ESCAPE OF ENTROPY FOR COUNTABLE MARKOV SHIFTS

GODOFREDO IOMMI, MIKE TODD, AND ANIBAL VELOZO

ABSTRACT. In this paper we study ergodic theory of countable Markov shifts.
These are dynamical systems defined over non-compact spaces. Our main re-
sult relates the escape of mass, the measure theoretic entropy, and the entropy
at infinity of the system. This relation has several consequences. For example
we obtain that the entropy map is upper semi-continuous and that the ergodic
measures form an entropy dense subset. Our results also provide new proofs
of results describing the existence and stability of the measure of maximal en-
tropy. We relate the entropy at infinity with the Hausdorff dimension of the
set of recurrent points that escape on average. Of independent interest, we
prove a version of Katok’s entropy formula in this non-compact setting.

1. INTRODUCTION

Many problems in ergodic theory and dynamical systems involve properties of
limits of sequences of invariant probability measures. If the phase space is compact
then the space of invariant probability measures is also compact in the the weak*
topology, which is partly a consequence of convergence in this topology preserv-
ing mass. However, when the phase space is non-compact, the space of invariant
probability measures might also be non-compact, and thus mass, as well as other
quantities of interest, may escape in the limit. In this paper, we are principally
interested in how the entropy of sequences of measures behaves in this setting.

More specifically, we consider countable Markov shifts (CMS) (X, ¢), which in
general are not even locally compact. We discuss the difficulties with the various
classical topologies in this context in the next section, where we also give details of
the space of invariant sub-probability measures endowed with the so-called cylinder
topology, introduced in [IV]. This topology generalises the vague topology to a non-
locally compact setting (see Section 2.2.2). If (u,)n is a sequence of o-invariant
probability measures that converges in the cylinder topology to the measure p
then the total mass |u| := p(X) € [0,1]. In particular, this topology captures the
escape of mass. Moreover, p is an invariant measure and the normalisation p/|u|
is an invariant probability measure (whenever p is not the zero measure). Denote
by h,(c) the entropy of the invariant probability measure v (see Section 2.3 for
details), and by o, the topological entropy at infinity of the system (see Definition
1.2). Our first main result answers one of the classical questions about sequences
of measures: how does entropy change in the limit?
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Theorem 1.1. Let (X, 0) be a transitive CMS with finite topological entropy. Let
(tn)n be a sequence of o-invariant probability measures converging on cylinders to
w. Then

limsgphun (o) < |ulhyp (@) + (1 = [p])ds. (1.1)

If the sequence converges on cylinders to the zero measure then the right hand side
1s understood as Oqp.

Since the topological entropy at infinity plays a crucial role in this article, we
define it here, leaving details of the background to this to Section 2.6. The idea is
to measure how complicated the dynamics is near infinity. Of course, such a notion
only makes sense for dynamical systems defined on non-compact phase spaces. Asin
the classical entropy theory, we will study two ways of measuring the complexity of
the system near infinity, one topological in nature and the other measure theoretic.

Definition 1.2. Let (3,0) be a CMS. Let M, q € N. For n € N let z,(M, q) be the

number of cylinders of the form [z, ..., 2Zpt1], where 2o < ¢, 41 < ¢, and
+ 2
#lie{0l,...n+1} iz <qh< =",
M
Define
1
doo (M, q) := limsup — log 2z, (M, q),
n—oo N
and

doo(q) := liminf 64, (M, q).
M—o0
The topological entropy at infinity of (3, 0) is defined by 0o := liminf, o 65 ().
The measure theoretic counterpart is given by:

Definition 1.3. Let (3, 0) be a finite entropy CMS. The measure theoretic entropy
at infinity of (X, 0) is defined by

he := sup limsuph,, (o), (1.2)

(#n)n—0 mM—0

where (), — 0 means that the sequence (u,, ), converges on cylinders to the zero
measure.

Other authors have considered related concepts. Most notably, Buzzi [31, Defi-
nition 1.13] proposed a notion of entropy at infinity for CMS. His definition is given
in terms of the graph G which defines the CMS (%, 0):

b = igf}i\r;f(’)sup {hu(o) s w([F]) < A},

where F ranges over the finite sub-graphs of G and [F] := {x € ¥ : 29 € Ap}, where
Apr denotes the symbols appearing as vertex of F. It turns out that Buzzi’s notion
coincides with ours. Indeed, our next result states that all these three notions
coincide.

Theorem 1.4. Let (X,0) be a CMS of finite topological entropy. Then
0o = hop = bop.
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The equality 6o, = he can be understood as a variational principle at infinity.

Einsiedler, Lindenstrauss, Michel and Venkatesh [ , Lemma 4.4] were the
first to obtain an inequality similar to (1.1). It appeared in their ergodic theoretic
proof of Duke’s theorem on equidistribution of closed geodesics on the modular
surface. After that, similar results in the context of homogeneous dynamics were
obtained in [EK, Theorem 1.2] and [ , Theorem A]. For different classes of
geodesic flows defined on non-compact manifolds of negative sectional curvature
related results were obtained in [[RV, Theorem 1.2] and [RV, Theorem 1.1]. In this
context the most general result was obtained in | , Theorems 1.4 and 1.6] where
an inequality like (1.1) was proved for the geodesic flow defined on an arbitrary
complete Riemannian manifolds with pinched negative sectional curvature. The
manifolds studied are locally compact, thus the topology considered in the space
of invariant measures is the vague topology. A more interesting and subtle point
is the quantity playing the role of the entropy at infinity. Due to the geometric
nature of the examples studied, the entropy at infinity is related to the critical
exponent of the Poincaré series associated to the non-compact parts of the space
(in the geometrically finite case this reduces to the critical exponent of the parabolic
subgroups of the fundamental group). Let us mention that the topological entropy
at infinity of the geodesic flow was also studied by Schapira and Tapie [ST] in their
work about the rate of change of the topological entropy under perturbations of
the metric.

A major difference with previous works is that in the context of CMS the be-
haviour of the orbits approaching infinity can be very complicated and that we do
not assume the phase space to be locally compact. These are major difficulties that
have to be overcome making the analysis more technical. As a general principle
we follow the method employed in | | with appropriate modifications. Loosely
speaking the entropy at infinity of the geodesic flow counts geodesics that start and
end at a given base point, but do not return near this point for intermediate times.
In our setup the entropy at infinity counts orbits that might return near a base
point many times, but the number of returns become negligible on average, which
can occur due to the lack of local compactness.

There are several interesting consequences of Theorem 1.1, some of them are
discussed in Section 8. For example, in Theorem 8.1 it is proved that the entropy
map is upper semi-continuous for every transitive finite entropy CMS. The continu-
ity properties of the entropy map have been studied for a long time. Major results
in the area are that for expansive systems defined on compact metric spaces the
entropy map is upper semi-continuous [Wa, Theorem 8.2]. Another fundamental
result is that if f is a C® diffeomorphism defined on a smooth compact mani-
fold then again the entropy map is upper semi-continuous [N, Theorem 4.1]. As
explained in Remark 8.2, for infinite entropy CMS the entropy map is not upper
semi-continuous. In a recent article we proved [TV, Corollary 1.2] that if (¥,0)
is a finite entropy transitive CMS then the entropy map is upper semi-continuous
when restricted to ergodic measures. A complete solution to the problem can be
obtained as a consequence of Theorem 1.1. In Section 8 we also prove that the set of
ergodic measures is ‘entropy dense’ in the space of invariant probability measures.
This result not only provides a fine description of the structure of the space of
invariant probability measures but also provides an important tool to study Large
Deviations in this setting.
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There is a classification of transitive CMS in terms of their recurrence properties:
they can be transient, null recurrent or positive recurrent (see Definition 2.10 for
¢ = 0). Positive recurrent CMS are precisely those with a measure of maximal
entropy. A particularly important role is played by strongly positive recurrent CMS
(SPR); which are a sub-class of positive recurrent Markov shifts. The dynamical
properties of this class of systems are similar to that of sub-shifts of finite type.
Buzzi gave a characterisation of SPR shifts using by, in [B1, Proposition 6.1], based
on the work of Gurevich-Zargaryan, Gurevich-Savchenko and Ruette. We note in
Proposition 2.20 that we can now restate this result as saying that (X, o) is SPR. if
and only if 0oy < hyop(0), where hyop(0) is the Gurevich entropy of (3, o) (for precise
definitions see Section 2.4). In Section 8.5 we use Theorem 1.1 to obtain stability
properties of the measure of maximal entropy for SPR CMS (recovering results
from [G5]). Similar arguments are used to prove the existence of equilibrium states
for potentials in Cy(X), the space of test functions for the cylinder topology (see
Section 8.6). To the author’s knowledge, this is the first result on the existence of
equilibrium states for CMS that goes beyond regular potentials (e.g. with summable
variations or the Walters property). Finally, in Theorem 8.16 we prove that for SPR,
systems it is possible to bound the amount of mass that escapes the system in terms
of the entropy of the measures. Sequences of measures with large entropy can not
lose much mass.

The entropy at infinity has yet another important appearance in dynamics: it is
related to the Hausdorff dimension of the set of points that escape on average (see
[ , , , I<P]). These are points for which the frequency of visits
to every cylinder equals to zero. In particular, no invariant measure is supported
on that set. This notion has been studied recently in contexts of homogeneous and
Teichmiiller dynamics. The motivation comes from work of Dani [D] in the mid
1980s who proved that singular matrices are in one-to-one correspondence with
certain divergent orbits of one parameter diagonal groups on the space of lattices.
In Theorem 8.9 we prove that the Hausdorff dimension of the set of recurrent points
that escape on average is bounded above by d4/log 2, where the factor log2 comes
from the metric in the symbolic space.

While our interest in this paper lies in the realm of Markov shifts, to provide
context we mention some applications of this theory. Symbolic methods have been
used to describe dynamical properties of a variety of systems since the 1898 work
of Hadamard on closed geodesics on surfaces of negative curvature, at the latest.
Compact Markov shifts have been used to study uniformly hyperbolic dynamical
systems defined on compact spaces, see for example the work of Bowen in | ]
Many deep results can be obtained with this coding. Mostly after the work of
Sarig [S3], countable Markov partitions have been constructed for a wide range
of dynamical systems. This gives a semiconjugacy between a relevant part of the
dynamics, albeit not all of it, and a CMS. Examples of systems for which Markov
partitions have been constructed include positive entropy diffeomorphisms defined
on compact manifolds [B2, Ov, 53] and Sinai and Bunimovich billiards [L.M]. Re-
markable results have been proved making use of these codings, for example in
[ , Main Theorem)] it is shown that a positive entropy C* diffeomorphism of a
closed surface admits at most finitely many ergodic measures of maximal entropy.
Results in this paper apply to all the symbolic codings mentioned above. However,
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due to topologies possibly not being preserved by the coding, it is not clear that
the results pass to the original systems.

In 1980 Katok [I<a, Theorem 1.1] established a formula for the entropy of an
invariant probability measure in analogy to the definition of topological entropy
of a dynamical system [Bo2, Di]. This formula is now known as Katok’s entropy
formula. An important assumption in [[{a, Theorem 1.1] is the compactness of
the phase space. In Section 3 we prove that Katok’s entropy formula holds in the
non-compact setting of CMS. We require this formula in the proof of Theorem 1.1,
but it is also of independent interest.

2. PRELIMINARIES

2.1. Basic definitions for CMS. Let M be a N x N matrix with entries 0 or 1.
The symbolic space associated to M with alphabet N is defined by

Y= {(z0,71,...) € NNo M (x4, 2441) = 1 for every i € No},

where Ny := N U {0}. We endow N with the discrete topology and NYo with the
product topology. On ¥ we consider the induced topology given by the natural
inclusion ¥ < NYo, We stress that, in general, this is a non-compact space. The
space X is locally compact if and only if for every i € N we have > . M (i,j) < o0
(see [Ki, Observation 7.2.3]).

The shift map o : ¥ — X is defined by (o(x)); = x;41, where x = (z9,21,...) €
Y. Note that o is a continuous map. The pair (¥, o) is called a one sided countable
Markov shift (CMS). The matrix M can be identified with a directed graph G with
no multiple edges (but allowing edges connecting a vertex to itself).

An admissible word of length N is a string w = agay ...any—_1 of letters in the
alphabet such that M(a;,a;+1) = 1, for every i € {0,..., N — 2}. We use bold
letters to denote admissible words. The length of an admissible word w is £(w).

A cylinder of length N is the set

jeN

lag,...,an—1] :={z = (xg,21,...)€X:x; =a; for 0 <i< N —1}.

If ag...an—1 is an admissible word then [ag,...,an—1] # . We use the notation
Cp(z) to denote the cylinder of length n containing x. Since a cylinder can be
identified with an admissible word, we also denote the length of a cylinder C' by
£(C). Note that the topology generated by the cylinder sets coincides with that
induced by the product topology.

The space ¥ is metrisable. Indeed, let d : ¥ x ¥ — R be the function defined by

1 if 2o # yo;
d(z,y):==<27% ifa; =y forie{0,...,k— 1} and x5, # y; (2.1)
0 ifx =y.

The function d is a metric and it generates the same topology as that of the cylinders
sets. Moreover, the ball B(x,27") is precisely C(x). Given ¢ : ¥ — R, we define

var,, () := sup {|¢(z) — ¢(y)| : Yo,y € ¥ such that d(z,y) <27"}.

A function ¢ : ¥ — R is said to have summable variations if 3, _, var,(p) < 0. A
function ¢ is called weakly Hélder if there exist 6 € (0, 1) and a positive constant O €
R such that var,(¢) < 00", for every n > 2. A weakly Holder continuous function
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is Holder if and only if it is bounded. The C%-norm of ¢ is ||¢|lo := sup,es [p ()
We denote by

n—1
Sup(x) = Y plox),
k=0

the Birkhoff sum of ¢ at the point x.

