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Abstract. We consider local escape rates and hitting time statistics for unimodal interval maps
of Misiurewicz-Thurston type. We prove that for any point z in the interval there is a local escape
rate and hitting time statistics which is one of three types. While it is key that we cover all points
z, the particular interest here is when z is periodic and in the postcritical orbit which yields the
third part of the trichotomy. We also prove generalised asymptotic escape rates of the form first
shown by Bruin, Demers and Todd.

1. Introduction and main result

Much attention has been paid recently to the connection between hitting times on the one hand
[FFT2, GKV, AHV] and escape rates on the other [KL2, PU, DT2]. Given a map f of the interval
preserving a probability measure µ, the principal connection is that in many situations the extremal
index, defined by

− lim
ε→0

logµ({x : f j(x) /∈ Bε(z), j = 0, 1, . . . , ⌊µ(Bε(z))
−1⌋}),

where Bε(z) denotes the ball of radius ε centred at z, yields the same limit [BDT] as the local (or
asymptotic) escape rate given by,

lim
ε→∞

lim
n→∞

−1

µ(Bε(z))

1

n
logµ({x : f j(x) /∈ Bε(z), j = 0, 1, . . . n}) .

The limit typically obeys a dichotomy: if z is not periodic, the limit is 1; if z is periodic with prime
period p, then the limit is 1 − 1

|Dfp(z)| if µ is an acip. More generally, when µ is an equilibrium

state for a Hölder continuous potential ϕ, the limit in the periodic case is 1 − eSpϕ(z), where
Spϕ(z) =

∑p−1
i=0 ϕ(f

i(x)).

Such dichotomies for asymptotic escape rates have been proved for all z in some uniformly hyper-
bolic contexts [BY, KL2, FP, HY]. In the non-uniformly hyperbolic setting, the asymptotic escape
rate has been achieved for large sets of z in e.g. [DT1, PU, BDT, DT2].

In this paper we expand this dichotomy to a trichotomy by establishing conditions in which a third
limit is possible. We do this principally by considering unimodal maps whose post-critical orbit
is eventually periodic and centring holes at such periodic points z. We show that in this case,
the asymptotic escape rate is a function of both |Dfp(z)| as well as the order of the spike in the
invariant density at z.

Before stating our main result, we precisely define the class of maps to which our results will apply.
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2 M.F. DEMERS AND M. TODD

We consider S-unimodal maps f : [0, 1] → [0, 1] in the sense of [NS]. That is

• f is C2 with one critical point c;
• in a neighbourhood of c, f(x) = f(c)−A(x− c)ℓ for ℓ > 1 and A > 0;

• |Df |−
1
2 is convex on each of [0, c] and [c, 1].

We assume that the map is Misiurewicz-Thurston: there is a minimal k0 ⩾ 2 such that fk0(c)
is periodic, i.e., there is a minimal p ⩾ 1 such that fp(fk0(c)) = fk0(c). Moreover this is
a repelling periodic point: |Dfp(fk0(c))| > 1. This implies that the postcritical orbit of c,
orb(f(c)) = {f(c), f2(c), . . . , fk0+p−1(c)}, is finite and that there is an absolutely continuous f -
invariant probability measure (acip) µ. Then the density of µ has a spike at each point of orb(f(c))

of type x
1
ℓ
−1. We let I := [f2(c), f(c)] denote the dynamical core: all points except 0 and 1

eventually map into I and remain there, so µ is supported in I.

Define a hole centred at z by Hε(z) = (z − ε, z + ε). The escape rate of the open system with hole
Hε(z) with respect to the measure µ is defined by

e(Hε(z)) = − lim
n→∞

1

n
logµ

({
x ∈ I : f j(x) /∈ Hε(z), j = 0, . . . , n− 1

})
, (1.1)

when the limit exists. Define the local (asymptotic) escape rate at z by

esc(z) := lim
ε→0

e(Hε(z)))

µ(Hε(z))
.

If z is a periodic point with prime period p, we write λz := |Dfp(z)|.

Our main result is the following trichotomy regarding possible values of the local escape rate. The
only model where such a result has appeared previously is in [DT2, Remark 3.11], which is a very
special case (the full quadratic map).

Theorem 1.1. Let f be as defined above. For any z ∈ I,

esc(z) =


1 if z is not periodic,

1− 1
λz

if z is periodic and not in orb(f(c)),

1− 1

λ
1/ℓ
z

if z is periodic and in orb(f(c)).

The cases when z is outside the postcritical orbit orb(f(c)) follow from [DT2, Theorem 3.7], so
our focus here is on the case when z ∈ orb(f(c)): when z ∈ orb(f(c)) is preperiodic (which falls
into the first case in the above theorem), and when z ∈ orb(f(c)) is periodic. The techniques to
show the former are essentially a subset of the latter. Our proofs exploit the fact that the finite
post-critical orbit allows us to define a finite Markov partition for the map (albeit with unbounded
distortion) which we then use to define a first return map to a conveniently chosen set.

1.1. Hitting time statistics. Setting rA(x) := inf{k ⩾ 1 : fk(x) ∈ A}, the first hitting time to
A, the Hitting Time Statistics (HTS) at z is given by

Tz(t) := lim
ε→0

µ

(
rHε(z) ⩾

t

µ(Hε(z))

)
for t > 0, provided this limit exists. A generalisation of this limit is formulated in [BDT], where the
link between HTS and asymptotic escape rates was explored by scaling the hitting time asymptotic
as tµ(Hε(z))

−α for some α > 0. Accordingly, define for t, α > 0,

Lα,t(z) := lim
ε→0

−1

tµ(Hε(z))1−α
logµ

(
rHε(z) ⩾

t

µ(Hε(z))α

)
.
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Note that Tz(t) corresponds to α = 1. Using Theorem 1.1 we prove the following in Section 6.

Theorem 1.2. For any z ∈ I and all α, t > 0, Lα,t(z) exists and equals

Lα,t(z) =


1 if z is not periodic,

1− 1
λz

if z is periodic and not in orb(f(c)),

1− 1

λ
1
ℓ
z

if z is periodic and in orb(f(c)).

As with Theorem 1.1, the main focus here is on the case when z ∈ orb(f(c)); the other cases follow
from adaptations of [BDT], as we describe in Section 6.4.

We note that a full description of Tz(t) in uniformly hyperbolic cases can be seen in [FFT1, AFV].
In the non-uniformly hyperbolic case, the only full dichotomy (i.e. the result applies to all z with
no excluded values), and only for Tz(t) rather than Lα,t(z) as above, has been demonstrated for
Manneville-Pomeau maps in [FFTV]; see also the recent preprint [BF].

Remark 1.3. Our techniques actually deal with holes of the form (z − εL, z + εR) where εL
εR

is

uniformly bounded away from 0 and ∞, so we are able to handle non-symmetric holes in both
Theorems 1.1 and 1.2.

1.2. Structure of the paper. In Section 2 we assume that we are in the z ∈ orb(f(c)) periodic
case and define a domain Y and a first return map F to Y so that the hole at z is outside Y :
(Y, F ) has exponential return times and a Markov structure. We outline how domains of F can
map into the hole and then modify F to Fε by introducing extra cuts at the boundary of the hole.
In Section 3 again we initially assume z ∈ orb(f(c)) is periodic and show how the density spike at z
affects the scaling of the hole and its preimages. These scalings lead to the three quantities seen in
Theorems 1.1 and 1.2. The section ends in Section 3.4 where the case z ∈ orb(f(c)) is preperiodic
is dealt with.

Section 4 sets up the functional framework for Fε and its punctured counterpart F̊ε. In particular
a spectral gap is proved along with the relevant perturbation theory for the transfer operator
corresponding to F̊ε for ε small and for certain nice ‘β-allowable’ holes. The convergence of the
relevant spectral properties is proved, which prove a version of Theorem 1.1, see (4.16) and (4.17)
for these specific holes. Section 5 then proves Theorem 1.1 for general holes and in all cases of
z ∈ orb(f(c)). In Section 6 we prove Theorem 1.2. The strategy is to use the induced map
to construct a non-Markovian Young Tower and prove a spectral gap for the associated transfer
operator in a space of weighted bounded variation.

Notation: we use g1(ε) ≳ g2(ε) to mean g1(ε)
g2(ε)

⩾ h(ε) where h(ε) → 1 as ε → 0. Similarly

g1(ε) ≲ g2(ε) means g1(ε)
g2(ε)

⩽ h(ε) where h(ε) → 1 as ε→ 0 and g1(ε) ∼ g2(ε) if
g1(ε)
g2(ε)

→ 1 as ε→ 0.

2. First return map structure

Recall that k0 ⩾ 2 denotes the minimal integer such that fk0(c) is periodic with prime period p.
From here until the end of Section 3.3 we will focus on the case that z ∈ orb(f(c)) is periodic;
for the preperiodic case we make minor adjustments in Section 3.4. Suppose that for k1 ⩾ k0,
fk1(c) = z. Then necessarily, fp(z) = z with prime period p.

Proposition 2.1. (1) There exists λper > 1 such that if x is periodic of period n then |Dfn(x)| ⩾
λnper.
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(2) For each neighbourhood U of c there are KU > 0 and λU > 1 such that if J is an interval
with U ∩

(
∪n−1
i=0 f

i(J)
)
= ∅ then infx∈J |Dfn(x)| ⩾ KUλ

n
U .

(3) There is a unique acip µ; this is supported on a finite union of intervals, which contain c
in the interior.

The first item here is in, for example [NS, Theorem A], while the second is more generally known
as Mañé’s Lemma (eg [MS, Theorem III.5.1]). The third item can be found for example as part of
[MS, Theorem V.1.3].

Recall that we call a hyperbolic periodic point x of (prime) period n, orientation preserving/reversing
if fn preserves/reverses orientation in small neighbourhoods of x (i.e. Dfn(x) > 0/Dfn(x) < 0).

Denote the orbit of the critical point by ci = f i(c). Then by the definition of k0 and p above,
orb(c) = {c0, . . . , ck0+p−1}. Let A := {A1, . . . , AM} for M = k0 + p− 1 be the set of ordered open
intervals in [f2(c), f(c)] with boundary points from orb(c). This forms a Markov partition for f on
[f2(c), f(c)].1 The partition induces a dynamical coding on I ′ := [f2(c), f(c)] \

⋃
n⩾0 f

−n (orb(c)):

to each x ∈ I ′ there is a sequence (x0, x1, . . .) ∈ {1, . . . ,M}N0 with f i(x) ∈ Axi . For each n ∈ N,
we refer to [x0, . . . , xn−1] := {(y0, y1, . . .) ∈ Σ : y0 = x0, . . . , yn−1 = xn−1} as an n-cylinder, or
cylinder of depth n. There will be a unique topologically transitive component: we then remove
any component which does not intersect this. Let Σ ⊂ {1, . . . ,M}N0 be the corresponding subshift
of finite type, which is moreover locally eventually onto and thus topologically mixing.

We will abuse notation and refer to cylinders in Σ and the intervals in I they represent by w =
[x0, . . . , xn]. We will write the word w ∈ ∪n⩾1 ∪w′∈{1,...,M}n w

′ and the corresponding cylinder [w]
as just w. Given cylinders w1 = [x0, . . . , xn] and w2 = [y0, . . . , ym], the concatenation [w1w2] is the
cylinder [x0, . . . , xn, y0, . . . , ym]. When needed, we denote by π the projection from Σ to I.

2.1. The inducing scheme. For N ∈ N to be chosen below, we will take a collection of cylin-
ders w1, . . . , wK ∈ {1, . . . ,M}N containing z and consider the first return map F = στ to Σ \
{w1, . . . , wK} where τ is the first return time. We consider the domains of this map to be cylinders
w ∈ ∪n⩾1 ∪w′∈{1,...,M}n w

′, rather than unions of these. Let ΣN,K denote the set of one-cylinders
for F .

Lemma 2.2. Given K ∈ N, for any η > 0 there exists N = N(η,K) ∈ N such that for all n ∈ N,
#{w ∈ ΣM,K : τ(w) = n} = O(eηn).

Proof. If w ∈ ΣN,K has τ(w) = n, then w is an n-cylinder for σ and so must have the form

[x0wi1wi2 · · ·wijxn−1] where j ⩽ n/N . So we can estimate the number of such cylinders by K
n
N

(note that this estimate comes from considering (Σ, σ) to be the full shift, which is a substantial
over-estimate here). So the lemma is complete if we choose N large enough that 1

N logK ⩽ η. □

We will use the above partly to ensure our inducing scheme has exponential tails (see Proposi-
tion 2.5). We will also choose the scheme to be compatible with the periodic structure at z, see
Remark 2.8 below.

Lemma 2.3. For any ε0, η > 0, there exist K,N ∈ N such that Y = π(ΣN,K) has the following
properties:

(a) {f i(c)}k0+p−1
i=1 ∩ Y = ∅; in particular, z /∈ Y ;

(b) if x ∈ I \ Y and i ⩾ 1 is minimal such that f i(x) ∈ Y , then f i(x) ∈ (z − ε0, z + ε0);

1Distortion is unbounded.
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(c) f(Y ) ⊃ Y ;
(d) let F = στ denote the first return map to ΣN,K ; then #{w ∈ ΣN,K : τ(w) = n} = O(eηn);
(e) F : ΣN,K ⟲ is topologically mixing.

