ω -conformal. We now assume that µω is

e−f̃ω -conformal for every ω. Moreover, if U(α) is the n-cylinder which is determined by
the n-word α, then

µω(U(α)) =

∫
χU(α) dµω =

∫
LnωχU(α) dµω =

∫
ef

n
ω (αx) dµω(x),

where Lω is the transfer operator for the normalised function fω, fnω =
∑n−1

j=0 f ◦σ is the

n-th ergodic sum of fω and αx is the concatenation of α and x (subject to the transition
rules).

Let µ =
∫
µω dP(ω) be the marginal measure. We now want to establish that µ is

ψ-mixing and for this purpose assume that the family of functions {fω}ω∈Ω satisfies the
following additional regularity assumption with respect to ω: Assume there exists a
constant K so that for every n:

|fω − fω′ |∞ ≤ Kκ̂n

for ω, ω′ ∈ Ω for which ωi = ω′i∀|i| ≤ n. The supremum norm is over Σ.
Let α be an n-word in Σ and denote by V = U(α) ⊂ Σ the associated n-cylinder.

Similarly for an m-word β we write W = U(β) for the associated m-cylinder. Then

µ(V ∩ σ−n−kW ) =

∫
Ω

µω(V ∩ σ−n−kW ) dP(ω)

=

∫
Ω

µω(V )µθ−n−kω(W )(1 +O(κk)) dP(ω)

= (1 +O(κk))

∫
Ω

∫
Σ

ef
n
ω (αx) µω(x)

∫
Σ

ef
m
θ−n−kω

(βy) dµθ−n−kω(y) dP(ω).

Define ω(n,k)(ω) ∈ Ω by putting ω
(n,k)
i = ωi for i ≤ n + k

2
and ω

(n,k)
i = ωi−(n+ k

2
) for

i > n+ k
2
. This implies for all x ∈ Σ

fnω (αx)− fnω(n,k)(αx) = O(κ
k
2 ),

and for all y

fmθ−n−kω(βy)− fmθ−n−kω(n,k)(βy) = O(κ
k
2 ).
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Hence

µ(V ∩ σ−n−kW )

= (1 +O(κ̂
k
2 ))

∫
Ω

∫
Σ

e
fn
ω(n,k)

(αx)
µω(x)

∫
Σ

e
fm
θ−n−kω(n,k)

(βy)
dµθ−n−kω(y) dP(ω)

= (1 +O(κ̂
k
2 ))

∫
Ω

∫
Σ

e
fn
ω(n,k)

(αx)
µω(x) dP(ω)

∫
Ω

∫
Σ

e
fm
θ−n−kω(n,k)

(βy)
dµθ−n−kω(y) dP(ω).

Hence replacing the the modified ω(n,k) again by ω we obtain∫
Ω

∫
Σ

e
fn
ω(n,k)

(αx)
µω(x) dP(ω) = (1+O(κ̂

k
2 ))

∫
Ω

∫
Σ

ef
n
ω (αx) µω(x) dP(ω) = (1+O(κ̂

k
2 ))µ(U(α)),

and similarly ∫
Ω

∫
Σ

e
fm
θ−n−kω(n,k)

(βy)
dµθ−n−kω(y) = (1 +O(κ̂

k
2 ))µ(U(β)).

We thus obtain

µ(V ∩ σ−n−kW ) = (1 +O(κ′k))µ(V )µ(W ),

that is, the marginal measure µ is ψ-mixing at rate κ′ = max{κ,
√
κ̂}.

Let us note that condition (iii) is satisfied since µ is ψ-mixing.
Thus, if x is a periodic point with minimal period m, then with α = x0 · · ·xm−1,

µ(An+m(x)) =

∫
Ω

∫
Σ

χAn+m(x) dµω dP(ω)

=

∫
Ω

∫
Σ

ef
m
ω (αy)χAn(x)(y) dµω(y) dP(ω)

= (1 +O(κn))

∫
Ω

ef
m
ω (x)

∫
Σ

µω(An(x))) dP(ω).

In particular the limit

ϑ = lim
n→∞

µ(An+m(x))

µ(An(x))

exists and converges exponentially: µ(An+m(x))
µ(An(x))

= ϑ + O(κn). We can then choose δ(n)

to be proportional to | log µ(An(x))|, or equivalently a multiple of n, and obtain the
following result.