We say that (X, o) is topologically transitive if its associated directed graph G is
connected. We say that (X, o) is topologically mizing if for each pair a,b € N, there
exists a number N (a, b) such that for every n = N(a,b) there is an admissible word
of length n connecting a and b. There is a particular class of CMS that will be of
interest to us,

Definition 2.1. A CMS (X, o) is said to satisfy the F—property if for every element
of the alphabet a and natural number n, there are only finitely many admissible
words of length n starting and ending at a.

Remark 2.2. A CMS (X, 0) satisfies the F—property if and only if there are only
finitely many periodic orbits of length n intersecting [a], for every n € N and
for every a in the alphabet. Note that every locally compact CMS satisfies the
F—property.

Remark 2.3. Equivalent definitions and properties as those discussed in this section
can be given for two sided CMS. In this case the acting group is Z. It turns out
that, in general, thermodynamic formalism for the two sided CMS can be reduced
to the one sided case (see [54, Section 2.3]).

2.2. Topologies in the space of invariant measures. The space of invariant
measures can be endowed with different topologies, some of which can account for
the escape of mass phenomenon whereas others can not. In this section we not only
fix notation for later use, but we also recall definitions and properties of several
topologies in the space of measures. First note that in this article a measure is
always a countably additive non-negative Borel measure defined in the symbolic
space X. The mass of a measure p is defined as |u| := u(%).

Denote by M(X, o) the space of o-invariant probability measures on ¥ and by
M1 (%, 0) the space of o-invariant measures on ¥ with mass in [0,1]. In other
words, M<1(2,0) is the space of o-invariant sub-probability measures on ¥. Note
that M(3,0) € M<1(%,0). The set of ergodic probability measures is denoted by
E(X,0).

2.2.1. The weak™® topology. Denote by Cj(X) the space of real valued bounded con-
tinuous function on ¥. A sequence of measures (i), in M(X, o) converges to a
measure p in the weak® topology if for every f € C,(X) we have

B T

Note that since the constant function equal to one belongs to Cy(2) the measure p
is also a probability measure. A basis for this topology is given by the collection of
sets of the form

V(fiy-oos fuy phy€) i= {VEM(E,U) : Ufidy—indu’ <e, forie {1,...,k}},
(2.2)
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where € M(XZ,0), (f;); are elements from Cp(X) and € > 0. Note that in this
notion of convergence we can replace the set of test functions (bounded and con-
tinuous) by the space of bounded uniformly continuous functions (see [B, 8.3.1
Remark]). Convergence with respect to the weak* topology can be characterised
as follows, see [Bi, Theorem 2.1].

Proposition 2.4 (Portmanteau Theorem). Let (i, )n, i be probability measures on
.. The following statements are equivalent.

(a) The sequence (pu,)n converges to u in the weak™ topology.

(b) If O € X is an open set, then u(O) < liminf,, o 1, (0).

(¢) If C < ¥ is a closed set, then u(C) = limsup,,_, ., n(C).

(d) If A < ¥ has u(0A) = 0, where 0A is the boundary of A, then lim, o pn(A)
1(A).

Note that the space M(X,0) is closed in the weak* topology ([Wa, Theorem
6.10]). If ¥ is compact then so is M(X, o) with respect to the weak® topology
(see [Wa, Theorem 6.10]). If 3 is not compact then, in general (e.g., whenever the
F-property holds), M(X, o) is not compact with respect to the weak® topology. Fi-
nally, the space M(X, o) is a convex set whose extreme points are ergodic measures
(see [Wa, Theorem 6.10]).

2.2.2. The topology of convergence on cylinders. In this section we recall the def-
inition and properties of the topology of convergence on cylinders. This topology
was introduced and studied in [[V] as a way to compactify M(X, o) under suitable
assumptions on X.

Let (C™),, be an enumeration of the cylinders of ¥. Given p,v e Mc1(X,0) we
define

e}
1
pliv) = ) 5 In(C™) = w(CM)].

n=1
It follows from the outer regularity of Borel measures on metric spaces that p(u, v) =
0, if and only if u = v. Moreover, the function p defines a metric on M¢;1(3, o). The
topology induced by this metric is called the topology of convergence on cylinders.
We say that a sequence (i), in M<1(X,0) converges on cylinders to p if

Jim 41, (C) = pu(C),

for every cylinder C' < . Of course, (uy)n, converges on cylinders to p if and
only if (uy), converges to u in the topology of convergence on cylinders. In the
next lemma we see that in the case that mass does not escape then weak® and
convergence on cylinders coincide.

Lemma 2.5. [[V, Lemma 3.17] Let (X,0) be a CMS, pu and (un)n be invariant
probability measures on . The following assertions are equivalent.

(a) The sequence () converges in the weak™® topology to p.
(b) The sequence (y,)n converges on cylinders to p.

Let ¥ be a locally compact space and (fn)n, pt in M<1(2,0). The sequence
(fn)n converges to p in the vague topology if lim, .o § fdu, = § fdu, for every
function f continuous and of compact support (note that the set of test functions
can be replaced by the set of continuous functions vanishing at infinity). If (3, 0)
is locally compact then the topology of convergence on cylinders coincides with the
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vague topology (see [[V, Lemma 3.18]). It is important to note that if ¥ is transitive
and not locally compact then the space of continuous functions of compact support
is trivial, so the vague topology is of no use and the topology of convergence on
cylinders is a suitable generalisation (see [[V, Remark 3.13]).

If C is a cylinder of length m, denote by

C(=n):= {meC:am(x)e U[k]}

k=n

For a non-empty set A c ¥ we define

var?(f) == sup {| f(z) — f(y)| : 2,y € A}.
We declare var?(f) = 0 if A is the empty set.

Definition 2.6. We say that f belongs to Cy(X) if the following three conditions
hold:

(a) f is uniformly continuous.
(b) limy, 00 SUPze[n] |f({E)| =0.
(c) lim, o var®E™(f) = 0, for every cylinder C c X.

In this case we say that f vanishes at infinity.

The set Cy(X) is the space of test functions for the cylinder topology (see [IV,
Lemma 3.19]). In other words, (un)n is a sequence in Mg (X, 0) that converges
in the cylinder topology to u € M<1(X,0) if and only if lim,, o § fdu, = § fdu,
for every f € Co(X). Since cylinder topology generalises the vague topology for
non-locally compact CMS, the space Cy(X) is the natural substitute to the set of
continuous functions that vanish at infinity.

The following result was proved in [[V, Theorem 1.2], and is an important in-
gredient for many of our applications.

Theorem 2.7. Let (X, 0) be a transitive CMS with the F—property. Then M<1(3,0)
is a compact metrisable space with respect to the cylinder topology. Moreover,
Mc1(2,0) is affine homeomorphic to the Poulsen simplex.

We remark that, as shown in [['V, Proposition 4.19], Theorem 2.7 is sharp in a
strong sense: if (X, 0) does not have the F—property, then M<;(3, o) is not com-
pact. More precisely, there exists a sequence of periodic measures that converges
on cylinders to a finitely additive measure which is not countably additive.

2.3. Entropy of a measure. In this section we recall the definition of the entropy
of an invariant measure p € M(3,0) (see [Wa, Chapter 4] for more details). We
take the opportunity to fix the notation that will be used in what follows. A
partition 8 of a probability space (X, 1) is a countable (finite or infinite) collection
of pairwise disjoint subsets of ¥ whose union has full measure. The entropy of the
partition [ is defined by

H,(B) = — Y u(P)log u(P),
Pep
where 0log0 := 0. It is possible that H,,(8) = co. Given two partitions § and 5’

of ¥ we define the new partition

BvpB ={PnQ:PecpB,Qep}.
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Let 8 be a partition of X. We define the partition o8 := {c™'P : P € 8} and for

n € N we set g" := \/2:01 o~'B. Since the measure u is o-invariant, the sequence
H,(p") is sub-additive. The entropy of u with respect to 8 is defined by

.1 n
() 1= Jim, —H, (5").
Finally, the entropy of u is defined by
hu(o) :=sup {h,(B) : B a partition with H, () < o} .

Remark 2.8. Krengel [I[{r, Remark p.166] observes that since the entropy of a finite
invariant measure p is usually defined as the entropy of the normalised measure
/||, the linearity (in the standard sense) of the entropy map is destroyed. Fol-
lowing Krengel’s line of thought, the number |u|h, /|, (c) appearing in Theorem 1.1
can be understood, as the entropy of the finite measure p (see also [Wa, Theorem
8.1] for example).

2.4. Thermodynamic formalism for CMS. Throughout this section we assume
that (3, o) is topologically transitive and that ¢ : ¥ — R has summable variations.
Let A < ¥ and 14(x) be the characteristic function of the set A. In this setting we
define,
Zn((pﬂ a) = Z es’n(‘o(g’:)l[a] (I)a
where a € N. The Gurevich pressure of ¢ is defined by
1
P (p) :=limsup — log Z,,(p, a).
n—oo N
This definition was introduced by Sarig [S1], based on the work of Gurevich [Gu2].

We remark that the right hand side in the definition of Pg(p) is independent of
a € N, and that if (3, 0) is topologically mixing, then the limsup can be replaced

by a limit (see [S1, Theorem 1] and [S4, Theorem 4.3]). This definition of pressure
satisfies the variational principle (see [S1, Theorem 3] and [IJT, Theorem 2.10]) and
can be approximated by the pressure of compact invariant subsets [S1, Theorem 2
and Corollary 1]. Indeed,
Po(p) = sup{Puop(p|K): K = ¥ compact and o 'K = K}
= sup {h“(o) + Jg@d,u : Jgpdu > OO} ,
peM(X,o)
where Piop(+) is the classical pressure on compact spaces [Wa, Chapter 9]. A mea-

sure 1 € M(X,0) is an equilibrium state for ¢ if §pdp > —o0 and

Pa(p) = hu(o) + J@du-
The following function will be of importance in this article.

Definition 2.9. Let A < 3. Denote by Ra(z) := 14(x)inf{n > 1: 0"z € A} the
first return time map to the set A. In the particular case in which the set A is a
cylinder [a] we denote Rp,j(z) := Ra(z).

Sarig [S1, Section 4.2] introduced the following:
Z: (30’ a) = Z 6571@(@1[1%,,,:71] (l‘),

o™ (z)=x
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where [R, = n] := {x € ¥ : R,(z) = n}. Extending notions of Markov chains, Sarig
[S1] classified potentials according to its recurrence properties.

Definition 2.10 (Classification of potentials). Let (3,0) be a topologically tran-
sitive CMS and ¢ a summable variation potential with finite Gurevich pressure.
Define A = exp (Pg(y)) and fix a € N.
(a) If X, o1 A" Zn(p, a) diverges we say that ¢ is recurrent.
(b) If 3},-1 A" Z, (i, a) converges we say that ¢ is transient.
(c) If pisrecurrent and }, _, nA™"Z¥(¢, a) converges we say that ¢ is positive
recurrent.
(d) If ¢ is recurrent but >, _, nA""Z¥(p,a) diverges we say that ¢ is null
recurrent.

Topological transitivity implies that above definitions do not depend on the
choice of the symbol a.

Remark 2.11. The classification in Definition 2.10 is invariant under the addition
of coboundaries and constants. That is, if 1 : ¥ — R is of summable variations
and C € R we have that: the potential ¢ is recurrent (resp. transient) if and only
if the potential ¢ + 1) — ¢ o o + C is recurrent (resp. transient). Moreover, the
potential ¢ is positive recurrent (resp. null recurrent) if and only if the potential
@+ —1p oo+ C is positive recurrent (resp. null recurrent).

The following result describes existence and uniqueness of equilibrium states.
Parts (a) and (b) follow from Theorems 1.1 and Theorem 1.2 of [BS], respectively.

Theorem 2.12. Let (X,0) be a topologically transitive CMS and ¢ a summable
variation potential with finite Gurevich pressure. Then

(a) There exists at most one equilibrium state for .
(b) If ¢ has an equilibrium state then @ is positive recurrent.

In this article the potential ¢ = 0 will play a particularly important role. The
topological entropy of (X, 0), that we denote by hyop(0), is defined as the Gurevich
pressure of the potential p = 0, that is

htop(O') = Pg(O)
We say that (X, 0) is recurrent, transient, null recurrent or positive recurrent ac-
cording to the corresponding properties of ¢ = 0. If (X,0) is positive recurrent,

then Theorem 2.12 implies that (X, o) admits a unique measure of maximal entropy.
This was first proved by Gurevich [Gul].

Remark 2.13. Note that every finite entropy, transitive CMS satisfies the F—property
(see Definition 2.1).

2.5. Strongly positive recurrent CMS. Properties of CMS may be significantly
different from those of sub-shifts of finite type defined on finite alphabets. In this
section we describe a special class of CMS with properties analogous to those of
compact sub-shifts. This study is based on work of Vere-Jones [Vel, ] devel-
oped during the 1960s, where he first defined an equivalent class in the setting of
stochastic matrices. Several people have contributed to the understanding of this
class, for example, Salama [Sal], Gurevich and Savchenko [GS], Sarig [S2], Ruette
[R1], Boyle, Buzzi and Gémez | ] and Cyr and Sarig [CS]. In these works the
following quantities, or related ones, have been defined and studied.
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Definition 2.14. Let (3, 0) be topologically transitive CMS and a € N. Let

1
Ay ([a]) := limsup = log Z(0, a),
n

n—0o0
and

Ay = inf Ay ([a]).
aeN
Remark 2.15. The number Ay ([a]) can depend on the symbol a, see [R1, Remark
2,1].

Definition 2.16 (Strongly positive recurrent CMS). Let (X, 0) be a topologically
transitive CMS with finite topological entropy. We say that (3, o) is strongly posi-
tive recurrent (SPR) if Agy < hyop(0).