Proof. Fix ε0, η > 0. For Ñ ∈ N, we will choose a pair of Ñ -cylinders wL, wR which are adjacent
to z (to the left and right of this point respectively) and, observe that for Ñ large, f i(wL), f

i(wR)

are (Ñ − i)-cylinders for i = 1, . . . , p− 1. If i ∈ {1, . . . , p} is minimal with z = f i+k0(c) then define

w′
L = fp−i(wL), w

′
R = fp−i(wR) and set wj,L, wj,R to be the (Ñ − p + i + j)-cylinders along the

orbit segment {f(c), . . . , fk0−1(c)} mapping to w′
L, w

′
R by f j for j = 0, . . . , k0 − 1. Then define

ZÑ := {wj,L, wj,R : j = 0, . . . , k0 − 1} ∪ {f i(wL), f
i(wR) : i = 0, . . . , p − 1} be the sets we remove

from Σ. The deepest cylinders here are either (i) wk0−1,L, wk0−1,R; or (ii) wL, wR. In case (i), these

are N -cylinders, where N = Ñ −p+ i+k0−1. Since, for example wk0−1−i,L consists of at most M i

N -cylinders (a significant over-estimate), we have removed at most K = 2Mk0+p−1−1
M−1 N -cylinders.

So for η > 0, let N0 = N(η,K) ∈ N be as in Lemma 2.2. Set2 Σ′ = Σ′(N0) := Σ \ ZÑ0
(here

Ñ0 = N0 + p + i − k0 + 1) and let F = στ be the first return map to Σ′. Lemma 2.2 implies that
the number of n-cylinders with first return time n is O(eηn). Case (ii) follows similarly.

Define Y = π(Σ′). Property (a) of the lemma is obvious. The choice of Ñ0 above guarantees
property (d). The definition of ZÑ0

guarantees that returns to Y must occur in a neighbourhood

of z and that f(Y ) ⊃ Y , and choosing Ñ sufficiently large forces this neighbourhood to intersect
(z − ε0, z + ε0), so (b) and (c) hold. Finally, (e) follows from the mixing of σ. □

We will make our final choice of Y once we choose ε0 before Remark 2.8. We will abuse notation
and let F = f τ denote the first return map to Y as well.

Let {Ii}i be the domains (intervals) of monotonicity of the first return map and for brevity, write
τi = τ |Ii . Note that each Ii is associated to a cylinder as in the symbolic model.

Lemma 2.4. There exists P ∈ N0 such that Ii contains a periodic point of prime period τi+k with
k ⩽ P .

Proof. Since Ii corresponds to some n-cylinder [x0wi1wi2 · · ·wijxn−1], the lemma is saying that
there is a chain of allowable transitions xn−1 7→ y1 7→ yk−1 7→ x0, for k ⩽ P , which follows since
the shift is an SFT. □

Proposition 2.5. (a) F has finitely many images, i.e., {F (Ii)}i is a finite set;
(b) (bounded distortion) there exists Cd > 0 such that if x, y belong to the same n-cylinder for

F , then ∣∣∣∣DFn(x)

DFn(y)
− 1

∣∣∣∣ ⩽ Cd|Fn(x)− Fn(y)| ;

(c) |{τ = n}| = O
(
e−n(log λper−η)

)
, where | · | denotes the Lebesgue measure of the set.

Proof. Property (a) follows from the SFT structure and Property (b) follows from the Koebe Lemma
added to the fact that we removed a neighbourhood of the orbit of the critical value to create Y .

2Observe that we are removing a neighbourhood of the orbit of the critical value: the critical point is not removed.
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To prove (c), by Lemma 2.4, given Ii, there is a periodic point x ∈ Ii of period τi+k for 0 ⩽ k ⩽ P .
Thus, by Proposition 2.1(1),

|Df τi(x)| ⩾ λτi+k
per |Df |−k

∞ ⩾

(
λper

|Df |∞

)P

λτiper = K̃λτiper. (2.1)

Since we also have bounded distortion, we see that |Ii| = O(λ−τi
per ) and hence applying Lemma 2.2,

|{τ = n}| = O
(
e−n(log λper−η)

)
, as required. □

In the light of this result, we will assume η ∈
(
0, 12 log λper

)
from here on (we make a final choice

for η before Remark 2.8.

Remark 2.6. The cylinder structure here means that
(
∪k⩾1f

k(∂Y )
)
∩ (Int(Y c) \ orb(f(c))) = ∅.

In particular supposing that Ii has f
k(Ii) = (x, y) in a neighbourhood of z and y < z, then there

will be a set of domains adjacent to Ii such that the closure of the union of their fk iterates covers
(x, z). (Similarly if fk(Ii) lies to the right of z.)

Recall that µ is the unique acip for f according to Proposition 2.1. Define µY := µ|Y
µ(Y ) , which by

Kac’s Lemma is an F -invariant probability measure. We can recover µ from µY by the well-known
formula,

µ(A) = µ(Y )
∑
i

τi−1∑
j=0

µY (Ii ∩ f−j(A)), for A ⊂ I. (2.2)

Note that fk1 in a neighbourhood of c is a 2-to-1 map composed with a diffeomorphism. The
Hartman-Grobman Theorem implies that fp restricted to any small enough neighbourhood of z,
the linearisation domain, is conjugated to the transformation x 7→ λzx and is indeed asymptotic to
this for x close to z. Let ε0 > 0 be such that this theorem holds in (z − ε0, z + ε0).

For ε ⩽ ε0, let δ = δ(ε) be such that fk1 |(c−δ,c+δ) is 2-to-1 onto either (z − ε, z] or [z, z + ε). Set
λδ := λ(c−δ(ε0),c+δ(ε0)) and Kδ := K(c−δ(ε0),c+δ(ε0)) from Proposition 2.1. Then choose η > 0 such

that η < min{1
2 log λper, log λδ). Now with ε0 and η fixed, we choose N1 ⩾ N(η,K) so that the

cylinders making up ZÑ1
from the proof of Lemma 2.3 are contained in ∪p

i=1f
i(z − ε0, z + ε0) and

adjust our inducing domain to Σ′ = Σ′(N1), thus also adjusting Y .

Definition 2.7. With ε0, η and N1 fixed as above, we make our final choice of Y , which will
remain fixed from here on.

With Y fixed, we choose ε1 ∈ (0, ε0] so that Y ∩
(
∪p
i=1f

i(z − ε1, z + ε1)
)
= ∅.

Remark 2.8. (1) Our choice of cylinders around orb(z) means that any domains of the first
return map to Y can enter (z − ε1, z + ε1) at most once, since the linear structure of the
dynamics in this region means that any domain that does so must be ‘spat out’ into Y , and
thus have made a return, before it can escape the linearisation domain.

(2) Moreover, due to the periodic way our cylinders ZÑ were chosen, if fk(Ii) for k < τi is in
the neighbourhood of z, then it cannot return to Y in less than p steps. Indeed, τi − k is a
multiple of p.

It will be convenient to treat the left and right neighbourhoods of z separately. For this purpose,
we introduce the following notation for asymmetric holes. Given εL, εR > 0, we write ε = {εL, εR}
and define the corresponding hole at z by Hε(z) = (z − εL, z + εR). We will abuse notation in the
following ways: we write ε = 0 to mean εL = εR = 0, and we write ε < ε (also ε ∈ (0, ε)) to mean
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εL, εR < ε (and εL, εR ∈ (0, ε)). We extend the definition of δ(ε) to δ(ε) in the natural way, noting
that for example in the orientation preserving case δ(ε) will only depend on one of εL and εR.

For notation, we will denote by (z− εL)i, (z+ εR)i the local inverse of f ip applied to z− εL, z+ εR.

For a hole Hε(z), we denote by H ′
ε the set of intervals J in Y such that fs(J) ⊂ Hε for s < τ |J .

Thus H ′
ε represents the ‘induced hole’ for the first return map F . In fact, due to the construction

here, each such J will be one of the domains Ii. The main expression we must estimate is µ(H′
ε)

µ(Hε)
for

appropriately chosen εL, εR: we will show how this allows us to estimate µ(H′
ε)

µ(Hε)
for all sufficiently

small ε > 0 in Section 5.

2.2. Chain structure. Let the interval of I \ Y containing z be denoted by [a, b]. Now suppose
Ii is a domain of Y with fs(Ii) ⊂ [a, b] with 1 ⩽ s ⩽ τi. Since there is an interval U closer to z
than fs(Ii) with fp(U) = fs(Ii), then by the first return structure, there must be some Ii′ with
fs(Ii′) = U . Iterating this, we call the resulting domains a chain. We consider Ii here to have some

depth k, and the Ii′ above to have depth k + 1 and write these as Iki and Ik+1
i respectively. For

each chain there is an ‘outermost’ interval which we consider to have depth 1: this is the interval
Ii′′ = I1i , a domain in Y where fs(Ii′′) ⊂ [a, b], but fs+p(Ii′′) not contained in [a, b]. Thus chains
are denoted {Iki }∞k=1 and fs+kp(Iki ) = fs(I1i ).

Note that the cylinder structure implies fp(a), fp(b) /∈ (a, b).

Lemma 2.9. (1) If fp is orientation preserving around z then two elements Iki and Ik
′

i of
a chain have depths differing by 1 if and only if they are adjacent to each other. Here
f s+p(Ik+1

i ) = fs(Iki ) for s as above.

(2) If fp is orientation reversing around z then a chain {Iki }k has a neighbouring chain {Ikj }k
so that two elements Iki and Ik

′
j have depths differing by 1 if and only if they are adjacent

to each other. Here the Iki , I
k+1
j , Ik+2

i are adjacent intervals and moreover f2p(Ik+2
i ) = Iki .

See Figure 1 for a sketch of case (1) of the lemma.

Y a (z − εL)1z − εL (z − εL)2 z

fs(Iki )fs(Ik−1
i )fs(Ik−2

i )fs(I1i )

fpfpfpfpfp

Figure 1. The chain structure mapped near z. We are assuming that fp is locally
orientation preserving and focussing attention on the left-hand side of z. We sketch
some intervals of the images (by fs) of the chain {Iki }k⩾1. Note that here τ |Iki = s+k.

Proof. We first assume that {Iki }k is a chain and that fp is locally orientation preserving around
z. Suppose that Ikj is adjacent to I1i . Suppose for some t ⩾ 1 we have f t−1(I1i ) ∩ Y = ∅, but
f t(I1i ) ⊂ Y . As in Remark 2.8, according to our choice of ZÑ0

in the proof of Lemma 2.3, f t(I1i )

can only reenter Y in an ε0-neighbourhood of z. Note that f t(I1i ) must contain either a or b in
its boundary: we assume this is a. We observe that a is also a boundary point of f t(Ikj ) and

f t(Ikj ) ∩ Y = ∅. But then we must have f t+1(Ikj ) ⊂ Y , and moreover this domain must contain a
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in its boundary. Indeed, by the first return structure it must coincide with f t(I1i ). But this implies
that actually Ikj = I2i . This means that the left boundary point of f t−1(I1i ) must map by fp to the

other boundary point a. In the same way we see that all the domains {Iki }k are adjacent to each
other and have fp mapping adjacent fs-images of the chain to each other.

In the orientation reversing case, suppose that I1i is adjacent to Ikj . Then fs+p(I1i ) ⊂ Y . The

Markov structure implies that fs+p(Ikj ) ⊂ [a, b] and that these intervals both contain either a or b

in their boundary, which means that fs+2p(Ikj ) ⊂ Y and so k = 2. By the linear structure of f2p

in this region, if Ikℓ is adjacent to I2j , then f
s+2p(Ikℓ ) = fs(I1i ), so I

k
ℓ = I3i . To prove this starting

with Iki with k ⩾ 1, we iterate the argument by f (k−1)p. The mapping of the fs-images to each
other by f2p follows as in the orientation preserving case. □

In case (2) above we call {Iki }k and {Ikj }k alternating chains. We also call any {Iki }k⩾j , for some
j ⩾ 1, a subchain.

Adding the result of this lemma to the first return structure we see that the images in [a, b] of
any chain must be of the same fixed form, i.e., if {Iki }k, {Ikj }k are two chains which map by fs

and f t respectively into [a, b], then assuming fs(Iki ) and f
t(Ikj ), for some depth k ⩾ 1, are on the

same side of z then these images coincide. Moreover, ∪kfs(I
k
i ) will be either [a, z] or [z, b] if fp is

orientation preserving around z, and ∪kfs(I
k
i ∪ Ikj ) = [a, b] if fp is orientation reversing around z,

and the alternating chains are as in the statement of the lemma.

2.3. Extra cuts for a ‘Markovian’ property. Suppose that fp is orientation preserving around
z. Let a0 = a and then inductively let fp(ai+1) = ai, so that ai → z as i→ ∞. We similarly define
(bi)i to the right of z, accumulating on z. Observe that domains Iki of F which map into [a, b] by
some f s with 1 ⩽ s < τi must map onto some (ak−1, ak) or (bk, bk−1).