Theorem 8. Let σ,Σ be an Axiom A system and {µω}ω∈Ω be a family of equilib-
rium states for Hölder continuous potentials {fω}ω∈Ω whose Hölder norms are uniformly
bounded. We moreover assume that the family of functions {fω}ω∈Ω is Hölder continuous
in ω.

If x ∈ Σ is periodic with minimal period m, then the value ϑ = limn→∞
µ(An+m(x))
µ(An(x))

exists. Moreover for every parameter value t > 0 and r = 0, 1, . . . one has

P(ζxn = r)→ e−tPr(Θt, ϑ)

as n→∞ (Θ = 1− ϑ).
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[AFV] H Aytaç, J M Freitas and S Vaienti: Laws of rare events for deterministic and random dynam-
ical systems; Trans. Amer. Math. Soc. 367 (2015) 8229–8278

[BCL] A D Barbour, L H Y Chen and W L Loh: Compound Poisson approximation for nonnegative
random variables via Stein’s method; Ann. Probab. 20 (1992), 1843–1866.

[Bi] P. Billingsley, Probability and measure. Wiley Series in Probability and Statistics. John Wiley &
Sons, Inc., Hoboken, NJ, 2012. Anniversary edition.

[Bo] R Bowen: Equilibrium States for Anosov Diffeomorphism; Springer Lecture Notes 470, Springer,
New York/Berlin 1975.

[CR] L H Y Chen and M Roos: Compound Poisson approximation for unbounded function on a group,
with application to large deviations; Prob. Th. & Rel. Fields 103 (1995) 515–528.

[F] W Feller: An Introduction to Probability Theory and Its Applications; Wiley 1950.
[HP] N Haydn and Y Psiloyenis: Return times distribution for Markov towers with decay of correlations;

Nonlinearity 27(6) (2014), 1323–1349.
[HV1] N Haydn and S Vaienti: The limiting distribution and error terms for return times of dynamical

systems; Disc. Cont. Dyn. Syst. 10 (2004) 589–616.
[HV2] N Haydn and S Vaienti: The distribution of return times near periodic orbits; Probability Theory

and Related Fields 144 (2009), 517–542.
[Hi] M Hirata: Poisson law for Axiom A diffeomorphisms; Ergod. Th. & Dynam. Syst. 13 (1993),

533–556.
[JKW] N L Johnson, S Kotz and A W Kemp: Univariate Discrete Distributions, 3rd ed., Wiley Series

in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley &
Sons, New York, 2005.

[K] Y Kifer: Limit Theorems for Random Transformations and Processes in Random Environments;
Trans. Amer. Math. Soc. 350(4) (1998), 1481–1518.

[RT] J Rousseau and M Todd: Hitting times and periodicity in random dynamics; J. Stat. Phys. 161
(2015) 131–150.

[RSV] J Rousseau, B Saussol and P Varandas: Exponential law for random subshifts of finite type;
Stochastic Process. Appl. 124 (2014), 3260–3276.

[Se] B A Sevast’yanov: Poisson limit law for a scheme of sums of independent random variables; Th.
Prob. Appl. 17 (1972), 695–699.

Mathematics Department, University of Southern California, Los Angeles, 90089-
1113, USA

E-mail address: nhaydn@usc.edu

Mike Todd, Mathematical Institute, University of St Andrews, North Haugh, St
Andrews, KY16 9SS, Scotland

E-mail address: m.todd@st-andrews.ac.uk
URL: http://www.mcs.st-and.ac.uk/~miket/

mailto:nhaydn@usc.edu
mailto:m.todd@st-andrews.ac.uk
http://www.mcs.st-and.ac.uk/~miket/

	1. Introduction
	1.1. Setting and conditions
	1.2. Structure of the paper

	2. Factorial moments and a limiting result
	2.1. Compound Poisson distribution
	2.2. Return times patterns
	2.3. Compound Poisson approximations

	3. -mixing measures and the rare set
	3.1. Estimate of the rare set

	4. Distribution near periodic points for -mixing measures
	5. Examples
	5.1. Two-element Bernoulli shifts
	5.2. i.i.d. infinite alphabet systems
	5.3. Equilibrium states for Axiom A systems

	References