Remark 2.17. A strongly positive recurrent CMS is positive recurrent. In particular
it admits a unique measure of maximal entropy. Moreover, with respect to this
measure the system (X, o) is exponentially recurrent (see | , Proposition 2.3]
for precise statements). The class of strongly positive recurrent CMS was intensively
studied by Gurevich and Savchenko in [GS]. Note, however, that in [GS] these are
called stable-positive recurrent. We also remark that there exists CMS that are
positive recurrent but not strongly positive recurrent (see [R1, Example 2.9]).

Remark 2.18. Strongly positive recurrent CMS have the property that the entropy
is concentrated inside the system and not near infinity. Indeed, let (X,0) be a
CMS an G its associated graph. Gurevich and Zargaryan [G7] (see also [GS])
showed that a condition equivalent to SPR is the existence of a finite connected
subgraph H < G such that there are more paths inside than outside H (in term
of exponential growth). See [R1, Section 3.1] for precise statements. On the other
hand, for graphs that are not strongly positive recurrent the entropy is supported
by the infinite paths that spend most of the time outside a finite subgraph (see [R1,
Proposition 3.3]).

Along the lines of the observations made in Remark 2.18, in the next section (see
Proposition 2.20) we characterise SPR for CMS as those having entropy at infinity
strictly smaller than the topological entropy.

Sarig [S2] generalised the notion of strong positive recurrence to potentials .
Using his definition, we recover the topological notion in Definition 2.16 for the
potential ¢ = 0, i.e., this potential is strongly positive recurrent if and only if
(3,0) is SPR (see [R1, Remark 2.11]). For Sarig’s class of potentials the associated
thermodynamic formalism enjoys most of the properties of the thermodynamics for
Holder potentials on sub-shifts of finite type. In particular, the transfer operator
corresponding to a strongly positive recurrent potential has a spectral gap (see [CS,
Theorem 2.1]). This readily implies that the pressure function is analytic and there

exist formulas for its derivatives ([52, Theorem 3 and 4] and [CS, Theorem 1.1]),
there exists a unique equilibrium state and it has exponential decay of correlations
and satisfies the Central Limit Theorem ([CS, Theorem 1.1]). Moreover, in the

space of potentials strongly positive recurrence is a robust property. Indeed, it
was proved by Cyr and Sarig [CS, Theorem 2.2] that the space of strongly positive
recurrent potentials is open and dense (with respect to the uniform metric) in the
space of weakly Holder potentials with finite pressure.
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2.6. Entropy at infinity. A fundamental consequence of Theorem 1.1 is that a
great deal of dynamical information of the system is captured by its complexity at
infinity. As discussed in the introduction, we have defined two different ways of
quantifying this complexity. Namely, the topological entropy at infinity (Definition
1.2) and the measure theoretic one (Definition 1.3). In this section we will elaborate
on these notions and put our results into context.

We first discuss the topological entropy at infinity of (3, ), given in Definition
1.2. Observe that if My < My, then z,(Ms, q) < z,(Mz, q), for every n,q € N, so

Joo(q) = inf 6o (M, q) = A/l[iglooéoo(Ma(I)-

If (,0) is a transitive CMS then for every a,b € N,

1
500(M7 q) = limsup - IOg Zn(Mﬂq7aub)7 (23)
n—oo n
where z,(M,q,a,b) is the number of cylinders of the form [zo,...,Z,+1], where

To = a, Tpr1 = b, and
n+2
T
Note that ¢ < ¢’ implies the inequality z,(M, ¢, a,b) < z,(M, q,a,b). In particular
(00o(M, q))q is decreasing in g. We conclude that

0o = Inf 055 (q) = inf 6o (M, q). (2.4)
q M.q

#{ie{0,....n+1}:2; < q} <

Since in our results we will usually assume that the symbolic space is transitive,
we can consider (2.4) as the definition of the topological entropy at infinity.

We now consider the measure theoretic entropy at infinity, defined for finite
entropy CMS as

he = sup limsuph,, (o),
(#n)n—0 m—0

where (i,)n, — 0 means that the sequence (u,), converges on cylinders to the
zero measure. Note that the finite entropy assumption, and more generally the
F —property, ensures the existence of sequences of measures converging on cylinders
to the zero measure (see [V, Lemma 4.16]). In particular, hq, is well defined. In
[IV, Example 4.17], an example of a CMS made of infinitely many loops of length
two based at a common vertex is considered. The entropy is infinite and there are
no sequences of measures converging to zero. Every measure gives weight at least
1/2 to the base cylinder.

In Section 7 we will prove that both, the topological and the measure theoretic
entropies at infinity coincide. This has several consequences, in particular we obtain
that Theorem 1.1 is sharp. Indeed, d is the smallest number for which inequality
(1.1) holds.

In the context of CMS the entropy at infinity was already investigated by Gure-
vich and Zargaryan [GZ], Ruette [R1] and Buzzi [B1]. It is important to mention
that they also had two flavours of entropy at infinity, a topological and a measure
theoretic version. It is proven by Ruette [R1] that both notions coincide (for a pre-
cise statement see [B1, Proposition 6.1]). It turned out that the notions of entropy
at infinity presented in this work coincide with theirs. Recall that if G is the graph
which determines (X, o), then

bop = 111}f )I\I;% sup {h,(o) : u([F]) < A},
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where F' ranges over the finite sub-graphs of G and [F] := {x € X : 29 € Ap},
where A denotes the symbols appearing as vertex of F'. We first show the relation
between hy and by.

Lemma 2.19. For a sequence (tiy)n in M(Z,0), the following are equivalent:

N and e > 0, there is ng € N such

(a) for any collection of cylinders C*,...,C
that un(UiIil C%) < ¢ for all n = ng;
(b) for any finite subgraph F of G and any € > 0, there is n1 € N such that

un([F]) < e for alln =mn;.

An easy consequence of the lemma is that convergence on cylinders in this setting
corresponds to the type of limits featuring in the definition of by, and thus by, = hq.

Proof of Lemma 2.19. Since (b) concerns 1-cylinders, the fact that (a) implies (b) is

clear. To prove the reverse implication, we observe that if C1,...,C¥ is a collection
of cylinders then we can take the subgraph defined by the first coordinate of each
C" as our subgraph. O

As previously mentioned, in Section 7 we will prove that ho, = d4. This implies
that the entropy at infinity defined in this section coincides with the previously de-
fined one. One consequence is that, since [B1, Proposition 6.1] implies by, < htop(0)
is a characterisation of SPR, we thus have the following alternative characterisation:

Proposition 2.20. A topologically transitive CMS (X,0) is SPR if and only if
hoo < hiop(0) if and only if §oo < hiop(0).

This result is consistent with the comments in Remark 2.18. Indeed, SPR sys-
tems are those for which the entropy is not concentrated at infinity; the inequality
doo < hiop(0) has a wealth of dynamical consequences (see Remark 2.17).

From a slightly different point of view, it was not realised until recently that the
entropy at infinity has a particularly important role in the regularity of the entropy
map. In the context of homogeneous dynamics, for the diagonal action on G/T,
where G is a R-rank 1 semisimple Lie group with finite centre and I' < G a lattice,
a formula like Theorem 1.1 was obtained in | ]. In that context the constant
playing the role of the entropy at infinity is half the topological entropy of the
flow. It was later proved in [IXP] that half the topological entropy is in fact sharp
and equal to the measure theoretic entropy at infinity in that setup. The method
employed in | | was used in [RV] to prove that a similar result holds for the
geodesic flow on a geometrically finite manifold. Unfortunately, an obstruction to
run the method from | ] is the existence of periodic orbits that escape to infinity.
This issue was overcome in [Vell], where the results in [RV] where generalised to
all complete negatively curved manifolds. For CMS the existence of periodic orbits
that escape phase space is quite common so our approach is similar to the one in
[ ]. Additional complications arise from the possible lack of locally compactness
of ¥. In Section 5 and Section 6 we will address these issues and prove Theorem
1.1.

The entropy at infinity has further applications to suspension flows, entropy
density, the dimension of points which escape on average, existence of equilibrium
states and bounds on mass escape, all of which we give in Section 8.



14 G. IOMMI, M. TODD, AND A. VELOZO

3. KATOK’S ENTROPY FORMULA

In the early 1970s Bowen [Bo2] and Dinaburg [Di] provided a new definition of
topological entropy of a dynamical system. Inspired by these results, Katok [I{a]
established a formula for the measure theoretic entropy in analogy to the definition
of topological entropy by Bowen and Dinaburg. We now recall his result in a
particular context.

Let (X2, 0) be a CMS and let d be the metric on 3 defined in (2.1). The dynamical
metric d,, is defined by the formula

. k. _k
dn(xvy) T ke{OI,I.l.E.i:}vizfl}d(o— x,o y)
The open ball of radius r centred at x with respect to the metric d,, is denoted by
B, (z,7). By the definition of the metric d we know that B, (z,2™ ") = C,, ().
A ball of the form B, (z,r) is called a (n,r)-dynamical ball. The following result is
a particular case of a theorem proved in [[{a, Theorem 1.1].

Theorem 3.1. Let (X,0) be a sub-shift of finite type defined on a finite alphabet
and p an ergodic o-invariant probability measure. Then

1
hyu(o) = lim lim inf - log N,,(n,€,9), (3.1)

e—0 n—w

where N, (n,¢€,0) is the minimum number of (n, €)-dynamical balls needed to cover
a set of u-measure strictly bigger than 1 — 9. In particular the limit above does not
depend on § € (0,1).

The relation established in (3.1) is known as Katok’s entropy formula. It turns
out that Katok’s proof is rather flexible. It was observed by Gurevich and S. Katok
[GK, Section 4] and also by Riquelme [Ri, Theorem 2.6] that the proof in [KKa,
Theorem 1.1] yields that if (X, d) is a metric space (not necessarily compact) and
T : X — X a continuous map then

m@wummmﬁggﬂ@ﬁﬁ.
e—0 n—w0 n
The compactness assumption on X is used in the proof of the other inequality. It
is routine to check that compactness assumption can be replaced by the existence
of a totally bounded metric.

This section is devoted to proving that formula (3.1) holds for CMS of finite
topological entropy. Moreover, we will prove the limit is independent of e. We
prove:

Theorem 3.2. Let (X,0) be a CMS and i an ergodic o-invariant probability mea-
sure. Then for every 6 € (0,1) we have

o1
hu(o) < nlgroloﬁlogN#(n,l,é).
If (3,0) has finite topological entropy, then
1
hy(o) = lim —log N,(n,1,9).
n

n—00

Define the following collection of sets: for every m € N let

Ky =30 | JIs]: (3.2)
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Note that if ¥ is locally compact, then K, is compact for every m € N. To every
sequence of natural numbers (a;)2, we associate the set

>0
Observe that K ((a;);) is the intersection of a closed set with a compact set and is
thus a compact subset of 3. Moreover, every compact set K < ¥ is contained in a

set of the form K((a;);). The following lemma follows directly from [P, Theorem
3.2]. For concreteness we provide a simple proof of this general fact.

Lemma 3.3. Let pu a Borel measure on .. For every € > 0, there exists a sequence
of natural numbers (a;); such that (K ((a;);)) > 1 —e.

Proof. Fix a sequence (b;); satisfying

€ o]
(175)Eb1->176,

where b; € (0,1) for every ¢ € N. We will construct the sequence (a;); inductively.
Choose ag such that p(|J;2,[i]) > 1—5. Forevery i € {1,...,a0} we choose c(i) € N
such that
c(7)
p{ (U] ) = p(liDbr
k=1

Let a1 := maxX;eq1,.. 40} ¢(i). For (i1,i2) € H;O{l, ...,a;} we define c¢(i1,i2) such
that

C(il,ig)

pl U rigk] | = p([iria])bs.
k=1

Define ay = MaX(; e[ (1,...a:} ¢(i,7). We continue this procedure inductively. It
follows from the construction that

(K ((a)) = p (ﬂu, g }) > (1= Ih=1-v
i=0 i=1

as desired. 0

Remark 3.4. Katok proved [I[<a, Theorem 1.1] that if P is any finite partition of ¥
satisfying p(0P) = 0, then for any ¢ € (0,1)

1
hy(P) < lim liminf — log N,,(n, 7, ).
T n— n

—0

For a CMS it is easy to check that the partitions

Pp = {[1]75[’”]’ U[S]}

s>n

are such that 0P, = ¢, and lim,_, hyu(0,Prn) = hy(o). From this we conclude
that

1
< lim lim inf — log N .
hu(o) lim lim inf ~ log w(n,r,0)

Our next result is inspired by the proof of [Ri, Theorem 2.10 and Theorem 2.11].
In our context we do not have local compactness of 33: the finite entropy assumption
is important in overcoming this issue.
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Lemma 3.5. Let (X, 0) be a CMS with finite topological entropy. If p is an ergodic
o-invariant probability measure, then for every 6 € (0,1) we have

1
hu(o) = lim liminfflogNu(nﬂ_N,é).

N—-ow n—w N

Proof. As observed in Remark 3.4 the inequality

1
hu(o) < lim liminf —log N, (n,27 N, 8
u(0) < lim liminf —log N, (n,277,0)
is known to hold. For the converse inequality it suffices to prove that for every
¢ € N there exists a partition P = P({) of ¥ and a subset K < ¥ satisfying:

(a) The partition P(¢) has finite entropy with respect to p.
s

(b) u(K) >1- 2.

(c) For every z € K n o™ "K we have P"(z) < B, (z,27%).