In the orientation reversing case we define a0 = a, and a1 such that fp(b) = a1 and inductively
define ai by f

2p(ai+2) = ai. Similarly we define (bi)i. Here if fs(Iki ) ⊂ [a, b] for 1 ⩽ s < τi then
fs(Iki ) ∈ {(ak−1, ak), (bk, bk−1)}.

Note that by bounded distortion, the ratios z−ai
bi−z will be comparable to z−a

b−z .

The above implies that if we were to take our holes around z as, say (ai, bj), these would be Markov
holes in the sense that either an interval of the inducing scheme enters the hole before returning
to Y , or it never intersects it. Note that by topological transitivity the only way z cannot be
accumulated by domains on both the left and the right as above is if z is a boundary point of the
dynamical core [f2(c), f(c)], a simpler case which needs only obvious modifications.

For generic εL, εR ∈ (0, ε1) the corresponding hole will not have this Markov property, so we make

an extra cut here, namely if z − εL ∈ fs(Ii) (in the sketch in Figure 1, Ii = Ik−2
i ) then we split Ii

into two so that one of the resulting intervals maps by fs into the hole and one maps outside, and
similarly for z+ εR, thus defining Fε from F = F0. For this map, in the generic case, the chains no
longer have common boundary points, but now, in the orientation preserving case, they come in
pairs {Iki }k, {Îki }, where I

k+1
i ∪̄Îki is a domain of F , and ∪̄ denotes the union of the open intervals

along with their common boundary point.

In the case fp is orientation reversing around z, we may need to cut a domain of F twice to produce
Fε. For simplicity, we will not address this case here, but all the ideas below go through similarly.
From now on, unless indicated otherwise, when we discuss our induced map we mean Fε.
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Remark that due to the extra cuts, although the domains of Fε have the property that each one
either maps into Hε(z) or never intersects it, for generic holes this does not define a countable
Markov partition for Fε. This is because Fε(Ii) may not be a union of 1-cylinders if a boundary
point of Ii is created by one of the extra cuts.

We next observe that in the orientation preserving case there is a unique pair of subchains we
denote {IkL}k⩾kL,ε

, {ÎkL}k⩾kL,ε
⊂ (c−δ(ε), c) and a unique pair of subchains {IkR}k⩾kR,ε

, {ÎkR}k⩾kR,ε
⊂

(c, c+ δ(ε)). We call these the principal subchains. Note ∪k⩾kL,ε

(
IkL ∪ ÎkIL

)
∪
(
∪k⩾kR,ε

IkR ∪ ÎkIR
)
=

[c−δ(ε), c+δ(ε)]. We can naturally extend this idea to the orientation reversing case. In either case,
δ(ε) is determined by only one of εL or εR, depending on whether fk1(c−δ(ε), c+δ(ε)) = (z−εL, z]
or fk1(c− δ(ε), c+ δ(ε)) = [z, z + εR). Let us call ε∗ this value in {εL, εR}.

3. Measuring the holes

The aim of this section is to estimate µ(Hε), µ(H
′
ε) and thus µ(H′

ε)
µ(Hε)

.

3.1. The contribution from principal subchains. In order to estimate µ(H ′
ε) and µ(Hε), we

first estimate the contribution from the principal subchains.

Lemma 3.1. For x close to c,

|x− c| ∼
(

|fk1(x)− z|
A|Dfk1−1(f(c))|

) 1
ℓ

.

Proof. By the Mean Value Theorem there exists θ ∈ (f(x), f(c)) such that |fk1(x) − fk1(c)| =
Dfk1−1(θ)|f(x)− f(c)|. Then,

|fk1(x)− fk1(c)|
|x− c|

=
|f(x)− f(c)|

|x− c|
|fk1(x)− fk1(c)|
|f(x)− f(c)|

=
A|x− c|ℓ

|x− c|
|Dfk1−1(θ)| ,

where A is from Section 1. The result follows using |Dfk1−1(θ)| ∼ |Dfk1−1(f(c))| by bounded
distortion. □

We can see from Lemma 3.1 that

∣∣∣∣∪k⩾kL,ε

(
IkL ∪ ÎkL

)∣∣∣∣ ∼ Cp(ε∗)
1
ℓ where Cp :=

1

(A|Dfk1−1(f(c))|)
1
ℓ
, i.e.

δ(ε) ∼ Cp(ε∗)
1/ℓ. Since c is bounded away from the critical orbit, as in [M, Theorem 6.1] (see also

[N, Theorem A]) the invariant density is continuous at c and defining ρ := dµ
dm(c), the µY -measure

of the set can be estimated by, ∑
k⩾kL,ε

µY (I
k
L ∪ ÎkL) ∼

Cpρ

µ(Y )
(ε∗)

1
ℓ . (3.1)

Similarly for
∑

k⩾kL,ε
µY (I

k
R ∪ ÎkR). As in (2.2), the sum of these two quantities scaled by µ(Y ) is

the relevant contribution to µ(H ′
ε).

Now for the contribution to µ(Hε), let us suppose that f
p is locally orientation preserving at z and

fk1−1 is also orientation preserving at f(c) (which implies that ε∗ = εL), the other cases follow
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similarly. Denote Jk = ∪k′⩾kI
k′
L ∪̄Îk′L . Then fk1(JkL,ε+k) = ((z − εL)k−1, z) so using Lemma 3.1

again, we have

µY (J
kL,ε+k) ∼ ρCp

µ(Y ) |(z − εL)k − z|
1
ℓ ∼ ρCp

µ(Y )λ
− k

ℓ
z ε

1
ℓ
L =

ρCp

µ(Y )λ
− k

ℓ
z ε

1
ℓ
∗ .

Then using (2.2), we estimate the (scaled) contribution to µ(Hε) from the left of c by,∑
k⩾kL,ε

kµY (I
k
L ∪ ÎkL) =

∑
k⩾kL,ε

∑
k′⩾k

µY (I
k′
L ∪ Îk′L ) =

∑
k⩾kL,ε

µY (J
k)

∼ ρCp

µ(Y )ε
1
ℓ
∗
∑
k⩾0

λ
− k

ℓ
z =

ρCρε
1
ℓ
∗

µ(Y )(1− λ
− 1

ℓ
z )

.

(3.2)

An identical estimate follows for the domains {Ik′R , Îk
′

R }k′⩾k from the right of c.

3.2. The contribution from non-principal subchains. Now for the subchains that are not in
(c− δ(ε), c+ δ(ε)), but which map into Hε before returning to Y , we will use a different, rougher,
type of estimate. First notice that such subchains cannot be contained in (c−δ(ε0), c+δ(ε0)) since if
Ii ⊂ (c−δ(ε0), c+δ(ε0))\(c−δ(ε), c+δ(ε)), then the repelling structure of our map around z means
that Ii will return to Y before mapping into Hε. With this in mind, recall λδ := λ(c−δ(ε0),c+δ(ε0))

and Kδ := K(c−δ(ε0),c+δ(ε0)) defined after Remark 2.6 when we fixed the definition of Y .

We will deal with the orientation preserving case here, the orientation reversing case is similar.
Suppose that {Iki }k⩾ki , {Îki }k⩾ki is a pair of non-principal subchains such that fs(Iki ∪ Îki ) ⊂ Hε

for any k ⩾ ki (so this is the first time that any element of the subchain enters Hε). For x ∈ Iki ,
by the Mean Value Theorem, there is x ∈ Iki such that

|Ii| = |Dfs(x)|−1|f s(Iki )| ⩽ K−1
δ λ−s

δ |fs(Iki )|

by Proposition 2.1. So since fs
(
∪k⩾ki(I

k
i ∪ Îki )

)
covers either (z − εL, z) or (z, z + εR), we thus

obtain an analogue of (3.1): for ε′ = max{εL, εR},

µ(Y )
∑
k⩾ki

µY (I
k
i ∪ Îki ) ⩽ K−1

δ λ−s
δ ε′.

We know that there are O(esη) domains Ij which have fs(Ij) = f j(Ii), so, also accounting for the
intervals which map to the other side of z, the total measure of non-principal chains contributing
to µ(H ′

ε) can be estimated by

2
∑
s⩾1

K−1
δ es(η−log λδ)ε′ = O(1)ε′, (3.3)

and recall we have chosen η ∈ (0, log λδ): in our definition of Y . Similarly to (3.2) we can obtain
an analogous estimate, also O(1)ε′, for the contribution to µ(Hε).

3.3. The limiting ratio in the periodic postcritical case. We will assume that εL
εR

is uniformly

bounded away from 0 and infinity (so in particular εL, εR = O(ε∗)), so that the density spike
dominates the measure of our holes. Now recalling (2.2), (3.1) together with (3.3) imply

µ(H ′
ε) ∼ 2Cpρ(ε∗)

1
ℓ +O(1)ε∗

while (3.2) and the analogue of (3.3) imply

µ(Hε) ∼ 2Cp
ρ(ε∗)

1
ℓ

1− λ
− 1

ℓ
z

+O(1)ε∗,
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so the two principal chains dominate this estimate and the limiting ratio is

lim
ε→0

µ(H ′
ε)

µ(Hε)
= 1− λ

− 1
ℓ

z . (3.4)

3.4. The preperiodic postcritical case. For the case that z = fk1(c) for 1 ⩽ k1 < k0, we choose
the inducing scheme Y via a minor adaptation of the method described in the proof of Lemma 2.3:
properties (a) and (d) of that lemma will follow here along with the condition (b’): If x ∈ I \ Y
and i is minimal such that f i(x) ∈ Y then f i(x) ∈ (fk0+p−1(c)− ε0, fk0+p−1(c)+ ε0) for some small
ε0 > 0. In the notation of the proof of that lemma we choose wL and wR adjacent to z (or just one
of these if z ∈ {f(c), f2(c)} is one of the endpoints of I) and then choose the rest of the cylinders
around orb(f(c), ZÑ := {wj,L, wj,R : j = 0, . . . , k1−1}∪{f i(wL), f

i(wR) : i = 0, . . . , k0+p−k1−1}
be the sets we remove from Σ, where fk1−j(wj,L) = wL and fk1−j(wj,R) = wR. If wL and wR are
chosen small enough then properties (a), (c) and (d) of Lemma 2.3 hold, as does Proposition 2.5.

This construction also guarantees for small enough ε > 0 each Ii passes at most once through
(z − εL, z + εR) before returning to Y , ensuring that µ(H ′

ε) = µ(Hε). Moreover, note that
an Ii which does pass through (z − εL, z + εR), must also pass through a neighbourhood of
{fk1+1(c), . . . , fk0+p−1(c)} before returning to Y .

4. Functional framework for β-allowable holes

Our goal in this section is to formalise a functional framework for the transfer operator correspond-
ing to the induced map Fε and its punctured counterpart F̊ε. In order to do this, we will work
with a fixed higher iterate n0 of the induced map and formulate a classification of holes depending
on the minimal length of images of n0-cylinders under F̊n0

ε (see the definition of β-allowable in
Definition 4.2). Using this control, we prove the punctured transfer operator enjoys a spectral in a
space of functions of bounded variation (Theorem 4.7) and use it to prove a local escape rate for

F̊ε (Lemma 4.9). We then use this prove the local escape rate for f needed for Theorem 1.1 via
(4.16) by computing the limits in (4.17).

We begin by formally defining the induced open system.

Recall that given a hole Hε(z) = (z − εL, z + εR), the induced hole H ′
ε for F̊ε is the collection of

intervals that enter Hε(z) before returning to Y . Define the open system for n ⩾ 1 by

F̊n
ε = Fn

ε |Y̊ n
ε
, where Y̊ n

ε := ∩n−1
i=0 F

−i
ε (Y \H ′

ε) , (4.1)

i.e. the open system at time n is the induced map restricted to the set of points that have not
entered H ′

ε before time n. Note that Y̊ 0
ε = Y and Y̊ 1

ε = Y \H ′
ε.

We first prove the following fact about the map Fε.

Lemma 4.1. For all n ⩾ 0, |DFn
ε (x)| ⩾ K̃λ

τn(x)
per ⩾ K̃λnper, where K̃ > 0 is from (2.1).

Proof. This follows as in the proof of Proposition 2.5, using Lemma 2.4 to find a point of the right
period. □

Using Lemma 4.1, we choose n0 ⩾ 1 so that

inf
x
|DFn0

ε (x)| > 3. (4.2)
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Next we define a parameter to keep track of the minimum size of images of n0-cylinders under the
punctured map F̊n0

ε .

Definition 4.2. Let β ∈ (0, 1/2) and let {Ji}i denote the set of one cylinders for Fn0
ε (n0-cylinders

for Fε).

• For an interval J = (x, y), we say that t ∈ J is β-deep in J if t ∈ [x+ β|J |, y − β|J |].
• For our holes, we say that ε is β-left-allowable if there is a domain Ji of F

n0
ε with fs(Ji) ⊂

(z−ε1, z) with 1 ⩽ s < τi and z−εL β-deep in fs(Ji). We similarly define β-right-allowable
with respect to (z, z+ ε1). In case ε satisfies both of these conditions we call it β-allowable.

The property of β-allowable is important for the following reason.

Lemma 4.3. (Large images depending on β). Let n0 be chosen as in (4.2). For each β ∈ (0, 1/2),

there exists Cβ > 0 such that if Hε is β-allowable, then |Fn0
ε (Ji)|, |F̊n0

ε (Ji)| ⩾ Cβ for all n0-cylinders
Ji.

Proof. The property follows immediately from the Markov structure of Fn0
ε together with the

assumption of β-admissible. Note that without extra cuts due to the boundary of the hole, the
minimum length of the image of any one-cylinder for Fn0

0 is bounded below away from 0 by a
number depending only on Σ′(N0). Next, by definition of Fn0

ε , the intervals that are cut by the
boundary of the hole are such that z − εL and z + εR are β-deep, by assumption. Thus the length
of the image under Fn0

ε is determined by the parameter β, together with the distortion constant

for Fε. Given our choice of cuts depending on the boundary of the hole, the set of images for F̊n0
ε

is simply a subset of the set of images for Fn0
ε , so the property holds equally for F̊n0

ε . □

4.1. A uniform spectral gap for β-allowable holes. In this section we show that for each fixed
β > 0 and in any set of εL, εR > 0 that are β-allowable, the transfer operators associated to F̊ε

and its punctured counterpart have a uniform spectral gap when acting on functions of bounded
variation in Y .

Given a measurable function ψ : Y → R, define the variation of ψ on an interval J ⊂ Y (or a finite
collection of intervals J ⊂ Y ) by∨

J

ψ = sup
x0<x1<···<xN

N∑
k=1

|ψ(xk)− ψ(xk−1)| , (4.3)

where {xk}Nk=0 is the set of endpoints of a partition of J into N intervals, and the supremum ranges
over all finite partitions of J . Define the BV norm of ψ by,

∥ψ∥BV =
∨
Y

ψ + |ψ|L1(m) ,

where m denotes Lebesgue measure on Y . Let3 BV (Y ) denote the set of functions {ψ ∈ L1(m) :
∥ψ∥BV <∞}.

We shall study the action of the transfer operators associated with Fε and F̊ε acting on BV (Y ).
For ψ ∈ L1(m) Define

Lεψ(x) =
∑

y∈F−1
ε x

ψ(y)

|DFε(y)|
, and for each n ⩾ 0, L̊n

εψ = Ln
ε(1Y̊ n

ε
ψ) .

3By the variation of ψ ∈ L1(m), we mean the essential variation, i.e.
∨

Y ψ = infg
∨

Y g, where the infimum ranges

over all functions g in the equivalence class of ψ.
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We do not claim, or need, that 1Y̊ n
ε
∈ BV (Y ).

Remark 4.4. Note that for each x ∈ Y , Fε(x) = F0(x). This is easy to see since Fε simply
introduces extra cuts at the boundary of Hε(z), but does not change the orbit of x, while F0 introduces
no extra cuts apart from those introduced in the original definition of Y . Thus the 1-cylinders for
Fε and F0 differ slightly (those for Fε can only be smaller), but pointwise the definition of the maps
is the same.

Our first result proves a uniform set of Lasota-Yorke inequalities for L̊n0
ε , depending only on β.

Let I̊ε denote the (countable) collection of one-cylinders for F̊n0
ε , and let J̊ε denote the finite set

of images of elements of I̊ε.

Proposition 4.5. For any β > 0 and any β-allowable hole Hε(z), for all ψ ∈ BV (Y ) and all
k ⩾ 0, ∨

L̊kn0
ε ψ ⩽ (23)

k
∨
Y

ψ + (1 + Cd)
(
Cd + 2C−1

β

) k−1∑
j=0

(23)
j

∫
Y̊

n0(k−j)
ε

|ψ| dm , (4.4)∫
Y
|L̊k

εψ| dm ⩽
∫
Y̊ k
ε

|ψ| dm . (4.5)

Proof. The second inequality follows immediately from the definition of L̊ε, so we will prove the
first. In fact, we will prove the inequality for k = 1, which can then be iterated trivially to produce
(4.4).

For ψ ∈ BV (Y ), letting {ūj , v̄j}j denote the endpoints of elements of J̊ε and {ui, vi}i denote the

endpoints of elements of I̊ε, we estimate,∨
Y

L̊n0
ε ψ ⩽

∑
Jj∈J̊ε

∨
Jj

L̊n0
ε ψ + L̊n0

ε ψ(ūj) + L̊n0
ε ψ(v̄j)

⩽
∑
Ii∈I̊ε

∨
Ii

ψ

|DFn0
ε |

+
∑
Ii∈I̊ε

|ψ(ui)|
|DFn0

ε (ui)|
+

|ψ(vi)|
|DFn0

ε (vi)|
.

(4.6)

For the first term above, given a finite partition {xk}Nk=0 of Ii, we split the relevant expression into
two terms.∑

k

∣∣∣∣ ψ(xk)

|DFn0
ε (xk)|

− ψ(xk−1)

|DFn0
ε (xk−1)|

∣∣∣∣ ⩽ 1

3

∨
Ii

ψ +
∑
k

|ψ(xk)|
∣∣∣∣ 1

|DFn0
ε (xk)|

− 1

|DFn0
ε (xk−1)|

∣∣∣∣ ,
where we have used (4.2) in the first term. For the second term, we use bounded distortion,
Proposition 2.5(b), to estimate,∣∣∣∣ 1

|DFn0
ε (xk)|

− 1

|DFn0
ε (xk−1)|

∣∣∣∣ ⩽ Cd
|Fn0

ε (xk)− Fn0
ε (xk−1)|

|DFn0
ε (xk)|

⩽ (1 + Cd)Cd|xk − xk−1| ,

where we have applied the mean value theorem to Fn0
ε on [xk−1, xk]. Putting these estimates

together yields,∑
k

∣∣∣∣ ψ(xk)

|DFn0
ε (xk)|

− ψ(xk−1)

|DFn0
ε (xk−1)|

∣∣∣∣ ⩽ 1

3

∨
Ii

ψ + Cd(1 + Cd)
N∑
k=1

|ψ(xk)|(xk − xk−1)

⩽
1

3

∨
Ii

ψ + Cd(1 + Cd)

∫
Ii

|ψ|+ κN (ψ) ,
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where we have recognised the second term as a Riemann sum, and the error term κN (ψ) → 0 as
N → ∞. Since the variation is attained in the limit of partitions as N → ∞, we have the following
bound on the first term from (4.6),∨

Ii

ψ

|DFn0
ε |

⩽
1

3

∨
Ii

ψ + Cd(1 + Cd)

∫
Ii

|ψ| dm . (4.7)

Next, for the second term in (4.6), we use the bound,

|ψ(ui)|+ |ψ(vi)| ⩽ 2 inf
Ii

|ψ|+
∨
Ii

ψ ⩽
2

|Ii|

∫
Ii

|ψ|+
∨
Ii

ψ . (4.8)

Then using again bounded distortion together with Lemma 4.3, we have

|Ii| inf
Ii

|DFn0
ε | ⩾ (1 + Cd)

−1|Fn0
ε (Ii)| ⩾ (1 + Cd)

−1Cβ . (4.9)

Putting these estimates together with (4.7) into (4.6), and using again (4.2), we conclude,∨
Y

L̊n0
ε ψ ⩽

2

3

∑
i

∨
Ii

ψ+
(
C2(1+Cd)+2(1+Cd)C

−1
β

) ∫
Ii

|ψ| ⩽ 2

3

∨
Y

ψ+(1+Cd)(Cd+2C−1
β )

∫
Y̊

n0
ε

|ψ|,

which is the required inequality for k = 1. □

Next, in order to show that L̊ε has a uniform spectral gap (depending on β, and for ε sufficiently
small), we will apply the perturbative framework of Keller and Liverani [KL1]. To this end, define
the norm of an operator P : BV (Y ) → L1(m) by,

|||P||| = sup{|Pψ|L1(m) : ∥ψ∥BV ⩽ 1} . (4.10)

Our next lemma is standard: |||L0 − L̊ε||| is small as a function of m(H ′
ε).

Lemma 4.6. For any ε > 0 and ε′ ∈ [0, ε), |||L̊ε′ − L̊ε||| ⩽ m(H ′
ε \H ′

ε′). This holds in particular

for ε′ = 0, in which case L̊0 = L0 is the unpunctured operator.

Proof. Let ψ ∈ BV (Y ). Then,∫
Y
|(L̊ε′ − L̊ε)ψ| dm ⩽

∫
Y
|ψ1H′

ε\H′
ε′
| dm ⩽ ∥ψ∥BVm(H ′

ε \H ′
ε′) .

□

Theorem 4.7. For any β > 0, there exists εβ > 0 such that for any β-allowable hole Hε(z) with

ε < εβ, L̊ε is a continuous perturbation of L0. Indeed, it is Hölder continuous in m(H ′
ε).

As a consequence, L̊ε has a spectral gap on BV (Y ). In particular, there exist ηβ, Bβ > 0, such

that for all ε < εβ, the spectral radius of L̊ε is Λε < 1 and there exist operators Πε,Rε : BV (Y ) ⟲
satisfying Π2

ε = Πε, ΠεRε = RεΠε = 0, and ∥Rn
ε∥BV ⩽ BβΛ

n
εe

−ηβn such that

L̊εψ = ΛεΠεψ +Rεψ . (4.11)

Moreover, Πε = e̊ε ⊗ g̊ε for some e̊ε ∈ BV (Y )∗ and g̊ε ∈ BV (Y ) satisfying L̊εg̊ε = Λεg̊ε with∫
Y g̊ε dm = 1.

Lastly, the spectra and spectral projectors vary (Hölder) continuously as functions of ε in the ||| · |||-
norm, i.e. as operators from BV (Y ) to L1(m).
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Proof. The Lasota-Yorke inequalities of Proposition 4.5 apply also to the unpunctured operator
Lε = L0 with Y̊ n

ε replaced by Y . Thus Ln0
0 is quasi-compact on BV (Y ), and since L0 is also

bounded as on operator on BV (Y ) (although we do not obtain the same contraction for one iterate
of L0, the norm estimate as in the proof of Proposition 4.5 is finite), then L0 is also quasi-compact
on BV (Y ). Since F0 is mixing by Lemma 2.3(e) and has finite images by Proposition 2.5(a), then
F0 is covering in the sense of [LSV]. It follows that L0 has a spectral gap. Then so does Ln0

0 .
Moreover, if g0 is the unique element of BV (Y ) such that L0g0 = g0 and

∫
Y g0 dm = 1, then [LSV,

Theorem 3.1] implies

cg := inf
Y
g0 > 0 . (4.12)

Next, due to the uniform Lasota-Yorke inequalities (for fixed β > 0) of Proposition 4.5 together
with Lemma 4.6 for ε′ = 0, [KL1, Corollary 1] implies that the spectra and spectral projectors of

L̊n0
ε outside the disk of radius 2/3 vary continuously in ε for ε sufficiently small (depending on β).

The spectral gap and the rest of the spectral decomposition for L̊ε then follows from the analogous
decomposition for L0.

Lastly, fixing ε < εβ and using Lemma 4.6, we apply again [KL1, Corollary 1] to L̊ε to conclude

that the spectra and spectral projectors of L̊ε′ vary Hölder continuously as functions of |ε′ − ε|
whenever ε′ < εβ. □

The above theorem implies in particular that the size of the spectral gap is at least ηβ for all
β-allowable holes Hε(z) with ε < εβ.

4.2. Local escape rate. In this section, we will set up the estimates necessary to prove Theo-
rem 1.1 via the induced map Fε. The strategy is essentially the same as that carried out in [DT2,
Section 7], but of course now we are interested in the case in which z lies in the critical orbit, which
was not allowed for geometric potentials in [DT2].

We fix β > 0 and consider the zero-hole limit as ε → 0 for β-allowable holes only. As a first step,
we use the spectral gap for L̊ε given by Theorem 4.7 to construct an invariant measure νε for the
induced open map F̊ε supported on the survivor set Y̊∞

ε := ∩∞
n=1Y̊

n
ε = ∩∞

n=0F̊
−n
ε (Y ).

Define for ψ ∈ BV (Y ),

νε(ψ) := lim
n→∞

Λ−n
ε

∫
Y̊ n
ε

ψ g̊ε dm . (4.13)

Lemma 4.8. Fix β > 0 and let ε < εβ be β-allowable. The limit in (4.13) exists and defines a Borel

probability measure, supported on Y̊∞
ε , and invariant for F̊ε. Moreover, νε varies continuously as

a function of ε (for fixed β) and 4

− log Λε =

(∫
τ dνε

)
e(Hε(z)) , (4.14)

where τ is the inducing time for Fε and e(Hε(z)) is the escape rate for f from (1.1).