In this situation a slight modification of the first part of the proof in [I[{a, Theorem
1.1] yields the desired inequality, as we show here. Suppose that the partition
P = P({) has been constructed. Let e > 0. Since the measure 4 is ergodic by the
Shannon-McMillan-Breiman theorem there exists Ny € N such that the set

Acng ={zeX: u(P"(x)) = exp(—n(h,(P) +¢€)),for all n = Ny} .

satisfies p(Aen,) > 1 — %. Let n > Ny and B,, := Acn, " K no™"K. Observe

that u(B,) = 1 — g and that if x € B, then © € K n ¢~ "K, and therefore
P (x) = By(x,27%). The set A, n, requires at most exp(n(h,(P) + €)) elements
of the partition P™ to cover it. Therefore, B,, requires at most exp(n(h,(P) + €))

) . . [
(n,27%)-dynamical balls to cover it, where u(B,) > 1 — 5. We conclude that

1
limsup — log N,,(n,27%,0) < h(P) + e < hu(o) +e.

n—oo N

Since € > 0 was arbitrary we obtain

lim lim sup 1 log N, (n,27%,8) < h, (o),
l—0 posop N
concluding the proof of the lemma.

We now prove the existence of such a partition P = P(¢). By Lemma 3.3
there exists a sequence (a;); such that the compact set Ko := K((a;);) satisfies
w(Ko) = 1-— g. Denote by S the set of points in ¥ that enter K infinitely many
times under iterates of ¢. It is a consequence of Birkhoff’s Ergodic Theorem that
1(S) = 1. Define K := Ky n S, and observe that u(K) = 1 — g. For every k > 1,
let

Ri(z) :=inf{k>1: ok(x) e Ko} for z € K, and Ay, := {x € K : R (z) = k}.

Partition Ay using cylinders of length k+¢+1 and denote such partition by Qy. It is
important to observe that #Qj is finite for all k. This follows from the definition of
Ky and the finite topological entropy of (X, o). Indeed, if © = (zg,21,...,2%...) €
Ay, then xg,zp € {1,...,a0}. Moreover, there are at most C' = Hf:o a; cylinders
of the form [yoy; .. .y;] intersecting K, so for k large enough,

#0Q;, < CeFhtop(a)+1)
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Finally, consider the partition of ¥ defined by P = Q u (Ukoo:1 Qk), where
Q =X\ U,Ocozl Qk. We claim that this countable partition satisfies the remaining
required properties, that is:

(a) The partition P = P(¢) has finite entropy with respect to p.
(b) For every x € K n 0 "K we have P"(z) < B, (z,27).

The second property follows from the construction of P. Indeed, let z € P™(z),
where z,0"(z) € K. We claim that z € B, (z,27%). For simplicity we will assume
that « has its first return to K at time n (the general case is just an iteration of the
argument in this setting). Since xz € A,, we have that P(z) is a cylinder of length
n + £ + 1, which readily implies that z € B, (z,27%).

We now verify that H,(P) < o. For r sufficiently large,

P)+ R = 2 Z —u(P) log u(P)

k=r PeQy
~ CpP) . u(P)  p(P)
- k;u(Ak) <P62Qk ) 8 Ay T (A 8 ,U(Ak)>
< D il Ar) log(|Qxl) = D 1(Ax) log u(Ay)
k=>r k=>r
< 3 Ru(Ay) log (eher@F1CIE) = 37 p(Ay) log ju(Ar)
k=r k=r
<C' Y ku(Ar) = . u(Ar) log p(Ax),
k=r k=r

where R = u(Q)log u(Q) + Zk 1 2peo, MP)log u(P) € R. Tt follows from Kac’s
lemma that > ku(Ax) = 1. This and the inequality

fZ (Ay)log u(Ag) < Zkﬂ (Ap) + 2~ 12€,k/2

k=r k=r k>r

see [\, Lemma 1], imply the finiteness of H,(P). This concludes the proof. O

Lemma 3.6. Let (X, 0) be a CMS and p an ergodic o-invariant probability measure.
Then for any § € (0, 1), we have

hu(o) < hmlnf—logN (n,1,0).

n—0o0

Proof. Let A < X be a set such that u(A) > 1—4. Denote by a,(n,§) the minimum
number of cylinders of length n that cover a A. Observe that

N, (n, 274 6) = a,(n+t,9),
and that

1
lim inf — logau(n 0) = hmmf log a,(n+1t,9),

n—0o0
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Llog N, (n,27¢,6) is inde-

for every ¢ € N. In particular we have that liminf, o o

pendent of £. From Remark 3.4 we conclude that

hu(o) < lim hmmfflogN (n,27%,6)

t—00 n—oo n

lim lim 1nf — log au(n+t,0)

t—00 n—00
1
= lim inf — log au(n,d).
n—o0

(]

Proof of Theorem 3.2. The proof follows combining Lemma 3.5 and Lemma 3.6.
O

We now prove a result related to Lemma 3.6. We say that two points z,y € ¥
are (n,r)-separated if d,(z,y) = r. In particular x and y are (n,1)-separated if
they do not belong to the same cylinder of length n.

Lemma 3.7. Let X be a o-invariant compact subset of 3. Then

1
hiop(c]X) = limsup — log N (X, n),

n—ow N
where N (X, n) is the mazimal number of (n, 1)-separated points in X, and hiop(o]X)
is the topological entropy of (X, o).

Proof. By definition of the topological entropy of a compact metric space we know
that
hiop(o]X) = hm lim sup flog N(X,n, k),
k—o0 pooo
where N (X, n, k) is the maximal number of (n, 27%)-separated points in X. Observe
that being (n,27%)-separated is the same as being (n+k, 1)-separated. This implies
that N(X n,k) = N(X,n + k). Note that

lim sup — logN(X n, k) = limsup — logN(X n+ k) = limsup — logN(X n).

n—ao0 n—oo N n—o0

Therefore
hiop(o] X) = hm lim sup log N(X,n, k) = lim sup — log N(X,n),

k—w now n—o

as desired. O

4. WEAK ENTROPY DENSITY

In this section we describe the inclusion £(2,0) € M(X, o), where £(3, 0) is the
subset of ergodic measures. It is well known that, even in this non-compact setting,
the set £(3,0) is dense in M (3, o) with respect to the weak™ topology (see [CSc,
Section 6]). We prove that any finite entropy measure can be approximated by an
ergodic measure with entropy sufficiently large, see Proposition 4.1. This result
can be thought of as a weak form of entropy density. In Section 8.3 we will make
use of this result to prove that any invariant measure u can be approximated by
ergodic measures with entropy converging to h,(c) (see Theorem 8.7). Moreover,
Proposition 4.1 will be used in the proof of our main result (see Theorem 1.1).
Both the statement and the proof of Proposition 4.1 closely follow that of | ,



ESCAPE OF ENTROPY FOR COUNTABLE MARKOV SHIFTS 19

Theorem B], but modifications are required to deal with the non-compactness of
the space X.

Proposition 4.1. Let (X,0) be a transitive CMS. Then for every p € M(3,0)
with hy(o) < w0, € >0, n >0, and fi1,...,fi € Cy(X), there exists an ergodic
measure e € V(f1,..., fi, i, €) (see equation (2.2)) such that h, (o) > h,(o) —n.
We can moreover assume that supp(ue) is compact.

Analogously to the proof of | , Theorem B] we will use the following fact.

Lemma 4.2. Let pe E(X,0),a>0,8>0, fi,...,fe € Cp(X), and a set K € ¥
satisfying p(K) > 3/4. Assume that hy,(0) < 0. Then there exists ng € N such that
for all n = ng there is a finite set G = G(n) € X satisfying the following properties:
(a) Gc Kno ™K
(b) d(z,y) > 27", for every pair of distinct points z,y € G.
(c) #G = exp(n(hu(o) — a)).
(d) |2 3020 fi(o*a) —§ fidul < B, for allz € G and j e {1,...,0}.

Proof. Let

Ak,ﬂ = {JJEE:

n—1 )
S fi(otn) - ffjdu
1=0

By Birkhoft’s Ergodic Theorem there exists so € N such that p(As, g) > 3/4. From
Lemma 3.6 we have that

<B,Vje{l,....t} andn)k}.

1
hy(o) < lim ioréf —log N(n,1,1/4).
n— n
There exists s; € N such that if n > s;, then
exp(n(h,(o) —a)) < N,(n,1,1/4).

Let B, := K n o "K n A, g and observe that u(B,) > 1/4. In what follows
we assume that n > ng := max{sg,s;}. From the definition of N,(n,1,1/4) the
minimal number of cylinders of length n needed to cover B, is at least N, (n,1,1/4).
More precisely, let (C;);e; be a minimal collection of cylinders of length n covering
B,,. In particular for every ¢ € I we have C; n B,, # . For every i € I choose a
point z; € C; N B,,. We claim that the set (x;);cs satisfies the properties required on
G. Conditions (a) and (d) follow from the definition of B,,. Condition (b) follows
from the fact that if ¢ # j, then x; and x; are in different cylinders of length n.
Condition (c¢) follows from the inequality

#I > N,(n,1,1/4) = exp(n(hu(o) — a)).
O

Proof of Proposition J.1. Recall that we want to prove that given p € M(3,0),
e >0, n >0, and fi1,...,f1 € Cp(X), there exists an ergodic measure p, €
V(f1,-.., fe, . €) such that h, (o) > h,(c) —n. In the following remarks we
observe that this general situation can be simplified.

As observed in Section 2.2.1 or in [B, 8.3.1 Remark] it suffices to consider the case
in which the functions (f;); in Proposition 4.1 are uniformly continuous. Therefore,
under this assumption, there exists A = A(f1,..., fe) € N, such that if d(z,y) <
274 then |f;(z) — fi(y)| < 7+ Also define W = max;eq1,...y | filo-
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Since periodic measures are dense in M(X,0), see [CSc, Section 6], we will
assume that h, (o) —n > 0, otherwise we can approximate p by a periodic measure.
By the affinity of the entropy map [Wa, Theorem 8.1] and [V, Lemma 6.13] we

can reduce the problem to the case in which p = & Zfil wi, where {p;}¥ | is a
collection of ergodic measures.

Let m € N be such that the set K = K,,,, defined as in (3.2), satisfies u;(K) > 3/4
for every i € {1,..., N}. Since (X, o) is transitive, there exists a constant L = L(m)
such that for each pair (a,b) € {1,...,m}?, there exists an admissible word arb,
where £(r) < L. It follows from Lemma 4.2, setting § = ¢/4 and a = 1/2, that there
exists n’ € N such that for every n > n’ and every measure u;, with i € {1,... N},
there exists (n, 1)-separated sets G; ¢ K n o~ " K satisfying properties (a), (b), (¢)
and (d) of Lemma 4.2.

Denote by a(z) the word defined concatenating the first (n + 1)—coordinates
of v € ¥. Given & = (2%,22,...,2MN) e (Hf;l Gi)M, we define an admissible
word wy(2) = a(z!)ria(z?)ry ... a(zMN)ryna(x!), where ris are words chosen so
that wq (&) is an admissible word and ¢(ryx) < L (note that this is possible since
(a(z%))o and (a(x?)), arein {1,...,m} by definition of G;). The word wo (%) defines
a periodic point in ¥ that we denote by w(&). We have that

w(?) = a(z)ria(z?)ra ... a(zMV)ryN.

Let G :=]] le(]_[iil G:)M. Following the same procedure of concatenation
described above, for every & € G we define a point w(&) € X. Define

v = Jow(@))

zeg

where O(w(Z)) is the orbit of w(#) and define ¥ to be the topological closure of
v,

Note that the space Wy is a compact o-invariant subset of ¥. By definition the
set W is closed and invariant. Observe that the number of symbols appearing in
elements belonging to W is finite: there are finitely many admissible words a(x?)
(recall that each G; is a finite set) and we could use finitely many connecting words
r;. Therefore there exists J € N such that ¥ < {1,...,J}N. Thus, ¥ is a closed
subset of a compact set.

By property (d) of Lemma 4.2, and assuming that n’, which also depends on A,
W and L, is sufficiently large,

U c {xe P ’TllSnfj(x) —ffjdu‘ <eVje {1,...,6}}. (4.1)

Since the set in right hand side of (4.1) is closed, the same inclusion holds if ¥ is
replaced by Wq. Also, since ¥ is o-invariant we have

Uy {er : ‘lsnfj(asx)—ffjdp' <eVjie{l,....t} ands)()}
n

1
c {er : ‘mSnkfj(x)fijd,u’ <eVje{l,..., 0 andkeN}.

This implies that every ergodic measure supported in Wg belongs to V(f1, ..., fi, i, €).
Indeed, consider a generic point for the ergodic measure and use the inclusion above.
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M
By construction, if x,y € <H5V:1 gi) and z # y, then

dnmn+1+r)(w(@), w(y)) = 1.

In other words ¥, contains a (NM(n + 1 + L), 1)-separated set of cardinality at

least
1 N n
exp <nNM (N kzg 1h’llfk(0—) — 2>> .

Here we used property (c) of Lemma 4.2 for our sets G;. It follows from Lemma 3.7
that
nNM(h,(c) — 2 n(h,(oc) — 2
() > timsap "M 0u0) =) (o)~ 3)
M—oow NM(n+1+1L) (n+1+1L)
Finally, let p. be an ergodic measure supported in ¥y with entropy at least
hy(o)—n (which exists by the standard variational principle in the compact setting),
since we already proved that u. € V(f1,..., fi, 4, €) this finishes the proof. O

> hyu(o) —n.

5. MAIN ENTROPY INEQUALITY

This section is devoted to the proof of the main entropy inequality. This is stated
in Theorem 5.1 and relates the entropy of a sequence of ergodic measures with the
amount of mass lost and the topological entropy at infinity.