Proof. The limit in (4.13) exists due to the spectral decomposition from Theorem 4.7 and the
conformality of m:

lim
n→∞

Λ−n
ε

∫
Y̊ n
ε

ψ g̊ε dm = lim
n→∞

∫
Y
Λ−n
ε L̊n

ε(ψg̊ε) dm = e̊ε(ψg̊ε) ,

4Indeed, we show that νε(τ) is continuous in ε although τ /∈ BV (Y ).
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for any ψ ∈ BV (Y ) since if ψ ∈ BV (Y ), then also ψg̊ε ∈ BV (Y ). From (4.13), |νε(ψ)| ⩽ νε(1)|ψ|∞,
so that νε extends to a bounded linear functional on C0(Y ), i.e. νε is a Borel measure, clearly

supported on Y̊∞
ε . Since νε(1) = 1, νε is a probability measure.

Next, we prove that νε is continuous as an element of BV (Y )∗. Remark that by the above calcu-
lation, νε(ψ) = e̊ε(̊gεψ) for ψ ∈ BV (Y ), and when ε = 0, µY (ψ) = e0(g0ψ) =

∫
g0ψ dm, since m

is conformal for L0. Indeed, e̊ε defines a conformal measure m̊ε for L̊ε, so that e̊ε(ψ) =
∫
Y ψ dm̊ε

and dνε = g̊εdm̊ε. Thus, for ψ ∈ BV (Y ) and ε, ε′ < εβ,

|νε(ψ)− νε′(ψ)| ⩽ |̊eε(̊gεψ − g̊ε′ψ)|+ |̊eε(̊gε′ψ)− eε′ (̊gε′ψ)|

⩽

∣∣∣∣∫ (̊gε − g̊ε′)ψ dm̊ε

∣∣∣∣+ ∣∣∣∣∫ (Πε(̊gε′ψ)−Πε′ (̊gε′ψ)
)
dm

∣∣∣∣
⩽ |ψ|∞ |̊gε − g̊ε′ |L1(m̊ε) + |||Πε −Πε′ ||| ∥̊gε′ψ∥BV .

(4.15)

Both differences go to 0 as ε′ → ε by Theorem 4.7, while ∥̊gε′∥BV is uniformly bounded in ε′ by
Proposition 4.5. We conclude that νε is continuous in ε for fixed β when acting on BV functions.

It remains to prove (4.14). Unfortunately, τ /∈ BV (Y ) so first we must show that νε(τ) is well-

defined. Indeed, it is easy to check that L̊ετ ∈ BV . This holds since τ is constant on each
1-cylinder Yi,ε for Fε. Thus L̊ετ has discontinuities only at the endpoints of {F̊ε(Yi,ε)}i, which is
a finite collection of intervals.

It follows also that L̊ε(τ g̊ε) ∈ BV (Y ). Thus using (4.11),

lim
n→∞

Λ−n
ε

∫
Y̊ n
ε

τ g̊ε dm = lim
n→∞

Λ−n
ε

∫
Y
L̊n−1
ε (L̊ε(τ g̊ε)) dm

= Λ−1
ε

∫
Πε(L̊ε(τ g̊ε)) dm+ lim

n→∞

∫
Λ−n
ε Rn−1

ε (L̊ε(τ g̊ε)) dm ,

and the second term converges to 0 by Theorem 4.7. Thus the limit defining νε(τ) exists and is
uniformly bounded in ε for fixed β. More than this, the above calculation can be improved to show
that τ is uniformly (in ε) integrable with respect to νε, as follows. For each N > 0, we use the
above to estimate,

νε(1τ>N · τ) = lim
n→∞

Λ−n
ε

∫
L̊n−1
ε (L̊ε(1τ>N · τ g̊ε)) dm ⩽ Λ−1

ε |L̊ε(1τ>N · τ g̊ε)|∞ .

Then using bounded distortion as in (4.19), one has for x ∈ Y ,

|L̊ε(1τ>N · τ g̊ε)(x)| ⩽
(1 + Cd)|̊gε|∞

Cβ

∑
y∈F̊−1

ε x
τ(y)>N

τ(y)m(Yi,ε(y))

⩽ C
∑
k>N

km(τ = k) ⩽ C ′
∑
k>N

ke−k(log λper−η) ,

where we have used Proposition 2.5(c).

It follows that for each κ > 0, there exists N > 0 such that supε∈[0,εβ){νε(1τ>N · τ)} < κ where the

sup is restricted to β-allowable values of ε. Let τ (N) = min{τ,N} and note that τ (N) ∈ BV (Y ).
Then taking a limit along β-allowable ε′ yields,

lim
ε′→ε

|νε(τ)− νε′(τ)| ⩽ lim
ε′→ε

|νε(τ (N))− νε′(τ
(N))|+ |νε(1τ>N · τ)|+ |νε′(1τ>N · τ)| ⩽ 2κ ,

since we have shown that νε′ → νε as elements of BV (Y )∗. Since κ > 0 was arbitrary, this proves
that νε(τ) varies continuously in ε.
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Recall that {Yi}i denotes the set of 1-cylinders for F0 and let J0 = {F0(Yi)}i denote the finite set of
images. The covering property of f implies that the set of preimages of endpoints of elements of J0

is dense in I. Thus there is a dense set of ε < εβ such that Fε admits a countable Markov partition
with finite images. For such ε, [DT1, Section 6.4.1] implies that νε is an equilibrium state for the
potential −Ξε · log(DFε)− log Λε, where Ξε(x) = 1 if x ∈ Y \H ′

ε and Ξε = ∞ if x ∈ H ′
ε. Similarly,

[BDM, Lemma 5.3] implies that νε is a Gibbs measure for the potential −Ξε · log(DFε)−τe(Hε(z))
with pressure equal to 0. Putting these together yields (4.14) for such ‘Markov holes.’

Finally, we extend the relation to all ε via the continuity of Λε and νε(τ). Since e(Hε(z)) is
monotonic in ε and equals − log Λε/νε(τ) on a dense set of ε, it must also be continuous in ε. Thus
the relation (4.14) holds for all ε < εβ which are β-allowable. □

With Lemma 4.8 in hand, we see that the limit we would like to compute to prove Theorem 1.1
can be expressed as follows,

e(Hε(z))

µ(Hε(z))
=

− log Λε

µY (H ′
ε)

·
∫
τ dµY∫
τ dνε

· µ(H ′
ε)

µ(Hε(z))
, (4.16)

where as before µY = µ|Y
µ(Y ) , and 1/µ(Y ) =

∫
Y τ dµY by Kac’s Lemma since Fε is a first-return map

to Y . Theorem 1.1 will follow once we show that as ε → 0,

− log Λε

µY (H ′
ε)

→ 1

∫
τ dµY∫
τ dνε

→ 1 ,
µ(H ′

ε)

µ(Hε(z))
→ 1− λ−1/ℓ

z . (4.17)

The third limit above is precisely (3.4) when z ∈ orb(f(c)) is periodic (and is simply 1 by Section 3.4
when z ∈ orb(f(c)) is preperiodic) , so we proceed to prove the first two. We first prove these limits
for β-allowable holes with a fixed β > 0 in Lemmas 4.9 and 4.10. Then in Section 5 we show how
to obtain the general limit as ε → 0.

Lemma 4.9. For fixed β > 0 and any sequence of β-allowable holes Hε(z),

lim
ε→0

− log Λε

µY (H ′
ε)

= 1 .

Proof. The lemma could follow using the results of [KL2], yet since z /∈ Y in our setting, it is not
clear how to verify the aperiodicity of H ′

ε without imposing an additional condition on the reentry
of points to Y which have spent some time in a neighbourhood of z. To avoid this, we will argue
directly, as in [DT2, Proof of Theorem 7.2], yet our argument is simpler since our operators L̊ε

approach a fixed operator L0 via Lemma 4.6 in contrast to the situation in [DT2].

We assume that ε < εβ so that we are in the setting of Theorem 4.7. Then since g0 ∈ BV (Y ),
iterating (4.11) yields for any n ⩾ 1,

L̊n
εg0 = Λn

ε e̊ε(g0)̊gε +Rεg0 =⇒ g̊ε =
1

e̊ε(g0)
(Λ−n

ε L̊n
εg0 − Λ−n

ε Rn
εg0) .

Using this relation and Lemma 4.6 yields,

1− Λε =

∫
g̊ε dm−

∫
L̊εg̊ε dm =

∫
(L0 − L̊ε)̊gε dm =

∫
H′

ε

g̊ε dm

=
1

e̊ε(g0)

∫
H′

ε

(Λ−n
ε L̊n

εg0 − Λ−n
ε Rn

εg0) dm

=
1

e̊ε(g0)

(∫
H′

ε

g0 dm−
∫
H′

ε

(1− Λ−n
ε L̊ε)g0 dm−

∫
H′

ε

Λ−n
ε Rn

εg0 dm

)
.

(4.18)
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By Theorem 4.7, the third term on the right side of (4.18) is bounded by∫
H′

ε

Λ−n
ε Rn

εg0 dm ⩽ Bβe
−ηβn∥g0∥BV c

−1
g

∫
H′

ε

g0 dm ,

where cg = infY g0 > 0 according to (4.12).

Next, the second term on the right side of (4.18) can be expressed as,∫
H′

ε

(1− Λ−n
ε L̊ε)g0 dm = (1− Λ−n

ε )

∫
H′

ε

g0 dm+ Λ−n
ε

∫
H′

ε

(Ln
0 − L̊n

ε)g0 dm ,

using the fact that L0g0 = g0. We claim that (Ln
0 − L̊n

ε)g0 can be made small in L∞(Y ). To see
this, choose n = kn0 and write for x ∈ Y ,

(Ln
0 − L̊n

ε)g0(x) =
∑

y∈F−n
0 x

g0(y)1Y \Y̊ n
ε
(y)

|DFn
0 (y)|

=

k−1∑
j=0

∑
y∈F−n

0 x

g0(y)1Y̊ jn0
ε \Y̊ (j+1)n0

ε
(y)

|DFn
0 (y)|

,

where we have used the fact that when n = kn0, Y \ Y̊ n
ε = ∪k−1

j=0(Y̊
jn0
ε \ Y̊ (j+1)n0

ε ) and the union

is disjoint. Next, if Yi,j,ε(y) is the jn0-cylinder for F
jn0
ε containing y, then by bounded distortion

and Lemma 4.3,

|DF jn0(y)| ⩾ m(F jn0(Yi,j,ε(y))

(1 + Cd)m(Yi,j,ε(y))
⩾

Cβ

(1 + Cd)m(Yi,j,ε(y))
. (4.19)

Then, applying also (4.2), we have

(Ln
0 − L̊n

ε)g0(x) ⩽
(1 + Cd)|g0|∞

Cβ

k−1∑
j=0

m(Y̊ jn0
ε \ Y̊ (j+1)n0

ε )3k−j =: ρn(ε) ,

and note that ρn(ε) → 0 as ε → 0 for fixed n = kn0. Thus, the second term on the right side of
(4.18) is estimated by,∫

H′
ε

(1− Λ−n
ε L̊ε)g0 dm ⩽

(
1− Λ−n

ε + c−1
g Λ−n

ε ρn(ε)
)
µY (H

′
ε).

Putting these estimates into (4.18) yields,

1− Λε

µY (H ′
ε)

=
1

e̊ε(g0)

(
1 +O(e−ηβn + (1− Λ−n

ε ) + Λ−n
ε ρn(ε)

)
.

Fixing κ > 0, first choose n = kn0 so that e−ηβn < κ. Next, choose ε so small that by the
continuity of the spectral data from the proof of Theorem 4.7, |1− Λ−n

ε | < κ, Λ−n
ε ⩽ 2, ρn(ε) < κ

and |̊eε(g0) − 1| < κ. This last bound is possible since e0(g0) =
∫
g0 dm = 1. Thus the relevant

expression is 1 + O(κ) for ε sufficiently small and β-allowable. Since κ is arbitrary, the lemma is
proved. □

Recall that the inducing time τ for Fε does not depend on ε.

Lemma 4.10. For fixed β > 0 and any sequence of β-allowable holes Hε(z),

lim
ε→0

∫
τ dµY∫
τ dνε

= 1 .
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Proof. As above, we assume ε < εβ. Recall that ν0 = µY and e0(ψ) =
∫
ψ dm since m is conformal

for L0. Thus the estimates (4.15) and following in the proof of Lemma 4.8 hold equally well with
ε′ = 0 throughout. Thus the continuity of νε(τ) extends to ε = 0. This, plus the fact that νε(τ) ⩾ 1
since τ ⩾ 1 implies the required limit. □

5. Completion of the proof of Theorem 1.1 via approximation

Putting together Section 3.3 and Lemmas 4.9 and 4.10, we have proved Theorem 1.1 for each
β > 0 along sequences (εn)n where each εn is β-allowable. It remains to consider the alternative
case where we have to approximate a given sequence εn by β-allowable ε′n. We will focus our
estimates on approximating on the left, with the right-hand side following similarly. We also start
by assuming z ∈ orb(f(c)) is periodic.

We remark that if Hε is β-allowable, then it is also β′-allowable for any β′ < β, so we will take our
approximating sequence with β tending to 0. Without loss of generality and for convenience, we
assume β < (2λz)

−1.

Recall the notation (ai)i, (bi)i from Section 2.3, i.e. (ai, ai+1) are the fs-images of subchains of
intervals accumulating on z from the left, while (bi+1, bi) accumulate on z from the right. Recall that
z−ai
bi−z are uniformly bounded away from 0 and ∞. As in Lemma 2.9, we have fp(ai, ai+1) = (ai−1, ai)

if fp is orientation preserving at z, and f2p(ai, ai+1) = (ai−2, ai−1) if fp is orientation reversing.
We will assume the orientation preserving case in the following, the orientation reversing case being
similar.

Each interval (ai, ai+1) is f
s(Ij) for some one-cylinder Ij for Fε. Each Ij in turn is subdivided into

a countable union of n0-cylinders for Fε and so (ai, ai+1) is subdivided into a countable union of
fs images of these n0-cylinders. Indeed, given the chain structure, the arrangement of fs images
of the n0-cylinders in (ai, ai+1) maps precisely under fp onto the f s images of the n0-cylinders in
(ai−1, ai).

We describe this structure as follows: each (ai, ai+1) is subdivided into finitely many intervals
(depending on n0), which we index by j, j = 1, . . . , Ji. The end points of these intervals are
preimages of the boundaries of one-cylinders in Y , some of which may map onto c before n0 iterates
of Fε, in which case they are in fact accumulation points of preimages of the chains recalled above.
We label these chains of intervals (ci,j,k, ci,j,k+1) which accumulate on the jth point in (ai, ai+1)
from the left, and similarly (di,j,k+1, di,j,k) accumulate from the right.

Set vi,j,k = ci,j,k+1 − ci,j,k. According to our definition, if ε is β-left-allowable, then

z − ε ∈ AL,β := ∪i,j,k[ci,j,k + βvi, ci,j,k+1 − βvi] .

So if ε is not β-left-allowable, then z−ε ∈ (ci,j,k+1−βvi,j,k, ci,j,k+1+βvi,j,k) for some i, j, k. Remark
that if there is no accumulation of chains at the jth point, then the index k is redundant. Also,
there is some duplication since ci,0 = ai, while ci,Ji = ai+1, yet for uniformity of notation we denote
each range of non-β-left-allowable values of z − ε as above.

We approximate ε from above by εLo := z−(ci,j,k+1−βvi,j,k) and from below by εLu := z−(ci,j,k+1+

βvi,j,k). Both ε
L
o and εLu are β-left-allowable and ε ∈ (εLu , ε

L
o ). Thus,

εLu
εLo

⩽
εLu
ε

⩽
εLo
ε

⩽
εLo
εLu

,
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so we focus on estimating the outer two quantities. Notice also that the above implies εLu
εRu
, ε

L
o

εRo
are

uniformly bounded away from 0 and ∞, due to the uniform bound on z−ai
bi−z , so we may apply (3.4).

Now,

εLu
εLo

=
z − (ci,j,k+1 + βvi,j,k)

z − (ci,j,k+1 − βvi,j,k)
= 1−

2βvi,j,k
z − (ci,j,k − βvi,j,k)

.

Note that z − (ci,j,k+1 − βvi,j,k) ⩾ z − ai+1 while vi,j,k ⩽ ei := ai+1 − ai. But due to the chain
structure around z, we have z − ai+1 > ei+1 ∼ λ−1

z ei, so that

εLu
εLo

⩾ 1− 2βei
ei+1

≳ 1− 2βλz . (5.1)

In the same way, εLo
εLu

≲ 1+2βλz. The right hand estimates for the analogous εRu and εRo are similar.

To complete the proof of Theorem 1.1, we must evaluate the following limit as ε→ 0,

1

µ(z − ε, z + ε)

−1

n
logµ

({
x ∈ I : f i(x) /∈ (z − ε, z + ε), i = 1, . . . , n

})
. (5.2)

We estimate this from below by

µ(z − εLu , z + εRu )

µ(z − ε, z + ε)

1

µ(z − εLu , z + εRu )

−1

n
logµ

({
x ∈ I : f i(x) /∈ (z − εLu , z + εLu ), i = 1, . . . , n

})
.

By the above estimates, µ(z−εLu ,z+εRu )
µ(z−ε,z+ε) ∼ (1 − 2βλz)

1
ℓ , so taking the limit as ε → 0 yields an lower

bound of

(1− 2βλz)
1
ℓ ·
(
1− λ−1/ℓ

z

)
,

where the second factor comes from the application of Theorem 1.1 to β-allowable holes via (4.17).

Similarly, one obtains an upper bound for (5.2) of (1 + 2βλz)
1
ℓ ·
(
1− λ

−1/ℓ
z

)
. Since these bounds

hold for all sufficiently small β, we take β → 0 to obtain the required limit for Theorem 1.1 along
an arbitrary sequence (εn)n in the case that z ∈ orb(f(c)) is periodic.

Finally notice that if z ∈ orb(f(c)) is preperiodic then the above calculations all go through
similarly: from the construction of (Y, F ) in Section 3.4, the periodic structure of the postcritical
orbit can be pulled back to z to generate the (ai)i, (bi)i required, but our bounds are of the form
(1 ± 2βλ) where λ = |Dfp(fk0(z))|. These tend to 1 as β → 0, yielding the required limit in the
case that z is preperiodic, but not periodic.

6. Proof of Theorem 1.2

In this section, we prove the cases of Theorem 1.2 in several steps. First, we address the case where
z ∈ orb(f(c)). As in the proof of Theorem 1.1, we first fix β > 0 and consider sequences of holes
Hε that are β-allowable. Leveraging the existence of the induced map F0 and the local escape rate
proved in Theorem 1.1, we prove Theorem 1.2 for sequences of such holes in Section 6.2. Then in
Section 6.3, we will let β → 0 to prove the required hitting time statistics for all sequences ε→ 0.

Finally, in Section 6.4 we show how to adapt the results of [BDT] to prove the hitting time statistics
when z /∈ orb(f(c)).
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6.1. A non-Markovian tower with a hole. Throughout Sections 6.1 – 6.3 we will assume
z ∈ orb(f(c)).

Recall the induced map Fn0
0 , where n0 is chosen so that (4.2) holds. Indeed, by the proof of

Proposition 2.5 (see also Lemma 4.1), there exists γ > 0 such that

inf
x∈Y

|Df τn0 (x)(x)| e−γτn0 (x) > 2.5 , (6.1)

where τn0 =
∑n0−1

k=0 τ ◦ F k
0 .

Using Fn0
0 , we define an extended system that resembles a Young tower as follows. Define

∆ = {(y, k) ∈ Y × N : k ⩽ τn0 − 1}.

We refer to the kth level of the tower as ∆k = {(y, n) ∈ ∆ : n = k}. Sometimes we refer to
(x, k) ∈ ∆k as x if k is clear from context.

The dynamics on the tower is defined by f∆(y, k) = (y, k+1) if k < τn0 −1 and f∆(y, τ
n0(y)−1) =

(Fn0
0 (y), 0). There is a natural projection π∆ : ∆ → I which satisfies f ◦ π∆ = π∆ ◦ f∆. Clearly,

π∆(∆0) = Y . Remark that F0, f∆ and ∆ depend on z, but not on ε.

It follows from Lemma 2.3(c) and the fact that f is locally eventually onto that f∆ is mixing.
Indeed, f(Y ) ⊃ Y and the chain structure around z implies fk0+p(Y ) ⊃ I. Then since f is
locally eventually onto, for any interval A ⊂ Y , there exists nA ∈ N such that fnA(A) ⊃ Y , and
again by Lemma 2.3(c), fnA+k(A) ⊃ Y for all k ⩾ 0. Setting A0 = (π∆|∆0)

−1(A), this implies

fnA+k
∆ (A0) ⊃ ∪k

j=0∆j for each k ⩾ 0. Thus f∆ is topological mixing.5

We lift Lebesgue measure to ∆ simply by defining m∆|∆0 = m|Y and m∆|∆k
= (fk∆)∗(m∆|∆0).

Note that by Proposition 2.5, m∆(τ
n0 > n) ⩽ Ce−ζn, where ζ = log λper − η > 0 and η is chosen

before Remark 2.6. Thus our tower has exponential tails.

Now recall α ∈ (0,∞) from the statement of Theorem 1.2. This will determine the scaling at which
we consider the hitting time to Hε(z). We reduce γ > 0 in (6.1) if necessary so that

γ < ζ and γ/ζ < α . (6.2)

Note that the second condition is relevant only if we consider α < 1.

Given a hole Hε(z), define H∆k
(ε) = (π∆|∆k

)−1(Hε(z) and H∆(ε) = ∪k⩾1H∆k
. The corresponding

punctured tower is defined analogously to (4.1) for n ⩾ 1,

f̊n∆,ε = fn∆|∆̊n
ε
, where ∆̊n

ε := ∩n−1
i=0 f

−i
∆ (∆ \H∆(ε)) .

The main difference between f∆ : ∆ ⟲ and the usual notion of a Young tower is that we do not
define a Markov structure on ∆. Yet as demonstrated above, the tower has the following key
properties:

• Exponential tails: m∆(τ
n0 > n) ⩽ Ce−ζn;

• f∆ is topologically mixing;
• Large images at returns to ∆0: if Hε(z) is β-allowable, then Cβ > 0 from Lemma 4.3

provides a lower bound on the length of images in returns to ∆0 under both f∆ and f̊∆,ε.

5Indeed, the above argument also implies that there exist x, y ∈ A0 such that τn0(x) = nA and τn0(y) = nA + 1
so g.c.d.(τn0) = 1, yet this is not a sufficient condition for f∆ to be mixing since our tower has multiple bases.
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We will use these properties to prove the existence of a uniform spectral gap for the punctured
transfer operators on the tower acting on a space of functions of weighted bounded variation, as
follows.

The inducing domain Y is comprised of finitely many maximal connected components that are

intervals in I. Let D̃0 denote this collection of intervals. Similarly, for each k ⩾ 1, fk(Y ∩ {τn0 ⩾
k + 1}) can be decomposed into a set of maximal connected components. We further subdivide
these intervals at the first time j ⩽ k that they contain a point in orb(f(c)), z − εL or z + εR.

These are the cuts introduced in the definition of Fε in Section 2.3. Let D̃k denote this collection
of intervals and define the collection of lifts by,

Dk = {J = (π|∆k
)−1(J̃) : J̃ ∈ D̃k} , for all k ⩾ 0.

For an interval J ∈ Dk and a measurable function ψ : ∆ → R, define
∨

J ψ, the variation of ψ on
J as in (4.3). On each level ∆k, k ⩾ 1, define

∥ψ∥∆k
= e−γk

∑
J∈Dk

∨
J

ψ + e−γk sup
∆k

|ψ| .

Finally, define the weighted variation norm on ∆ by,

∥ψ∥WV =
∑
k⩾0

∥ψ∥∆k
.

If ∥ψ∥WV < ∞ then |ψ|L1(m∆) < ∞ since γ < ζ by (6.2). So we denote by WV (∆) the set of

functions ψ ∈ L1(m∆) such that ∥ψ∥WV <∞. Since we considerWV (∆) as a subset of L1(m∆), we
define the variation norm of the equivalence class to be the infimum of variation norms of functions
in the equivalence class.

We define the transfer operator L∆ corresponding to f∆ acting on L1(m∆) in the natural way,

L∆ψ(x) =
∑

y∈f−1
∆ (x)

f(y)

Jf∆(y)
,

where Jf∆ is the Jacobian of f∆ with respect to m∆. Then the transfer operator for the punctured
tower is defined for each n ⩾ 1 by,

L̊n
∆,εψ = Ln

∆(1∆̊n
ε
ψ) .

Our goal is to prove the following proposition, which is the analogue of Theorem 4.7, but for the
tower map rather than the induced map.

Proposition 6.1. For any β > 0, there exists εβ(∆) such that for any β-allowable hole Hε(z) with

ε < εβ(∆), both L∆ and L̊∆,ε have a spectral gap on WV (∆).

Specifically, there exist σβ, Aβ > 0 such that for all β-admissible ε < εβ(∆), the spectral radius

of L̊∆,ε is λ∆,ε < 1 and there exist operators Π∆,ε,R∆,ε : WV (∆) ⟲ satisfying Π2
∆,ε = Π∆,ε,

Π∆,εR∆,ε = R∆,εΠ∆,ε = 0, and ∥Rn
∆,ε∥WV ⩽ Aβλ

n
∆,εe

−σβn such that

L̊∆,εψ = λ∆,εΠ∆,εψ +R∆,εψ , for all ψ ∈WV (∆).

Indeed, Π∆,ε = e̊∆,ε ⊗ g̊∆,ε for some e̊∆,ε ∈ WV (∆)∗ and g̊∆,ε ∈ WV (∆) satisfying L̊∆,εg̊∆,ε =
λ∆,εg̊∆,ε and

∫
∆ g̊∆,ε dm∆ = 1.
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The proof of this proposition is based on the following sequence of lemmas, which prove the com-
pactness of WV (∆) in L1(m∆), uniform Lasota-Yorke inequalities for L̊∆,ε, and the smallness of

the perturbation when viewing L∆ − L̊∆,ε as an operator from WV (∆) to L1(m∆).

Lemma 6.2. The unit ball of WV (∆) is compactly embedded in L1(m∆).