Recall that, as explained in (3.3), to every sequence of natural numbers (a;); we
assign a compact set K = K ((a;);) < X. The definition of K implies that if x € K¢,
then x; > a;, for some 7 € Ny. For x € K¢ we define i : K¢ — Ny by

i(z) :==min{n e Ny : z, > an}. (5.1)
For n € N we define
T (K):=Kyno 'K¢n---no "K°no "YVEK, (5.2)
where K,, = J{2,[i] (as defined in (3.2)). Let
T (K) = {z € To(K) : i(c"(x)) <n—k, forevery ke {1,...,n}}.  (5.3)

Let Z,(K) be the minimal number of cylinders of length (n + 2) needed to cover
T,,(K) and define
R 1
0o (K) := lim sup — log 2,, (K). (5.4)
n—oo N
The reason why we define 6, (K) covering the sets fn(K ), and not T,,(K), is to
ensure Lemma 6.2. This allows us to relate o, (K) with the topological entropy at
infinity of (¥, 0).
Our next result is fundamental in this paper.

Theorem 5.1. Let (X,0) be a finite entropy CMS. Let (un)n be a sequence of
ergodic probability measures converging on cylinders to an invariant measure .
Let (a;); be an increasing sequence of natural numbers such that the corresponding
compact set K = K((a;);) satisfies that p,(K) > 0, for alln € N. Then

limsup by, (0) < |l (@) + (1= p(Y))bo0 (K,

n—o0

where Y = JI_,0°K.
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The proof of this theorem requires some propositions and lemmas, which we will
prove first before completing the proof of the theorem at the end of this section.

The fact that K < o(K), which follows since (a;); is an increasing sequence, will
be used several times here. Let Ay := {z € K : Rx(z) = k}, where Rg(x) is the
first return time function to the set K (see Definition 2.9). For z € Y we define the
following:

n1(z) := min {n € Ny : there exists y € K such that " (y) = x},
ng(z) :=min{n e Ny : 6"z € K}.

We emphasise that the function nj(x) is well defined. Indeed, observe that if
z € Y then 0@z € K. Let r € N be such that » > no(z) — 1. Since the

sequence (a;); is increasing we have that a, > max{a; :7€{0,...,na(z) — 1}}.
Since z € 0"(K) = [[5-,{1,...,ax} n ¥ we have that n;(x) is finite for every
zeY. Let

n(x) :=

ni(z) + na(z) ifzey,
o0 if v e X\Y.

For n € Ny U {oo} define
Cn:={reX:n(x)=n}

Note that Cp = K and C; = §. For n > 2 observe that z € C, if it belongs
to the orblt of a point in A,. More precisely, for every n > 2 we have that
C, Uk L 0% (A,). We define the following sets,

N M
Qg = (U Cn> JON M 1= (U Cn> and o~ 1= ( U Cn> U Cop.
n=2

n>N n>M

Remark 5.2. The set agps can be covered with finitely many cylinders of length L.
Indeed, observe that for every n > 2 we have

— n—1
C, C UO’ c UO’ o"(K).
s=1 s=1
Therefore,
M »
acu = JCuc oK)= [] {1...,a}n T
n=2 s=M-—1
Since the set [ ,,_,{1,...,as} 0 ¥ can be covered with at most [>T a,

cylinders of length L, the same holds for a<a,.

Observe that it follows directly from the definition of d.,(K) (see (5.4)) that for
every € > 0, there exists Ny = Ny(€) € N such that for every n = Ny we have

2n(K) < en(éw(K)-‘re) )

At this point we fix € > 0 and k, N € N large enough so that kN > Ny(¢): these
will appear explicitly in the proof of Theorem 5.1.
Given A c ¥ and t € N we define

Ui (A —{er d(z, A) }
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Now let
K(k7N) = UkN+2(K)7
<N = Ugrynr2(asn)\K (K, N),
G;%N = K(k,N) U Y<N,
and

NN = Ugernynt2(an kv )\Gr, N,

YokN = S\(Gr,N U YN EN),

By N = YNkN U Y>kN-
Denote by Qi (k, N) the minimal cover of K (k, N) with cylinders of length kN + 2.
Similarly, denote by Q%(k, N) the minimal cover of agy with cylinders of length
(k+ 1)N + 2. Observe that every element in Q) (k, N) is disjoint or contained in

an element of Q;(k, N). In particular y<y is a finite union of cylinders of length
(k +1)N + 2; this collection of cylinders is denoted by Qa(k, N). Define

Brn = Qi1(k,N) U Qa(k, N) (5.5)

and observe that ﬂ,’c’ n 1 a partition of the set G . Define the following partition
of 3,

Br.n = {V>kN, INENT U Br N (5.6)

Recall that the refinement 51?, y follows as in Section 2.3.

Notation: We use the following notation for an interval of integers [a,b) := {n €
N:a <n < b} and |[a,b)| =b— a.

Definition 5.3. Let @ € S} y be such that (Q U o™ Q) c Gry. An interval
[r,s) < [0,n) is called an excursion of Q into vy (resp. By n) if 0'Q < v=in
(resp. 0'Q < By ) for every t € [r,s) and (6" 7'Q U 0*Q) < Gy N

An excursion [, s) of @ into By n is said to enter -y if there exists i € [r, s)
such that ¢'Q < v=in-

The next three lemmas are preparation for the proof of Proposition 5.8. These
give us control on the return times to K(k, N) and the length of excursions into
By N

Lemma 5.4. If [r,7 + ) is an excursion of Q into By n that does not enter y=pn
then s < kN.

Proof. Since the excursion does not enter v~y we have that ¢"Q < ynrn. Fix
x € 0"Q. By the definition of vy yn there exists zg € an ky such that d(x, zg) <
2~ (2(k+1N+2) " GSince x¢ € ay xy we have that n(xg) < kN and therefore ny(zg) <

kN. In particular ot(z¢) € a<y, for some t € [0, kN). Observe that
d(Ut(x),Ot(l‘o)) < 2—(2(k+1)N+2)+t < 2—((k+1)N+2)-

This readily implies that o'(z) € Ugiryni2(a<n) © Grn. We conclude that
o"Q < Gy N, and therefore s < kN. O

Lemma 5.5. If Q < Gy n then there exists t € [0, N) such that o'Q < K(k,N).
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Proof. It Q@ < K(k,N) there is nothing to prove. Assume that Q < v<y. Let
r e Q and y € acy such that d(z,y) < 27 (F+*DN+2) Since y € acy we have that
ot(y) € K, for some t < N. Observe that

d(a_t(x)’o_t(y)) < 2—((k+1)N+2)2t < 2—(kN+2)

We conclude that there exists ¢ € [0, N) such that o'(x) € Ugny2(K) = K(k,N).
This implies that for some ¢ < N we have ¢'Q < K(k, N). O

Lemma 5.6. If [r,7 + s) is an excursion of Q into y=in such that s = N then
o™ 1Q < K(k,N).

Proof. From the definition of an excursion, the set Qo := 0" ~'Q must lie in Gy ,
so to derive a contradiction we will assume that Qg < y<n. Let x € Q. By the
construction of y<x there exists y € a<y such that d(z,y) < 2~ (F+*DN+2) " GQince
y € agy there exists t < N such that o?(y) € K. Therefore

d(at(z),at(y)) < 27((k+1)N+2)+t < 27(kN+2).

We conclude that o'(z) € Upni2(K) = K(k,N). This contradicts the fact the
length of the excursion is larger than V. O

Definition 5.7. Denote by m,, ; v (@) the number of excursions of length greater
or equal to kN into By n that enter v~;n and let

Enpn:i=#{ie[0,n):0'Qc Byn}.

The following result shows that an atom @ € 8} y such that Q < K(k, N) n

o= (k, N) can be covered by cylinders of length n in a controlled way. This is
an estimate closely related to | , Lemma 7.4] (see also [Vell, Proposition 4.5]).
The constant o (K) naturally appears when we try to control the time spent in
the ‘bad’ part By .

Proposition 5.8. Let B n be the partition defined in (5.6). Then an atom Q €
Bi v such that Q = K(k,N) n o~ (=D K(k,N), can be covered by at most

B kN (Q) (o0 (K) +€) g kN (Q) N (80 (K) -e)
cylinders of length n.

Proof. To simplify notation we drop the sub-indices N and k. The proof of Propo-
sition 5.8 is by induction on n. First decompose [0,n — 1] into

On—1]=WruViuWau- UV, u Wi,

according to the excursions into By y that contain at least one excursion into
Y=kN- More precisely, let V; = [m;,m; + h;) and W; = [l;,1l; + L;) with l; + L; = m;
and m; + h; = l;;1. The segment V; denotes an excursion into Bj n that con-
tains an excursion into v~pny. Given i € N define J; := 23:1 Vil lpew,o0) (IV31),
where 1n,o) is the characteristic function of the interval [kN,0). Similarly de-
fine H; := 22:1 Lkn,0) ([Vjl). Observe that @ < K (k, N) implies that @Q is already
contained in a cylinder of length kN + 2.

Step 1: Assume that @@ has been covered with ¢; cylinders of length [;, where

¢ < eJi(SOO(K)Jre)eNHi(SOO(K)+e).
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(As mentioned above, the set @ is covered by one cylinder of length 1, there-
fore take ¢; = 1.) We claim that the same number of cylinders of length (I; + L;)
cover . Observe that by hypothesis ¢! Q is contained in an element of ', there-
fore diam(c'iQ) < 2=(*N+2)_ Since the elements of 8 all have diameter smaller
than 2~ (*N+2) the same holds if @ spends some extra time in 3’. By Lemma
5.4, if @ has an excursion into Bj y that does not enter 7-pn, then it must
come back to 8" before kN iterates. In particular if the excursion into By y is
[pi,pi + @), then ¢; < kEN. Observe that diam(c?~1Q) < 2-*N+2) implies
that diam(o?*'Q) < 272, for every t € [0,kN). In particular the same holds
for t € [0, ¢;]. Repeating this process we conclude that diam(c!Q) < 272, for every
t € [l;,1; + L;). This immediately implies that o' (Q is contained in a cylinder of
length L;, which implies our claim. We go next to Step 2.

Step 2: Assume we have covered @ with ¢; cylinders of length m;, where

Ci g e‘L(8°C(K)+5)6NH1(800(K)+£)

We want to estimate the number of cylinders of length (m; + h;) needed to cover
Q. Define Q; := o™~ 1Q. If we are able to cover Q; with R cylinders of length
(h; + 1), then we will be able to cover Q with Re; cylinders of length (m; + h;). We
will separate into two cases:

Case 1: h; < kN.

Observe that Q; < Gy n and is therefore contained in an element of 4’, which
implies diam(Q;) < 2-(*N+2)_ This implies that Q; is contained in a cylinder of
length (kKN + 2). Since h; < kN, this implies that @Q; can be covered with one
cylinder of length (h; + 1). We conclude that

Civ1 = Ci < 6@(8%(K)+5)6NH1-(SOO(K)+€) _ e.IH.l(SOO(K)+6)6NH1+1(5OO(K)+5).
Case 2: h; = kN.
By Lemma 5.6, Q; = ¢™~1Q < K(k, N). Observe that by assumption o™ *1Q; <
y<n- By Lemma 5.5 there exists 0 < t; < N, such that o144 Q; = K(k,N) (we
assume t; is the smallest such number). We conclude that every x € Q; satisfies
v € Ky, oititti(z) e K,,, and 0%z € K¢, for every s € {1,...,h; +t;}. In other
words Q; < Th, ++,(K). We now claim that Q; < fhiﬂi (K). Observe that if z € Q;,
then ohitti+l(z) e K(k,N), and o*(z) € K(k,N)¢, for every k € {1,...,h; + t;}.
We argue by contradiction and suppose that i(o*(z)) > (h; + t;) — k for some
ke {l,...,h; + t;}. This implies that (¢*(2)); < aj, for j € {0,..., h; +t; — k}.
Observe that (0%(2))n, +4;,—k+j+1 = ("t T(x));, and for j € {0,..., kN + 1}
we have (oM ftitl(z)); < a;. We conclude that (o*(2))n,+ti—k+j41 < aj, for
j €{0,...,kN}. In particular we have that (¢*(z)); < aj, for every j € {0,...,kN+
1}, which contradicts that o*(x) € K(k, N)¢, completing the proof of our claim.
This implies, from the definition of d4(K), that Q; can be covered by at most
ehitt) 0 (K)+€) cylinders of length (h; + 1 + t;); and by at most e(hi+N)(0n(FK)+e)
cylinders of length (h; + 1). We conclude that @ can be covered by at most ¢;41
cylinders of length (n; + h;), where

Cit1 Se(h,;-&-N)(Sm(K)—&-e) (eJi(SOO(K)-&-e)eNHi(SOO(KH—E))

_ eJiH(5w(K)+e)€NHi+1(5x(K)+e)'
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Adding these steps together and noting that J, = E, ; v(Q) and Hy = my, ;. n(Q)
completes the proof of the proposition. ([

The idea now is to use Proposition 5.8 to compare the entropy of a measure
with the corresponding entropy of our partition By n. This is a natural idea: the
map p — hy,(Br,n) is typically better behaved under sequences of measures; at this
point we crucially use that the partition 3 n is finite.

Proposition 5.9. Let S, n be the partition defined in (5.6) and p an ergodic o-
invariant probability measure satisfying w(K(k,N)) > 0. Then

1\ .
(o) < () + (Br) + 1 ) Gol) + 0
Proof. To simplify notation we denote the partition 8y nx by 8. We will apply
Theorem 3.2, so the main task is to estimate N,(n, 1,d) for some ¢ € (0,1). Since
i is an ergodic measure such that p(K(k,N)) > 0 there exists d; > 0 and an
increasing sequence (n;); satisfying

wK((k,N)no ™ K(k,N)) >,
for every i € N. Given €; > 0, by the Shannon-McMillan-Breiman theorem the set
Del,N = {l‘ eX:Vn = N,/J(Bn(.’l,‘)) = eXp<_n(h’u(6) + 61))} ’

satisfies
lim /’L(DEI,N) =1

N—w
By Birkhoft’s Ergodic Theorem there exists a set W, < ¥ satistying pu(We,) >

1 — 9 and n(e;) € N such that for every x € W,, and n > n(e;),

1 n—1

— Z 1g, n(0"x) < p(Bi,n) + €1
iz
Define
Xi =W NDen, "nK(k,N)no~™"K(k,N).