Proof. If ∥ψ∥WV ⩽ 1, then restricted to each J ∈ Dk, the variation of ψ is at most eγk and
|ψ|J |∞ ⩽ eγk. Thus if B1 is the ball of radius 1 in WV (∆), then B1|J is compactly embedded in
L1(m∆|J).

Taking a sequence (ψn)n ⊂ B1, we first enumerate the elements of ∪k⩾0Dk and then use compactness
on each J and a diagonalization procedure to extract a subsequence (ψnk

)k which converges on every
J ∈ ∪k⩾0Dk to a function ψ. ψ necessarily belongs to L1(m∆) due to dominated convergence since
|ψn|∆k

|∞ ⩽ eγk and the function which is equal to eγk on ∆k for each k is integrable since γ < ζ. □

Lemma 6.3. Assume Hε(z) is β-allowable. Let C = (1 + Cd)(Cd + 2C−1
β ). For k ⩾ 1, and all

ψ ∈WV (Y ),

∥L̊∆,εψ∥∆k
⩽ e−γ∥ψ∥∆k−1

(6.3)∨
∆0

L̊∆,εψ ⩽ 4
5∥ψ∥WV + C

∫
∆̊1

ε

|ψ|dm∆ (6.4)

|L̊∆,εψ|L∞(∆0) ⩽ 2
5∥ψ∥WV + C−1

β (1 + Cd)

∫
∆̊1

ε

|ψ| (6.5)∫
∆
|L̊n

∆,εψ|| dm∆ ⩽
∫
∆̊n

ε

|ψ| dm∆ for all n ⩾ 1. (6.6)

The same estimates hold for L∆ with ∆̊n
ε replaced by ∆.

Proof. Note that Jf∆(x, k) = 1 if k < τn0(x) − 1. Thus if k ⩾ 1 and x ∈ ∆k, then L̊∆,εψ(x) =

(1∆̊1
ε
ψ) ◦ f−1

∆ (x).

Moreover, for J ∈ Dk and k ⩾ 1, we have f−1
∆ (J) ⊂ J ′ ∈ Dk−1, and by definition of Dk−1, J

′

is either disjoint from H∆ or contained in it. Thus 1∆̊1
ε
is either identically 0 or 1 on J ′ and so

does not affect the variation. With these points noted, (6.3) holds trivially. Similarly, (6.6) follows

immediately from the definition of L̊∆,ε.

We proceed to prove (6.4). The proof follows closely the proof of Proposition 4.5. As in Section 4.1,
denote by Jε the finite set of intervals in Y that are the images of the one-cylinders for Fn0

ε . Since we
identify ∆0 with Y , we will abuse notation and again denote the finite set of images (π∆|∆0)

−1(Jε)
in ∆0 by simply Jε.

Let Iε denote the countable collection of intervals in f−1
∆ (∆0) so that for each Ii ∈ Iε, f∆(Ii) = J

for some J ∈ Jε. We use the notation Ii = (ui, vi), and Ii,k denotes the intervals in Iε that lie in

∆k. Remark that each Ii,k ⊂ J ′ ∈ Dk so that Ii,k is either in H∆ or is disjoint from it.6 Also, for
(x, k) ∈ Ii,k, by definition τn0(π∆(x, 0)) = k, so that

Jf∆(x, k) = |DFn0(π∆(x, 0))| = |Df τn0 (x)(x)| = |Dfk(x)| , (6.7)

where for brevity, we denote π∆(x, 0) = x.

6Indeed, since a neighbourhood of z cannot enter Y in one step, every Ii ∈ Iε is disjoint from H∆ in this particular
tower.
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Now for ψ ∈WV (∆), following (4.6), we obtain,∨
∆0

L̊∆,εψ ⩽
∑
Ii∈Iε

∨
Ii

ψ

Jf∆
+
∑
Ii∈Iε

|ψ(ui)|
Jf∆(ui)

+
|ψ(vi)|
Jf∆(vi)

. (6.8)

For Ii = Ii,k ⊂ ∆k, using (6.1) and (6.7), we estimate the first term above as in (4.7),∨
Ii,k

ψ

Jf∆
⩽

1

2.5

∨
Ii,k

ψe−γk + Cd(1 + Cd)

∫
Ii,k

|ψ| .

We estimate the second term in (6.8) using (4.8) and the large images property as in (4.9),

|ψ(ui)|
Jf∆(ui)

+
|ψ(vi)|
Jf∆(vi)

⩽
1

2.5

∨
Ii,k

ψe−γk + 2C−1
β (1 + Cd)

∫
Ii,k

|ψ| dm∆ . (6.9)

Putting these estimates together in (6.8) completes the proof of (6.4),∨
∆0

L̊∆,εψ ⩽
2

2.5

∑
k⩾1

∑
Ii,k

e−γk
∨
Ii,k

ψ + (1 + Cd)(Cd + 2C−1
β )

∫
Ii,k

|ψ|

⩽
4

5
∥ψ∥WV + (1 + Cd)(Cd + 2C−1

β )

∫
∆̊1

ε

|ψ| .

Finally, (6.5) follows immediately from (6.9) since for x ∈ ∆0,

|L̊∆,εψ(x)| ⩽
∑

Ii∈Iε,y∈Ii

|ψ(y)|
Jf∆(y)

⩽
1

2.5

∑
i,k

∨
Ii,k

ψe−γk + C−1
β (1 + Cd)

∫
Ii,k

|ψ| dm∆

⩽
2

5
∥ψ∥WV + C−1

β (1 + Cd)

∫
∆̊1

ε

|ψ| dm∆ .

□

Lemma 6.4. The operator L∆ has a spectral gap on WV (∆).

Proof. Lemma 6.3 applied to L∆ implies that as an operator on WV (∆), L∆ has spectral radius
at most 1 and essential spectral radius at most max{e−γ , 4/5}. Since L∗

∆m∆ = m∆, 1 is in the
spectrum of L∆ so that L∆ is quasi-compact. Indeed, (4.5) implies that the peripheral spectrum
has no Jordan blocks. Thus by [Ka, III.6.5], L∆ admits the following representation: there exist
finitely many eigenvalues eiθj , j = 1, . . . , N and finite-dimensional eigenprojectors Πj corresponding
to θj such that

L∆ =

N∑
j=1

eiθjΠj +R , (6.10)

where R has spectral radius strictly less than 1 and ΠjΠk = ΠjR = RΠj = 0 for all j ̸= k.

Note that if g ∈ WV (∆) satisfies L∆g = g, then g0 := g ◦ (π∆|∆0)
−1 is in BV (Y ) and L0g0 = g0.

Since L0 has a spectral gap (see the proof of Theorem 4.7), this implies that there can be at most
one (normalised) fixed point for L∆. Thus the eigenvalue 1 is simple.

Conversely, if g0 denotes the unique element of BV (Y ) with
∫
g0 dm = 1 such that L0g0 = g0, then

we may define g∆ such that L∆g∆ = g∆ by

g∆(x, k) = c0g0 ◦ π∆(x, 0), for each (x, k) ∈ ∆k and k ⩾ 0,

where c0 is chosen so that
∫
∆ g0 dm∆ = 1. In particular, for each (x, k) and k ⩾ 0,

c0cg ⩽ g∆(x, k) = g∆(x, 0) ⩽ c0Cg , (6.11)
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where Cg = |g0|∞ and cg > 0 is from (4.12). We will use this fact to eliminate the possibility of
other eigenvalues of modulus 1.

It is convenient to first establish the following claim.

Claim. The peripheral spectrum of L∆ on WV (∆) is cyclic: if eiθ is an eigenvalue, then so is eiθn

for each n ∈ N.

Proof of Claim. Since L∆ is a positive operator and L∗
∆m∆ = m∆, it follows from Rota’s Theorem

[BG, Theorem 2.2.9] (see also [S, Theorem 1]) that the peripheral spectrum of L∆ on L1(m∆) is
cyclic. It remains to show that this property holds as well in WV (∆). We follow the strategy in
[K, proof of Theorem 6.1]. For θ ∈ [0, 2π), define

Sn,θ =
1

n

n−1∑
k=0

e−θkLk
∆ .

It follows from (6.10) that limn→∞ Sn,θ = Πj if θ = θj and limn→∞ Sn,θ = 0 otherwise. Indeed,

the convergence in both cases is pointwise uniformly since limn→∞
1
n

∑n−1
k=0 e

(θj−θ)k = 0 whenever
θ ̸= θj . Then

∨
cψ = |c|

∨
ψ for any constant c implies the sequence converges in ∥ · ∥WV .

Since L∆ is an L1(m∆) contraction (i.e.
∫
|L∆ψ| dm∆ ⩽

∫
|ψ| dm∆), then so is Sn,θ, and since

WV (∆) is dense in L1(m∆), limn→∞ Sn,θ extends to a bounded linear operator on L1(m∆), with
convergence in ∥ · ∥L1(m∆). Taking θ = θj , we may view Πj : L

1(m∆) → Πj(WV (∆)).

Now if 0 ̸= f ∈ L1(m∆) satisfies L∆f = eiθf , then 0 ̸= f = limn→∞ Sn,θ, which implies that θ = θj
for some j and f ∈ Πj(WV (∆)) is an element of WV (∆). Thus the peripheral spectra of L∆ on
WV (∆) and L1(∆) coincide. □

Returning to the proof of the lemma, suppose for the sake of contradiction that 1 is not the
only eigenvalue of modulus 1. Then according to the Claim, there exists h ∈ WY (∆) and p, q ∈
N \ {0} such that L∆h = eiπp/qh. It follows that h is complex-valued and that

∫
∆Re(h) dm∆ =∫

∆ Im(h) dm∆ = 0.

Since Lq
∆h = h, h takes on all its possible values in the first q levels, ∪q−1

k=0∆k. In particular,
sup∆ |Re(h)| = sup∪q−1

k=0∆k
|Re(h)|, and similarly for Im(h). Thus by (6.11), we may choose κ > 0

such that
ψ := κRe(h) + g∆ satisfies inf

∆
ψ > 0.

Note
∫
∆ ψ dm∆ = 1. Next, for s ∈ R, define

ψs = sψ + (1− s)g∆ = sκRe(h) + g∆ . (6.12)

Note that ψs also takes on all its possible values in ∪q−1
k=0∆k and Lq

∆ψs = ψs.

Let S = {s ∈ R : ess inf∆ ψs > 0}. By construction of ψ, and the compactness of ∪q−1
k=0∆k, S

contains [0, 1] and is open.

We will show that S contains R+. Suppose not. Let t > 1 be an endpoint of S that is not in S. Then
ess inf∆ ψt = ess inf∪q−1

k=0∆k
ψt = 0. Without loss of generality, we may work with a representative of

ψt that is lower semicontinuous.7 Since
∫
∆ ψt dm∆ = 1, there must exist (y, j) ∈ ∪q−1

k=0∆k such that
ψt(y) > 0. By lower semicontinuity, there exists an interval A ⊂ ∆j such that infA ψt := a > 0.

7We use here that any function of bounded variation can be written as the difference of two monotonic functions
so that one-sided limits exist at each point [R, Theorem 5, Section 5.2].
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Since f∆ is topologically mixing, we can find N ∈ N such that fN+i
∆ (A) ⊇ ∪q−1

k=0∆k, for i =

0, . . . , q − 1. One of these iterates must equal nq for some n ∈ N. Thus for any x ∈ ∪q−1
k=0∆k,

ψt(x) = Lnq
∆ ψt(x) ⩾

a

supA |Dfnq ◦ π∆|
> 0 ,

since sup |Df | <∞ and n is fixed. This proves that t ∈ S so in fact R+ ⊂ S. By (6.12), this implies
that Re(h) ⩾ 0, but since

∫
∆Re(h) dm∆ = 0, it must be that Re(h) ≡ 0. A similar argument forces

Im(h) ≡ 0, providing the needed contradiction. □

As in (4.10), denote by ||| · ||| the norm which views L∆ as an operator from WV (∆) to L1(m∆).

Lemma 6.5. There exists C > 0 such that for any ε > 0, |||L∆ − L̊∆,ε||| ⩽ Cµ(Hε(z))
1−γ/ζ .

Proof. Let ψ ∈WV (∆). Then,∫
∆
|(L∆ − L̊∆,ε)ψ| dm∆ ⩽

∫
H∆

|ψ| dm∆ ⩽ ∥ψ∥WV

∑
k⩾1

eγkm∆(H∆ ∩∆k) .

This expression can be made small in µ(Hε(z)) as follows. Let dµ∆ = g∆dm∆. Then (π∆)∗µ∆ = µ,
so that using (6.11),

∑
k⩾1

eγkm∆(H∆ ∩∆k) =

−ζ−1 log µ(Hε(z))∑
k=1

eγkm∆(H∆ ∩∆k) +
∑

k⩾−ζ−1 log µ(Hε(z))

eγkm∆(H∆ ∩∆k)

⩽ µ(Hε(z))
−γ/ζ(c0cg)

−1

−ζ−1 log µ(Hε(z))∑
k=1

µ∆(H∆ ∩∆k) +
∑

k⩾−ζ−1 log µ(Hε(z))

Ce(γ−ζ)k

⩽ Cµ(Hε(z))
1−γ/ζ .