So for sufficiently large values of i € N, by construction we have that p(X;) > %1.
In what follows we will assume that ¢ € N is large enough that it satisfies this
condition.

By definition of D¢, ,, the set X; can be covered by exp(n;(h,(3) + €1)) many
elements of 8. We will make use of Proposition 5.8 to efficiently cover each of
those atoms by cylinders. Let Q € 8™ be an atom intersecting X;. In particular
Qe K no " DK, It follows from the definition of W, that

Engo,n (Q) < (1(Br,N) + €1) ns.
Moreover,

1
kN
Indeed, each of the excursions counted in m,,, » v has length at least KN, which
implies that the number of excursions can not be larger than ﬁnl Therefore
Proposition 5.8 implies that

My, kN (Q) < 714

N,

: <n 11 51) < emia(B) 1) i (e (K) +€) (a(Bi ) 1) gy mi N (Bun (K) )
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It now follows from Katok’s entropy formula (see Theorem 3.2) that

ha(0) < oy (Bren) + €1 + (oo (K) + ) (u(Brw) + €1) + %(Sw(x) +o).

Since €; > 0 was arbitrary the proof is complete. O

As in Proposition 5.9 we denote the partition S n by 5. We may assume,
possibly after refining the partition, that

g={C,...,C" R},

where each C? is a cylinder for the original partition and R = v~ is the comple-
ment of a finite collection of cylinders. For simplicity we still denote this partition
by 8. We emphasise that Proposition 5.9 still holds for this new partition.

Define, for large m, F,, := ﬂ?:ol o~'R. We will require the following continuity
result.

Proposition 5.10. Suppose that (pn)n is a sequence of ergodic probability measures
converging on cylinders to an invariant measure u, where pu(X) > 0. For every
P e g"™\{F,,}, we have

lim f1,,(P) = p(P).

n—ao0

Proof. In order to prove the proposition we will need the following fact.

Claim 1. Let (H;); be a collection of cylinders and (p;); a sequence of natural
numbers. Then Hyno PrHyn---no Pk Hy, is either a finite collection of cylinders,
or the empty set.

Proof. We begin with the case k = 2, in other words, we will prove that if C' and
D are cylinders, then for every p € N the set C n ¢7PD is a finite collection of
cylinders or the empty set. If the length of C is larger than or equal to p then
C no7PD is empty or a cylinder. If p is larger than the length of C', then we use
that there are only finitely many admissible words of given length connecting two
fixed symbols. More precisely, if C = [zg,...,zp_1] and D = [yo,...,y:—1], then
there are finitely many admissible words of length p — h + 2 connecting x,_1 and
Yo- We conclude that C'n ¢7PD is a finite collection of cylinder or the empty set.
The same argument gives us the proof of the claim for arbitrary k. O

Let P = Sono= 181+ -no~(m=DG | where S; € fand P := ﬂ:’;}l o=k g,
Define B = B(P) :={i€{0,...,m—1}:5; = R}, G=G(P) :={0,...,m — 1}\B,
and k = k(P) := (minG) — 1. By assumption we know that G # . Let
Qo = Qu(P) = U_go 'R, Q1 = Qu(P) := Mg o 'Si, and Q2 = Qa(P) :=
) 07 "S;. We will first consider the case k = —1, where Q¢ = .

ieBn(k,0
Claim 2. Let P = ﬂ?lgl o~1S;, where So € {C*,...,C4}. Then
Jim i, (P) = p(P).

Proof. Since @) is the disjoint union of P = (Q1 N Q2) and (Q1 n Q$), for every
n € N we obtain that

Nn(P) = Nn(Ql) - /“n(Ql N Qg)
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Observe that
Q1N Q5= (ﬂ U_ij> N <U O'_iRc> = U (a‘iRc ) ﬂ J_ij) .
JjeG i€B i€B jeG
From Claim 1 we conclude that for every i € B the sets Q1 and (0" R°n(;cq 07 55)

are a finite union of cylinders or the empty set. Therefore, @1 and Q1 N Qf are a
finite union of cylinders, or the empty set. From this we immediately obtain that

Jim p (P) = T g (Q1) = Hm e (Q1 0 Q5) = p(Q1) — (@1 1 Q5) = u(P),
which proves the claim. O
We now explain how to reduce the case k > 0 to Claim 2. Observe that P = Rn

o~ Py, therefore 0~ P; is the disjoint union between P and S; := (R°no~1P;) =
7, (C"notPy). Thus,

pn(P) = pin (67 Py) — pn(RE "o Py) = pn(P1) — Z pn(C* o7 PY).

By Claim 2 we know that lim, . pn(C* n 07 P) = u(C* n o=t P;). Therefore
it suffices to prove that lim, s p,(P1) = p(Py). Applying the above argument k
times we obtain that the original problem is reduced to lim,, o fir (Prt1) = p(Pr+1)
Since Pyy1 = Spr1 N 0 ' Piyo, where S,y € {C,...,C%}, we conclude the proof
of the proposition by applying Claim 2. O

Proof of Theorem 5.1. We first consider the case in which not all the mass escapes,
that is, we assume that p(X) > 0. Let g > 0. Choose m € N sufficiently large such

that

6_1

1 € 1
hL( ) + €0 > — (Bm) ) 2? < 50 CLTLd — (m> 10g|,u| < €.

ho (o) + €0 > ﬁ% (loglu — >, u(P) 10gu(P)>

and hence 1
il () + 260 > —— > p(P)log u(P).

It follows from Proposition 5.10 that
lim Y p(@logpa (@) = >, pu(@)logu(Q).

n—0o0

Qep™\{Fm} Qep™\{Fm}
For sufficiently large n € N we have the inequality

1
ilh z (7) + 360 = —H,, (8™).

By Proposition 5.9, we have that

1
lulh e (0) + 320 > —Hp, (6™) = Dy, (0, 5)

e, (0) — (B () + Oin(Bix) = 1 (6 (K) + ).
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Since g¢ > 0 is arbitrary we get
. 2 1 4
limsup by, (o) < |/,L|hﬁ (0) + (0o (K) + €)(1 — u(Gr.n)) + E((SOO(K) +¢€). (5.7)
n—0oo0
We stress that Proposition can be applied for arbitrary k, N € N since K c

5.9
supp(pr) and therefore p, (K (k,N)) > 0. Finally, letting & — o0 and € — 0 we
obtain the inequality

limsup hy,, (0) < [p|hy (o) + (1 —sup H(Gk,N)> b (K).
n—o0 )

Observe that Y = |, Gk, n, therefore pu(Y) < p (UkN Gk1N> = supy ny (Gr,N)-
We conclude that

lim sup s, () < |l (o) + (1 = 11(Y))doo (K).

The case p(3) = 0 follows directly from Proposition 5.9 since h,,, (o, 5) — 0 and
p,n(B]ﬁN)HlaSTLHOO. O

6. PROOF OF THEOREM 1.1

In this section we prove our main result. We start with a simple result we will
need later.

Lemma 6.1. Let (a;); and (b;); be sequences of natural numbers such that for
every i € Ny we have ag = by and a; < bj. Then 6,(K((b;);)) < 0o (K ((a});))-

Proof. Denote by K; := K((a;);) and Ky := K((b;);). Recall that associated
to each compact set defined in this way there is a function ¢ (see (5.1) for the
definition). Denote the function ¢ associated to K; (resp. Ks) by i1 (resp. i2). It
follows from the hypothesis that K; < K. In particular we have that K§ < KY
and therefore T,,(K2) < T,,(K1) (see (5.2) for the definition of T'). Moreover, we
have that R R
Tn(KQ) c Tn(Kl)a
(see (5.3) for the definition of T'). Indeed, let z € T),(K3), we have that is(c*(z)) <
n — k. In particular
k
(07()) i (ok () > big(o(2)) = Qig(o(2))-
We conclude that i1 (o*(z)) < iz(c*(x)) < n — k, and therefore x € T,,(K;). Thus

A~

T (Ks) < T,,(K7), which readily implies that for every n € N we have 2, (K3) <
2. (K7). |

In the next lemma we establish a relation between the quantities 0, (K) and
0s(q), which in turn is necessary to relate Theorem 5.1 with Theorem 1.1. As
mentioned before, in the definition of 6. (K) we covered the sets T, (K) (and not
T,,(K) which may seem more natural) in order to ensure this result.

Lemma 6.2. Let (X,0) be a CMS satisfying the F—property, and M,q € N. Then
there exists a sequence of natural numbers (a;); such that ag = q, and

0o (K) < 8o(M, q),
where K = K((a;);)
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Proof. Let ¢ € N. Since ¥ satisfies the F—property, there are finitely many cylinders
of the form [z, ...,x,], where ¢y < ¢, z, < ¢, and n < iM. Thus, only a finite
collection of symbols from the alphabet are used in this collection of cylinders.
Denote by r; € N the largest of this collection of symbols. Inductively define
(a;); = N so that:
a;+1>a; and a; >y

We now prove that the set K = K((a;);) is such that 2,(K) < 05(M, q)(n), for
every n € N. Recall that 2, (K) is the minimal number of cylinders of length (n +2)
needed to cover T),. Let z = (xo,21,...) € fn,

E:={ke{0,...,n+ 1} : a2 < ap},

and B :={0,...,n+1}\E. For k € E we define p;, := i(c¥(x)). We emphasise that
since k € E then x;, < ag, thus p, = i(c¥(x)) = 1. Let r € E and observe that
Tp.4r = (67(2))p, > ayp,., where p, < n—r. Because of the choice of a,,_, there is no
admissible word of length less or equal to p, M connecting x,, 4, and a symbol in the
set {0,1...,q}. Since x,,+1 < ¢, this means that we must have p,.+r+(p, M) < n+1.
Moreover, for every 0 < m < p.M we have that p,. + r + m € B. In other words,
the interval [r,r + p, + p. M) has at least p, M elements in B, equivalently, at most
pr elements in E. Since this argument holds for every r € E we conclude that

M#E < n + 2 and therefore
n+2

E< . 1
wp< "t (61)
From (6.1) it follows that every x € T,, belongs to a cylinder of the form [z, ..., Zn41],
where g < ¢, 411 < g and
2
Blie{0,1,. .. n+1} i <q) < o2
M
This implies that 2, (K) < z,(M, q), for every n € N. Therefore 6., (K) < 05 (M, q).
([
Define 9o, (g) := inf(4,),:00q 000 (K ((ai)s)-
Corollary 6.3. For every g € N we have d,(q) < 60(q).
Proof. Combine Lemma 6.1 with Lemma 6.2. O

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let (a;); be a sequence of non-negative integers and K :=
K ((a;);) the corresponding compact set. We assume K large enough so that there
exists a periodic measure p, with p,(K) > 0. We will prove that

lin sup fy,, () < |l () + (1= 1K) 0o (K). (6.2)

Let pf, := (1 — L)y, + Lp,,. Observe that for every n € N we have p/,(K) > 0.
It follows from Proposition 4.1 that there exists an ergodic measure v, arbitrarily
close in the weak* topology to 4, such that h,, (c) > h (o) — L. In particular,
we can assume that v, (K(n,n)) > 0 and that (v,), converges on cylinders to p.

Let k, N € N. If n > max{k, N} then K(n,n) c K(k, N), therefore v, (K (k, N)) >
0. It now follows from (5.7) that

~

limsup h,,, (0) < |plh s (0) + (5o (K) + €)(1 = u(Gr,n)) + 7 (0o (K) + ).

n—00 [1]

| =
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Letting k tend to infinity and € to zero we obtain

limsup h,, (o) < [plh e (o) + (1 = ()00 (K).

n—0o0
Since h,, (0) > hy (0) — 2 = (1= L)h,, — L then

limsup by, (0) < limsup h,,, (o),
n—00 n—00

from which (6.2) follows.

The argument above also holds for every set K’ = K((b;);), where ag = by and
a; < b;. Observe that sup(,,)..p0—a, H(H((0i)i)) = p(Ka,). Thus, it is a consequence
of Corollary 6.3 that

limsup hy,, () < [plhyu (o) + (1 - 1K ay))0o0(a0)

< JplPgi (0) + (1= p(Kay ) )00 (ao)-

Letting ag tend to infinity concludes the proof of Theorem 1.1. O

7. VARIATIONAL PRINCIPLE FOR THE ENTROPIES AT INFINITY

In this section we prove Theorem 1.4. That is, we prove a variational principle
at infinity: the measure theoretic entropy at infinity coincides with its topological
counterpart.

For each pair (4,7) € N? choose a non-empty cylinder w(i, j) of length £(i, j) + 1
such that

w(la.]) = [i7 s 7]] = [(w(i7j)07 IR w(%])é(z,g)]
Let ¢ : ¥ — R be a potential and define
Zn (90’ a, b) = Z exp (Sn+€(b7a)90(x)) 1[a]r\a*"w(b,a) (QL')

z:onti(ba)(g)=x

In the following lemma we show that the Gurevich pressure can be computed by
means of the partition function Z, (¢, a,b); this will be used in Lemma 7.3.

Lemma 7.1. Let (£,0) be a transitive CMS and ¢ : ¥ — R a bounded potential

with summable variations. Then for every pair (a,b) € N?> we have that

1
Po(p) = limsup ~ log Z,(p, a,b).
n

n—0o0

Proof. Let C' = |plo and D = Y;° , varg(p). It follows from the definition of
Zn(p,a,b) that

Zn-‘rZ(b,a) (90) a) = Z eXp(SnJ-Z(b,a)(p(x))l[a] (x) = Zn(@a a, b)

zion+Tiba) (p)=x

In particular we obtain that

1 1
Ps(p) = limsup - log Z,,(p, a) = limsup - log Z,.(p,a,b).

n—o0 n—0o0
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Let P, := w(a,b) n o~ "w(b,a). Note that

Zn(507a7b) = Z €xp (Sn+[(b7a)@(x)) 1P71. (x)

z:on+(ba) (p)=x

> e UEOHENC N e (S, we(0" D) ) 1p, (1),

zionte(b,a) (z) =g

Observe that if © = (zo,21,...) € Py, then 244 4) = ¥, = b. Define the periodic
point y(x) := Typq) ---Tn_1. The function y establishes a one-to-one correspon-

dence between points in = € P,, such that ¢”+¢®)(z) = z, and periodic points of
length n — £(b,a) in [b]. Moreover, note that if « € P,,, then

Sn—t(b,a) (%’(Ue(a’b)x)) — Sn—t(b,a) (Sﬁ(y(ﬂf)))’ <D.
We conclude that

S exp (Suepap(0"“0)) 1e, (@) >

zionHe(ba) (p)=g

e P > exp (Sp—e(v,a)(y)) Ly (@)

zion—t(b.a) (y) =y

That is Z,(p,a,b) > e_(‘)(“’b)M(b’“))C_DZn_g(bﬂ)(cp, b) and therefore

1
lim sup — log Z,, (¢, a,b) = Pa(p).

n—oo 1

O

Remark 7.2. Note that in Lemma 7.1 the assumption ¢l < oo is too strong for
what is required: it suffices to assume that for every n € N we have sup ¢, l¢(z)| <
0.

We say that a point z € ¥ belongs to the set Per(q, M,n) if the following
properties hold:
(a) o"(z) = x.
(b) If x € [xo,...,2n_1], then 2o < ¢, and #{k € {0,...,n -1} : 2 < ¢} < §5.
The following lemma is important in our proof of Theorem 1.4 as it will allow
us to find a sequence of invariant probability measures which converges to the zero
measure and entropies approach the topological entropy at infinity.

Lemma 7.3. Let ¢ : ¥ — R be a bounded potential of summable variations such
that

lim sup |p(z)| = 0.

=90 zeln]
Then Pg(p) = 0o
Proof. For every e > 0 there exists No = Ny(€) € N such that sup,e,) l¢(z)| < €,

for every n > Ny. By Lemma 7.1, for sufficiently large values of n € N, since
Zn(a,n)(p) < exp(nPg(p) + €) there exists N’ = N’'(Np) € N such that

N'exp (nPg(p) +¢€) = Z Zn(p,a,b).
(a,b)e{T,...,No}?



ESCAPE OF ENTROPY FOR COUNTABLE MARKOV SHIFTS 33

That is,
1
P (p) = limsup — log Z Zn(p,a,b).
n=0 T (T No 2
Define
Tn(a7 b) = Z exp (Sn-k—é(b,a)%o(x)) 1[a]na—"w(b,a) (:L‘)7

zePer(No,M,n+£(b,a))

and observe that Z,(¢,a,b) = Tp(a,b). Recall that x € Per(No, M,n + £(b,a))
implies that

n + £(b,a)

#{ke{0,...,n+L(b,a) — 1} : x < No} < i

It follows from the choice of Ny that

Snstt009(2) > ~(n + £00,0))e ~ O 4 0(p, ).

In particular
Ty (a,b) > # { Per(No, M, + £(b,0)) 1 [a] 0" w(b, a) } e~ "+ 5,

Denote by W, (a, b, No, M) the collection of cylinders of the form [z, ..., z,], where

o = a, v, = b, and #{k € {0,...,n} : zr < No} < E—JMI In order to esti-
mate the number of these using periodic points, to each cylinder [zq,...,z,] €

Wh(a, b, No, M) we associate the cylinder
D = [yOa ey yn+l(b,a)] = [.’IIQ, <oy Ty (’lU(b, a))17 (R 7w(b7 a)f(b,a)]'
Observe that yo = a, Yn4s(p,a) = @, and

n+1

: < <
#{kE{O, 7n+£(baa)} Yk NO} oM

+4(b,a).

For n € N sufficiently large we can assume that 7;](/[1 +4(b,a) < %(b’a). In partic-

ular the periodic point associated to D belongs to Per(Ng, M,n + £(b,a)) n [a] N
o "w(b,a). We conclude that

#Wh(a,b,No, M) < # {Per(No, M,n + £(b,a)) n [a] n o "w(b,a)}.
Observe that Z(mb)e{l’m’%}z #W,(a,b, No, M) = z,_1(2M, Ny), which implies
Zn-1(2M, Ny) < > # {Per(No, M,n + £(b,a)) n [a] n o "w(b,a)} .
(a,b)e{L,....No}?

Hence, writing £y, := max(, p)e(1,...,no}2 £(b, @)), we obtain that

.....

Z Zn(p,a,b) = Z To(a,b) = z,_1(2M, No)e—(n-MNo)(E-‘r%Q)’
(a,b)e{L,...,.No}? (a,b)efL,...,.No}2

and therefore
1
P (p) = limsup — log Z Zn(p,a,b) = 000(2M, Ng) — € — %.
no®© (a,b)e{1,...,No}2

Letting M — oo we obtain that P(p) > 6, (Ny) — €. Choosing Ny sufficiently large
we can make € arbitrarily small, to conclude that Pg(p) = 0q. ]
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Recall that the measure theoretic entropy at infinity of a transitive CMS of finite
entropy (3, 0) is defined by

he :== sup limsuph,, (o),
(p,n)n—>0 n—00

where the supremum is taken over all sequences of invariant probability measures
converging on cylinders to the zero measure. An immediate consequence of Theorem
1.1 is the following upper bound for the measure theoretic entropy at infinity of
(3,0):

heo < 6o (7.1)

We will now prove that in fact equality holds. This is equivalent to the sharpness
of the inequality in Theorem 1.1.

Proof of Theorem 1.4. As observed in (7.1), it suffices to prove the inequality d,, <
ho. Let ¢ : ¥ — R be a bounded, strictly negative locally constant potential
depending only on the first coordinate such that

lim sup |p(z)| = 0.

=0 reln]

By Lemma 7.3, for every ¢t € R we have P(tp) = d. Now consider a sequence of
measures (f, ), such that

1
hy, (o) + nfgp dp, > P(ng) — -

The existence of such a sequence of invariant probability measures is guaranteed
by the variational principle. Then

1
hy,, (o) +nfg0 Ay, > dop — e

Since the potential ¢ is strictly negativity and bounded we conclude that the se-
quence (j,), converges on cylinders to the zero measure. Since hy,, (o) = 6o — 2

n’

limsup by, (0) = 0o
n—0o0

In particular, do < hoo. O

8. APPLICATIONS

In this section we discuss several consequences of Theorem 1.1. Among the
consequences we obtain the upper semi-continuity of the entropy map, the entropy
density of the space of ergodic measures, the stability of the measure of maximal
entropy in the SPR case, existence of equilibrium states for potentials in Cp(X), a
relationship between the entropy at infinity and the dimension of the set of recurrent
points that escape on average and a bound on the amount of mass that can escape
for measures with large entropy.
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8.1. Upper semi-continuity of the entropy map. Starting in the early 1970s
with the work of Bowen [Bol] many results describing the continuity properties of
the entropy map have been obtained. More precisely, given a dynamical system
T:X — X, the map p — h,(T) defined on the space M(X,T') endowed with
the weak™ topology is called entropy map. In general it is not continuous [Wa,
p.184]. However, it was soon realised that that if X is compact and T' expansive
then the entropy map is upper-semi continuous [Wa, Theorem 8.2]. This result
has been extended to a wide range of dynamical systems exhibiting weak forms of
expansion or hyperbolicity, but always assuming the compactness of X. Indeed,
there exist examples of expansive maps T defined on non-compact spaces for which
the entropy map is not upper semi-continuous. We discuss some of them in this
section (see Remark 8.2). We recently proved in [TV, Corollary 1.2] that if (3, 0)
is a finite entropy transitive CMS then the entropy map is upper semi-continuous
when restricted to ergodic measures. The method of proof used in [I'TV] does not
seem to generalise to handle the non-ergodic case. However, the general case can
be obtained directly as a corollary of Theorem 1.1.

Theorem 8.1. Let (X,0) be a transitive CMS of finite topological entropy and
(1n)n a sequence of o-invariant probability measures converging weak® to p. Then
limsup hy, (0) < h,(0).

n—o0

That is, the entropy map is upper semicontinuous.

The proof follows immediately from Theorem 1.1, the fact that |u| = 1 and
Lemma 2.5.

Remark 8.2. We now describe the situation in the infinite entropy case.
(a) Without the finite entropy assumption, Theorem 8.1 is false, as we demon-
strate here. If (3,0) is a a topologically transitive infinite entropy CMS
then there exists a sequence (vp,), and g in M(3, o) such that h, (o) < o0,
and lim,, o h,, (0) = 0. Let (), be the sequence of invariant probability
measures defined by

pp— 1 — # + ;I/
o T ) ) )

Notice uy, is well defined for large enough n. Then (u,), converges weak™*
to p and
hu(o) < liHolo hy, (o) = 0.

Therefore, the entropy map is not upper semi-continuous at any finite en-
tropy measure.

(b) Examples of sequences of ergodic measures with finite entropy uniformly
bounded above converging weak® to an ergodic measure (with finite en-
tropy) in the full-shift on a countable alphabet, for which the entropy map
is not upper-semi continuous can be found in | , p.774] and [I'TV, Re-
mark 3.11].

(¢) The entropy map is trivially upper semi-continuous at any measure of infi-
nite entropy.

We conclude this subsection with a consequence of Theorem 1.1 and Remark
8.2.
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Proposition 8.3. Let (X,0) be a transitive CMS. Then hyop(0) is finite if and
only if 6o is finite.

Proof. We only need to prove that if 4 is finite, then h;yp(0) is finite; the other
direction follows directly from the inequality doo < hyop(0).

First assume that (3, 0) does not satisfy the F—property. It follows directly
from the definition of d,, that in this situation we have d,, = 0. As mentioned
above there is nothing to prove in this case.

Now assume that (X, o) satisfies the F—property. In the proof of Theorem 1.1 we
did not use the fact that the topological entropy of (X, o) is finite, we only used that
our CMS has the F—property and that d4 is finite—those follow trivially under the
finite entropy assumption. The F—property is crucially used in Proposition 5.10
and Lemma 6.2. If §y is finite, then Theorem 1.1 implies that the entropy map
is upper semi-continuous, which would contradict Remark 8.2 if hy,,(0) is infinite.
We conclude that the topological entropy of (X, ) is finite. (I

8.2. Suspension flows. Let (3,0) be a transitive, finite entropy CMS and 7 :
3 — RT a potential bounded away from zero. Let

Yi={(z,t) eExR: 0<t < 7(x)},

with the points (z,7(x)) and (o(z),0) identified for each x € ¥. The suspension
flow over ¥ with roof function 7 is the semi-flow ® = (¢¢)ter., on Y defined by
ot(z,s) = (z,s + t) whenever s +t € [0,7(x)]. Denote by M(Y,®) the space of
flow invariant probability measures. In this section we prove that in this continuous
time, non-compact setting again the entropy map is upper semi-continuous. This

generalises | , Proposition 5.2] in which upper semi-continuity of the entropy
map was proven for ergodic measures. Let
M (T) = {,ue./\/lg:JT d,u<oo}. (8.1)
A result by Ambrose and Kakutani [AK] implies that the map M: M, — Mag,
defined by
M X Leb Y
M = D)

(4 X Leb)(Y)’

where Leb is the one-dimensional Lebesgue measure, is a bijection. The following
result proved in | , Lemma 5.1] describes the relation between weak™ convergence
in M(Y, ®) with that in M(X, o).

Lemma 8.4. Let (v,),v € M(Y,®) be flow invariant probability measures such

that
i % Leb o x Leb

- §7 dun B §7dp
where (fn)n, p € M(X,0). If the sequence (vp)n converges weak™ to v then (fin)n
converges weak® to p and lim,_,o §7 dp, = §7 dp.

Vn, and v

Proposition 8.5. Let (X,0) be a transitive CMS of finite topological entropy. Let
7 be a potential bounded away from zero and (Y,®) the suspension flow of (3,0)
with roof function 7. Then the entropy map of (Y, ®) is upper semi-continuous.

The proof directly follows from Abramov’s formula [Ab], Lemma 8.4 and Theo-
rem 1.1. Because of the similarities between the geodesic flow and the suspension
flow over a Markov shift it is reasonable to expect that, under suitable assumptions
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on the roof function 7, the suspension flow also satisfies an entropy inequality like
Theorem 1.1. This is in fact the case and will be discussed in | ]. The space of
invariant measures for the suspension flow was already investigated and described
in [V, Section 6].

8.3. Entropy density of ergodic measures. The structure of the space of in-
variant measures for finite entropy (non-compact) CMS was studied in [IV]. In
this non-compact setting it is well known that the space of ergodic measures is still
dense in M(X, o) (see [CSc, Section 6]). A natural question is whether the approx-
imation by ergodic measures can be arranged so that the corresponding entropies
also converge. If this is the case we say that the set of ergodic measures is entropy
dense. More precisely,

Definition 8.6. A subset £L c M(X,0) is entropy dense if for every measure
1€ M(X, o) there exists a sequence (fy, ), in £ such that

(a) (tbn)n converges to u in the weak™ topology.
(b) limy, o0 by, (0) = hy(o).

Results proving that certain classes of measures are entropy dense have been
obtained for different dynamical systems defined on compact spaces by Katok [I<a],
Orey [Or], Follmer and Orey [FO], Eizenberg, Kifer and Weiss [ | and by
Gorodetski and Pesin [GP] among others. In this section we prove, for the non-
compact setting of finite entropy CMS, that the set of ergodic measures (X, o) is
entropy dense.