□

With these elements in place, we are ready to prove Proposition 6.1.

Proof of Proposition 6.1. For fixed β > 0, the Lasota-Yorke inequalities in Lemma 6.3 have uniform
constants. Thus the spectral radius of L̊∆,ε has essential spectral radius at most max{e−γ , 45} for
all β-allowable holes.

This, together with Lemma 6.5 implies by [KL1, Corollary 1] that the spectra and spectral projectors

of L̊∆,ε outside the disk of radius max{e−γ , 45} vary Hölder continuously in µ(Hε(z)). Thus there

exists εβ(∆) > 0 such that for all β-admissible holes with ε < εβ(∆), the operators L̊∆,ε enjoy a
uniform spectral gap and can be decomposed as in the statement of the proposition. □

Our final lemma of this section demonstrates that the spectral radius of L̊∆,ε yields the escape rate
from both ∆ and I.

Lemma 6.6. Under the hypotheses of Proposition 6.1, − log λ∆,ε = e(Hε(z)), where e(Hε(z)) is
from (1.1).
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Proof. Using Proposition 6.1, we compute

−e(Hε(z)) = lim
n→∞

1

n
logµ(∩n−1

i=0 f
−i(I \Hε)) = lim

n→∞

1

n
logµ∆(∆̊

n
ε)

= lim
n→∞

1

n
log

∫
∆
L̊n
∆,ε(g∆) dm∆ = lim

n→∞

1

n
log

(
λn∆,εe̊∆,ε(g∆) +

∫
∆
Rn

∆,ε(g∆) dm∆

)
= log λ∆,ε ,

since e̊∆,ε(g∆) > 0 due to (6.11). □

6.2. Hitting time statistics for β-allowable holes. To prove Theorem 1.2, we will compute
the following limit for fixed α > 0 amd t > 0,

lim
ε→0

−1

tµ(Hε(z))1−α
logµ

(
rHε(z) >

t

µ(Hε(z))α

)
.

Recall that α > 0 was fixed at the beginning of Section 6.1 and affected the chosen value of γ via
(6.2).

Since π∆ ◦ f∆ = f ◦ π∆, π∆(H∆) = Hε(z) then r∆ := rHε(z) ◦ π∆ defines the first hitting time to
H∆. Then since (π∆)∗µ∆ = µ, it is equivalent to estimate,

lim
ε→0

−1

tµ∆(H∆)1−α
logµ∆

(
r∆ >

t

µ∆(H∆)α

)
.

Setting nε = ⌊tµ∆(H∆)
−α⌋ = ⌊tµ(Hε(z))

−α⌋, we estimate as in [BDT, Section 2.5],

µ∆(r∆ > nε) =

∫
∆̊nε

ε

g∆ dm∆ =

∫
∆
L̊nε+1
∆,ε g∆ dm∆

= λnε+1
∆,ε

∫
∆
λ−nε−1
∆,ε L̊nε+1

∆,ε (g∆ − g̊∆,ε) dm∆ + λnε+1
∆,ε

∫
∆
g̊∆,ε dm∆ ,

where g̊∆,ε is from Proposition 6.1. Thus,

logµ∆(r∆ > nε) = (nε + 1)λ∆,ε + log

(
1 +

∫
∆
λ−nε−1
∆,ε L̊nε+1

∆,ε (g∆ − g̊∆,ε) dm∆

)
.

Dividing by −tµ∆(H∆)
1−α, we see that the first term becomes simply − log λ∆,ε

µ∆(H∆) . Since − log λ∆,ε =

e(Hε(z)) by Lemma 6.6, the first term yields esc(z), which is either 1 or 1 − λ
−1/ℓ
z as needed, as

ε → 0 according to Theorem 1.1. It remains to show that the second term tends to 0 as ε → 0.

Using the spectral decomposition in Proposition 6.1, we define cε = e̊∆,ε(g∆) and write

λ−nε−1
∆,ε L̊nε+1

∆,ε (g∆ − g̊∆,ε) = (cε − 1)̊g∆,ε + λ−nε−1
∆,ε Rnε+1

∆,ε g∆ .

Integrating this equation, we see that we must estimate,

log

(
1 +

∫
∆
λ−nε−1
∆,ε L̊nε+1

∆,ε (g∆ − g̊∆,ε) dm∆

)
= log

(
cε +

∫
∆
λ−nε−1
∆,ε Rnε+1

∆,ε g∆ dm∆

)
. (6.13)

Again using Proposition 6.1, we bound the integral by,∣∣∣∣∫
∆
λ−nε−1
∆,ε Rnε+1

∆,ε g∆ dm∆

∣∣∣∣ ⩽ Aβe
−σβ(nε+1)∥g∆∥WV ⩽ Ce−σβtµ(Hε(z))−α

,

and this quantity is super-exponentially small in µ(Hε(z)). By Lemma 6.5 and [KL1, Corollary 1],

|cε − 1| = |̊e∆,ε(g∆)− e∆(g∆)| ⩽ Cµ(Hε(z))
1−γ/ζ logµ(Hε(z))

−1 .
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Putting these estimates together in (6.13) and dividing by tµ(Hε(z))
1−α, we obtain

lim
ε→0

1

tµ(Hε(z)1−α
log
(
1 +O(−µ(Hε(z))

1−γ/ζ logµ(Hε(z))
)

= lim
ε→0

1

t
O
(
− µ(Hε(z))

α−γ/ζ logµ(Hε(z))
)
,

which tends to 0 since α > γ/ζ by (6.2). The above limit ε → 0 is understood to be taken along
sequences of β-allowable holes.

6.3. Proof of Theorem 1.2 via approximation when z ∈ orb(f(c)). Section 6.2 proves The-
orem 1.2 when z ∈ orb(f(c)) for each α > 0 and β > 0 along sequences (εn)n where each εn is
β-allowable. It remains to consider the alternative case when α > 0 is still fixed and we have to
approximate a given sequence εn by β-allowable ε′n. The approximation follows closely the strategy
in Section 5. As in that section, we first present the argument in the case that z ∈ orb(f(c)) is
periodic.

Recall that if Hε is β-allowable, then it is also β′-allowable for any β′ < β, so as in Section 5, we
take our approximating sequence with β tending to 0. As before, we assume β < (2λz)

−1.

Using precisely the same discussion and notation as in Section 5, we suppose that each non-β-left-
allowable value of ε satisfies z−ε ∈ (ci,j,k+1−βvi,j,k, ci,j,k+1+βvi,j,k) for some i, j, k. We approximate

ε from above by εLo := z − (ci,j,k+1 − βvi,j,k) and from below by εLu := z − (ci,j,k+1 + βvi,j,k). Both

εLo and εLu are β-left-allowable and ε ∈ (εLu , ε
L
o ). Applying (5.1), we have

εLu
εLo

≳ 1− 2βλz and
εLo
εLu

≲ 1 + 2βλz .

The right hand estimates for the analogous εRu and εRo enjoy similar bounds.

To complete the proof of Theorem 1.2, we consider the following limit as ε→ 0 for fixed t, α > 0,

−1

tµ(Hε(z))1−α
logµ

(
rHε(z) >

t

µ(Hε(z))α

)
. (6.14)

We first estimate this from below. Let ru denote the first hitting time to the smaller set (z−εLu , z+
εRu ) ⊂ Hε(z). Note that ru > rHε(z), and

µ(z−εLu ,z+εRu )
µ(z−ε,z+ε) ⩾ Cε(1− 2βλz)

1
ℓ where Cε → 1 as ε→ 0.

Setting s = t(Cε(1− 2βλz)
1
ℓ )α we estimate (6.14) from below by,

µ(z − εLu , z + εRu )
1−α

µ(z − ε, z + ε)1−α

−(Cε(1− 2βΛz)
1/ℓ)α

sµ(z − εLu , z + εRu )
1−α

logµ

(
ru >

t

µ(Hε(z))α

)
⩾ (Cε(1− 2βΛz)

1/ℓ)
−1

sµ(z − εLu , z + εRu )
1−α

logµ

(
ru >

s

µ(z − εLu , z + εR)α

)
.

Taking the limit as ε→ 0 yields a lower bound of

(1− 2βλz)
1
ℓ ·
(
1− λ−1/ℓ

z

)
,

where the second factor comes from the application of Theorem 1.2 to β-allowable holes in the case
that z ∈ orb(f(c)) is periodic.

Similarly, one obtains an upper bound for (6.14) of (1 + 2βλz)
1
ℓ ·
(
1− λ

−1/ℓ
z

)
. Since these bounds

hold for all sufficiently small β, we take β → 0 to obtain the required limit for Theorem 1.2 along
an arbitrary sequence (εn)n.
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Finally, if z ∈ orb(f(c)) is preperiodic then the above calculations all go through similarly. As in
Section 5, from the construction of (Y, F ) in Section 3.4, the periodic structure of the postcritical
orbit can be pulled back to z to generate the (ai)i, (bi)i required, but the resulting bounds are of
the form (1± 2βλ) where λ = |Dfp(fk0(z))|. Thus they tend to 1 as β → 0, as required.

6.4. Proof of Theorem 1.2 when z /∈ orb(f(c)). We explain here how to adapt the results of
[BDT, Section 4.2.1] to achieve the required limit in Theorem 1.2 for any z /∈ orb(f(c)). Since
f is Misiurewicz, one can choose an interval Y containing z whose endpoints are two points of a
periodic orbit orb(p) where orb(p) is disjoint from orb(z) and the interior of Y . If we define F to
be the induced map with first return time τ , then F is a full-branched Gibbs-Markov map, which
satisfies the conditions of [BDT, Theorem 2.1]. In particular, we consider the parameter n1 from
[BDT, eq. (2.1)] to be chosen: this is chosen so that Fn1 has sufficient expansion.

At this point, we find it convenient to consider separately two cases: z is a recurrent point (every
ε-neighbourhood of z contains a point in orb(f(z))); or z is a nonrecurrent point.

Case 1: z is a recurrent point. By choice of ∂Y , z is necessarily contained in the interior of a
domain Y k

i of F k for each k ⩾ 1. Thus z ∈ Ycont := {y ∈ Y : F k is continuous at y for all k ⩾ 1}.
Moreover, for any sufficiently small ε, (z− ε, z+ ε) ⊂ Y n1

i and so the lengths of images of intervals

of monotonicity for F̊n1
ε′ , where F̊ε′ := F |Y \(z−ε′,z+ε′), have a positive uniform lower bound for

all ε′ < ε. This ensures that condition (U) of [BDT] is satisfied. Thus we may apply [BDT,
Theorem 3.2] to conclude that Lα,t(z) = 1.

Case 2: z is not a recurrent point. If an accumulation point of orb(z) lies in Y , then z lies in the
interior of a domain of F k for each k and by the above argument, [BDT, Theorem 3.2] applies so
that Theorem 1.2 follows.

If, on the other hand, no accumulation points of orb(z) lie in Y , then since ∂Y is periodic, z
is necessarily an accumulation point of domains {Yi}i of F . In this case, a modification of the
approach of [BDT] is needed on two points.

First, fixing β > 0, we only consider values of εL and εR so that z − εL and z + εR are β-deep in
intervals of monotonicity for Fn1 around z. These constitute β-allowable holes (z − εL, z + εR) so

that the uniformly large images property (U) of [BDT] applies to the punctured induced map, F̊n1
ε .

In particular, under these conditions, the associated punctured transfer operators enjoy a uniform
spectral gap in BV (Y ) for all sufficiently small β-allowable holes.

Applying the results of [KL2] as in [BDT, Section 2.3], we see that esc(z) = 1 as long as

lim
ε→0

µ(Ek
ε )

µ(Hε(z))
= 0 for each k ⩾ 0,

where

Ek
ε = {y ∈ Hε(z) : F

i(y) /∈ Hε(z), i = 1, . . . , k, and F k+1(y) ∈ Hε(z)} .

Since F is full branched, each domain Y k
i of F k has an interval which maps onto Hε(z). However,

if Y k
i ⊂ Hε(z), then τ(Y

k
i ) ⩾ log(|Y |ε−1)/ log |Df |∞ ⩾ C0 log ε

−1, where ε = max{εL, εR}. This
implies that the contribution to Ek

ε from the collection of such intervals is dominated by∑
j⩾C0 log ε−1

Ck|Hε(z)|λ−j
per ⩽ C ′

kε
C0λper |Hε(z)| ,
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where we have applied Proposition 2.1 since F is full branched. Since the invariant measure µ has
density at z bounded away from 0 and ∞, we estimate,

µ(Ek
ε )

µ(Hε(z))
⩽ C ′′

kε
C0λper → 0 as ε→ 0 for each k.

With these modifications, esc(z) = 1 and [BDT, Theorem 3.2] implies the desired limit Lα,t(z) = 1
as well along sequences of β-allowable holes.

The approximation of more general holes (z − ε, z + ε) by β-allowable holes in order to prove the
required limit 1 for Theorem 1.2 proceeds as in Section 6.3. The case here is simpler since there is

no density spike so we do not need to maintain bounded ratios εLu
εRu

, εLo
εRo

for the approximating holes.
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