Theorem 8.7. Let (X,0) be a finite entropy, transitive CMS and p € M(X,0).
Then there exists a sequence (i, )n of ergodic measures such that (pn), converges
to p in the weak® topology and lim, .o hy, (0) = h,(0), e, E(X,0) is entropy
dense. Moreover, it is posstble to choose the sequence so that each p, has compact
support.

The proof of this result directly follows combining Theorem 8.1, where the upper
semi-continuity of the entropy map is proved, and Proposition 4.1, where we proved
a weak form of entropy density of the set of ergodic measures. Note that the entropy
density property of ergodic measures is an important tool in proving large deviations
principles via the orbit-gluing technique (see, for example, | | and [FO)).

8.4. Points that escape on average. In this section we relate the Hausdorff
dimension of the set of recurrent points that escape on average with the entropy at
infinity of (X,0). Recall we have fixed an identification of the alphabet of (3, o)
with N.

Definition 8.8. Let (X,0) be a CMS, the set of points that escape on average is
defined by

1 n—1 ‘
E:= {x e¥: lim — Z l[q(c"x) = 0, for every a € N}.
n—o n =

We say that « € ¥ is a recurrent point if there exists an increasing sequence (ng)g
such that limg_,o, 0™ (x) = x. The set of recurrent points is denoted by R.

A version of the set F has been considered in the context of homogeneous dynam-
ics. Interest in that set stems from work of Dani [D] in the mid 1980s who proved



38 G. IOMMI, M. TODD, AND A. VELOZO

that singular matrices are in one-to-one correspondence with certain divergent or-
bits of one parameter diagonal groups on the space of lattices. For example, Ein-
siedler and Kadyrov [EI{, Corollary 1.7] computed the Hausdorff dimension of that
set in the setting of SL3(Z)\SL3(R). In the context of unimodular (n+m)—lattices
an upper bound for the Hausdorff dimension of the set of points that escape on aver-
age has been obtained in | , Theorem 1.1]. More recently, for the Teichmiiller
geodesic flow, in | , Theorem 1.8] the authors prove an upper bound for
the Hausdorff dimension of directions in which Teichmiiller geodesics escape on av-
erage in a stratum. In all the above mentioned work, either explicitly or not, the
bounds are related to the entropy at infinity of the system. Our next result estab-
lishes an analogous result for CMS. In this case the upper bound is the entropy at
infinity divided by log2. This latter constant comes from the metric we consider
in the space (see (2.1)) and can be thought of as the Lyapunov exponent of the
system.

Theorem 8.9. Let (X,0) be a finite entropy transitive CMS. Then

. ]
dimg(EnR) < lo;o2

where dimp denotes the Hausdorff dimension with respect to the metric (2.1).

Before initiating the proof of Theorem 8.9 let us set up some notation. Given
natural numbers a, b, g, m and N we define Sg’b(N ,m) as the collection of cylinders
of the form [zg,...,xr_1], where L > Nm, g = a,2r_1 = b, and the number of
indices i € {0,...,L — 1} such that x; < ¢ is exactly N. It will be convenient to
define

Hg,b(mm) = U Sg,b(N7m)‘
N>=n
Finally define
Ly, :={x € ¥ : I(ng)y strictly increasing such that o"*(z) € [b], Vk € N},

and £ = ey Lo-

Remark 8.10. Let a,b, g and m be natural numbers. Assume that ¢ > b. Note that
if x € (E n Ly n[a]), then there exists so € N such that

S
] 0,..., —1}: 1< S*,
#lief0 -1 im<qi< =

for every s = sg. Moreover, there exists an increasing sequence (ny)g such that
Xy, = b. Define Tp(x) = #{i € {0,...,n — 1} : &; < ¢q}. Since ¢ > b we get that
Ti(z) = k. Observe that if n; > s, then

mTi(x) = m#{ie {0,...,n, — 1} 1 2; < g} < ny.
We conclude that

[1‘0, "'7‘,Enk,*1] € Sg,b(n(x)7m) < U Sg,b(p7 m) = H;b(k,m).
p=k
This gives us the inclusion
(EnLynla)e | ¢ (8.2)
CEHZ,b(k,m)

for every k € N.
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Proof of Theorem 8.9. First observe that (E N R) < (e (£ N Ly n [b]). In par-
ticular it suffices to prove that dimy(E n Ly N [a]) < 04/ log2 , for every pair of
natural numbers a and b. Fix t > 0,/log 2. Recall that 0o = inf,, ¢ 00 (m, q) (see
equation (2.4)). Choose m and ¢ large enough so that ¢ > (g, m)/log2, and that
q > max{a, b}. Observe that we are now in the same setup as in Remark 8.10.

In order to estimate the Hausdorff dimension of E n L, n [a] we will use the
covering given by (8.2). Thus, it is enough to bound ZCEHg (k) diam(C')*. First

observe that since ¢ > max{a, b}, a cylinder C € H/ ,(k,m) has length £(C) > k.

Recall that diam(C) < 274C) = ¢=(082)4C)  Therefore, as k € N increases the
diameter of the covering given by (8.2) converges to zero. Now observe that

Z dlam(C)t < Z e—t(log?)[(c)

CeHg’b(k,m) CGH;I_’b(k,m)

= Y e tosdly(C: C e H (k,m) and ((C) = (}

1=k

< Z e~ toely o (m,q).

1=k

In the last inequality we used that
#{C e H] ,(k,m) and £(C) = 1} < z-2(m, q).

Indeed, if C'e HY , (k,m) and £(C) = ¢, then C' is a cylinder of the form [z, ..., z¢—1]
where g = a, x;_1 = b, and

#{ie{(),...,é—l}:xiéq}zkéﬁ.
m

Since max{a,b} < ¢ we conclude that C is one of the cylinders counted in the
definition of zy_a(m, q) (see Definition 1.2).

By the definition of §5,(m, ¢) the series Z(s) := >,°, e~ *¢z_5(m, q) is convergent
for s > d5(m,q). In particular since tlog2 > d4(m,q) we have that Z(tlog2) is
finite. This implies that the tail of Z(tlog2) converges to zero. We conclude that
ZCeHZ (k) diam(C)? goes to zero as k — oo. This implies that dimg(E n Ly »
[a]) < t, but t was an arbitrary number larger than .,/ log 2. O

Remark 8.11. Tt is proved in [I, Theorem 3.1] that if (X, ) is a transitive CMS with
finite topological entropy, then dimg(R) = hiop(0)/log 2. In particular if (X, o) is
SPR, then dimgy(E nR) < dimg(R).

8.5. Measures of maximal entropy. An invariant measure p € M(Z, o) is called
a measure of mazimal entropy if hy,(0) = hiop(c). It follows from work by Gurevich
[Gul, ] that if hyp(0) < 0 then there exists at most one measure of maximal
entropy. Note that a direct consequence of the variational principle (see [GuZ2]
or Theorem 2.3) is that there exists a sequence of invariant probability measures
(ttn)n such that lim,,_,o hy, (0) = hiop(o). Moreover, if the sequence has a weak™
accumulation point p then it follows from the upper semi-continuity of the entropy
map, see Theorem 8.1, that h,(c) = hiop(o). Since the space M(X,0) is not
compact there are cases in which the sequence (u,, ), does not have an accumulation
point. In fact, there exist transitive finite entropy CMS that do not have measures
of maximal entropy (see [R2] for a wealth of explicit examples). Our next result
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follows directly from Theorem 1.1 and Theorem 2.7. Recall that (¥,0) is SPR if
and only if 6o < hiop(o) (see Proposition 2.20).

Theorem 8.12. Let (X,0) be a SPR CMS and (pin)n a sequence of o-invariant
probability measures such that

1 Ty, (0) = hioy (o).

Then the sequence (), converges in the weak™ topology to the unique measure of
mazximal entropy.

Proof. Note that the inequality 0o < hyop(o) immediately implies that (X, o) has
finite topological entropy (see Proposition 8.3). Since M« (X, o) is compact (see
Theorem 2.7) there exists a subsequence (pn, )r which converges on cylinders to
e Mg (2, 0). It follows directly from Theorem 1.1 that
fitop(0) = Him sup fu,, (o) < [l (@) + (1= [12])dco.
—00

Recall that 0o < hop(o). If |u| < 1 then the right hand side of the equation is a
convex combination of numbers, one of which is strictly smaller than h.p,(o). Since
this is not possible we have that |u| = 1. In particular

hiop(0) < hyu(0).

That is, p is a measure of maximal entropy. We conclude that (X, o) has a measure
of maximal entropy. The same argument holds for every subsequence of (fiy,)n,
this implies that the entire sequence (), converges in the weak* topology to the
unique measure of maximal entropy. (I

In fact Theorem 1.1 also gives a complete description of non strongly positive
recurrence, as follows. Some of these results were originally proved in [GS, Theorem
6.3] by different methods.

Theorem 8.13. Let (3,0) be a transitive CMS of finite entropy.

(a) Suppose (X, 0) does not admit a measure of mazimal entropy. Let (fin)n be
a sequence of o-invariant probability measures such that lim, o hy,, (0) =
hiop(c). Then (pn)n converges on cylinders to the zero measure and 6o =
htop(o)-

(b) Suppose that (X,0) is positive recurrent, but hiop(0) = 0. Let (1n)n be
a sequence of o-invariant probability measures such that lim,_, hy,, (0) =
hiop(c). Then the accumulation points of (pn)n lie in the set {A\imag = A €
[0,1]}, where fimaz S the measure of mazimal entropy. Moreover, every
measure in {Aimaz : t € [0,1]} can be realised as such limit.

Proof. Note that part (a) directly follows from Theorem 1.1. Indeed, if a se-
quence (fip), With limy, o hy, (0) = hiop(o) converges in cylinder to a measure
€ Mci(3,0) different from the zero measure then p/|u| would be a measure
of maximal entropy. This argument also gives us the first part of (b), that is,
the accumulation points of (i), lie in {Aimaez : A € [0,1]}. As for the sec-
ond part of (b), by Theorem 1.4 there exists a sequence (i), in M(X, o) with
limy, o Ay, (0) = hiop(o) such that that (i), converges on cylinders to the zero
measure. Since there exist a measure of maximal entropy v we have that for every
A € [0,1] the sequence p, := Av + (1 — A)u, converges on cylinders to Av and
limy, o0 By, () = hiop(0). O



ESCAPE OF ENTROPY FOR COUNTABLE MARKOV SHIFTS 41

8.6. Existence of equilibrium states. In this section we will always assume
that (X, 0) is a transitive CMS with finite entropy. In Section 2.4 we described the
thermodynamic formalism developed by Sarig in the setting of CMS and functions
(potentials) of summable variations. It turns out that the same methods can be
extended and thermodynamic formalism can be developed for functions with weaker
regularity assumptions (for example functions satisfying the Walters condition [S1]).
However, these methods can not be extended much further. In this section we
propose an alternative definition of pressure that generalises the Gurevich pressure
to the space of functions Cy(X) (see Definition 2.6). We stress that these functions
are just uniformly continuous. Making use of Theorem 1.1 we can ensure the
existence of equilibrium states.

The following result is a direct consequence of Theorem 1.1 and the continuity
of the map p +— § Fdu, when F € Cy(X) and p ranges in M (X, o) endowed with
the cylinder topology.

Theorem 8.14. Let (X, 0) be a transitive CMS with finite entropy and F € Cy(X).
Let (pn)n be a sequence in M(X,0) converging on cylinders to Au, where A € [0,1]
and p € M(X,0). Then

lim sup (h“n (o) + JFd“”> <A (h“(a) + dept) + (1= N)dg.

n—o0

For a continuous, bounded potential F' define the (variational) pressure of F by

Pyor(F) := sup <h#(a) + deu) .
peEM(X,0)

A measure 4 is an equilibrium state for F if Py, (F) = h,(0) + § Fdp. Recall that

since F' needs not to be of summable variations then the classifications of potentials

(see Definition 2.10) and the uniqueness of equilibrium states (Theorem 2.12) do

not necessarily hold.

Note that if F € Cy(X), then Pyqr(F) = dy. Indeed, let (uy,)n be a sequence
of measures in M(X, o) converging on cylinders to the zero measure and such that
limy, o0 hy, (0) = 0. Since F € Co(X), then lim,, o § Fdu, = 0. We conclude
that

Pyor(F) = limsup (hun (o) + deun) = 0op.
n—0oo0
Our next result follows directly from Theorem 8.14 and Theorem 2.7, as Theorem

8.12 follows from Theorem 1.1 and Theorem 2.7.

Theorem 8.15. Let (X, 0) be a transitive CMS with finite entropy and F € Cy(X).
Assume that Pya,(F') > 0. Then there exists an equilibrium state for F'. Moreover,
if (n)n is a sequence in M(X, o) such that

iy (1) + [ Fdn) = Pua(P),

n—0o0
then every limiting measure of (fn)n is an equilibrium state of F'.

In Theorem 8.15, if we further assume that F' has summable variations, then the
sequence (i), converges in the weak™ topology to the unique equilibrium state of
F. For the description of the pressure map ¢ — P,..(tF) we refer the reader to
[RV, Theorem 5.7].
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8.7. Entropy and escape of mass. In this subsection we show that for a SPR
CMS (X, 0) it is possible to bound the escape of mass of sequences of measures with
sufficiently large entropy. In the setting of homogenous flows an analogous result
was proven in | , Corollary of Theorem A].

Theorem 8.16. Let (X,0) be a SPR CMS. Let (un)n be a sequence in M(X,0)
such that hy, (o) = ¢, for every n € N, and ¢ € (0w, hiop(0)). Then every limiting
measure [ of (fn)n with respect to the cylinder topology satisfies

¢ — 0o
Xz
wx) Fo(@) — 0

Proof. From Theorem 1.1 we have that

c < limsup hy, (0) < u(X)hu(0) + (1= p(2))00 < () (htop(0) — o) + dep-
n—oo

The result then follows. O
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